8 research outputs found

    USING DEEP LEARNING AND UAV IMAGERY TO DETECT ELKHORN CORAL IN ST. CROIX’S EAST END MARINE PARK

    Get PDF
    Elkhorn coral, or Acropora palmata, is an important reef building species that promotes species abundance and other ecological services to the communities in the US Virgin Islands. We captured high resolution imagery of a reef in St. Croix’s East End Marine Park using a Wingtra One UAV. We then used deep learning techniques to detect individual coral colonies. We compared two deep learning models, FasterRCNN and MaskRCNN, and found that the models achieved accuracy shores up to 0.78. These scores improved when examining only larger corals in shallow waters. The model was able to both detect Elkhorn coral and distinguish it from other corals and features. This will be a useful method for measuring coral abundance and monitoring the success of restoration efforts

    Towards Deeper Measurements of Tropical Reefscape Structure Using the WorldView-2 Spaceborne Sensor

    No full text
    Owing to the shallowness of waters, vast areas, and spatial complexity, reefscape mapping requires Digital Depth Models (DDM) at a fine scale but over large areas. Outperforming waterborne surveys limited by shallow water depths and costly airborne campaigns, recently launched satellite sensors, endowed with high spectral and very high spatial capabilities, can adequately address the raised issues. Doubling the number of spectral bands, the innovative eight band WorldView-2 (WV2) imagery is very susceptible to enhance the DDM retrieved from the traditional four band QuickBird-2 (QB2). Based on an efficiently recognized algorithm (ratio transform), resolving for the clear water bathymetry, we compared DDM derived from simulated QB2 with WV2 spectral combinations using acoustic ground-truthing in Moorea (French Polynesia). Three outcomes emerged from this study. Increasing spatial resolution from 2 to 0.5 m led to reduced agreement between modeled and <em>in situ</em> water depths. The analytical atmospheric correction (FLAASH) provided poorer results than those derived without atmospheric correction and empirical dark object correction. The purple, green, yellow and NIR3 (WV2 1st-3rd-4th-8th bands) spectral combination, processed with the atmospheric correction at the 2 m resolution, furnished the most robust consistency with ground-truthing (30 m (<em>r </em>= 0.65)), gaining 10 m of penetration relative to other spaceborne-derived bathymetric retrievals. The integration of the WV2-boosted bathymetry estimation into radiative transfer model holds great promise to frequently monitor the reefscape features at the colony-scale level

    Spatial structure and dynamics of the plant communities in a pro-grading river delta : Wax Lake Delta, Atchafalaya Bay, Louisiana

    Get PDF
    River deltas are dynamic depositional environments that are controlled to varying degrees by coastal and fluvial forces. Plant communities in deltas respond to many of the same allogenic forces that shape delta geomorphology. This study examines the factors that influence plant community development, productivity, and species distributions in the Wax Lake delta, a young, actively pro-grading river delta in coastal Louisiana, USA. A species distribution map created using high-resolution 8-band WorldView-2 imagery was found to have an overall accuracy of 75 percent. Classification tree analysis suggested that most of the observed variation in plant species distributions within the delta can be explained by variables related to flooding, riverine and tidal flushing, soil development, ecological succession, and exposure. This full model explained 65 percent of the spatial variability, compared to 54 percent explained by elevation alone, indicating that elevation is the most important driver of species distributions in this deltaic system. Analysis of a time series of NDVI data derived from 94 Landsat images from 1973 to 2011 suggests that both total and mean plant community productivity within the delta has increased over time and that seasonal fluctuations occur that are related to water temperature and discharge. While significant short-term decreases in NDVI were found following five major storm events, in each case, total and mean NDVI recovered to within the 95 percent prediction interval of the long-term trend by the following growing season. Following the historic 2011 Mississippi River flood, the area of the delta increased by nearly 5 km2. Greater increases in delta area occurred at higher water levels, suggesting substantial vertical accretion across much of the subaerial delta. The plant community responded to this vertical accretion by shifting to higher elevation species across nearly 9 km2 of the delta. Overall, these results indicate that the plant community in the Wax Lake delta is largely driven by allogenic factors related to delta geomorphology and is increasing in productivity as the delta continues to accrete over time. The marshes in the delta show great resilience to storm disturbance, and a strong response to allogenic succession driven by extreme flood events
    corecore