25,713 research outputs found

    The Global Networked Value Circle: A new model for best-in-class manufacturing

    Get PDF
    As companies face deflation, slowing production and declining prices, they will need to assess their entire value chain as they look for ways to keep costs low and improve efficiencies while continuing to innovate. To help address this challenge, this report reflects fresh research undertaken by Capgemini in collaboration with the University of Edinburgh into the ?Best-in-Class Global Manufacturing Value Chain?

    From Sensor to Observation Web with Environmental Enablers in the Future Internet

    Get PDF
    This paper outlines the grand challenges in global sustainability research and the objectives of the FP7 Future Internet PPP program within the Digital Agenda for Europe. Large user communities are generating significant amounts of valuable environmental observations at local and regional scales using the devices and services of the Future Internet. These communities’ environmental observations represent a wealth of information which is currently hardly used or used only in isolation and therefore in need of integration with other information sources. Indeed, this very integration will lead to a paradigm shift from a mere Sensor Web to an Observation Web with semantically enriched content emanating from sensors, environmental simulations and citizens. The paper also describes the research challenges to realize the Observation Web and the associated environmental enablers for the Future Internet. Such an environmental enabler could for instance be an electronic sensing device, a web-service application, or even a social networking group affording or facilitating the capability of the Future Internet applications to consume, produce, and use environmental observations in cross-domain applications. The term ?envirofied? Future Internet is coined to describe this overall target that forms a cornerstone of work in the Environmental Usage Area within the Future Internet PPP program. Relevant trends described in the paper are the usage of ubiquitous sensors (anywhere), the provision and generation of information by citizens, and the convergence of real and virtual realities to convey understanding of environmental observations. The paper addresses the technical challenges in the Environmental Usage Area and the need for designing multi-style service oriented architecture. Key topics are the mapping of requirements to capabilities, providing scalability and robustness with implementing context aware information retrieval. Another essential research topic is handling data fusion and model based computation, and the related propagation of information uncertainty. Approaches to security, standardization and harmonization, all essential for sustainable solutions, are summarized from the perspective of the Environmental Usage Area. The paper concludes with an overview of emerging, high impact applications in the environmental areas concerning land ecosystems (biodiversity), air quality (atmospheric conditions) and water ecosystems (marine asset management)

    Open educational resources : conversations in cyberspace

    Get PDF
    172 p. : ill. ; 25 cm.Libro ElectrónicoEducation systems today face two major challenges: expanding the reach of education and improving its quality. Traditional solutions will not suffice, especially in the context of today's knowledge-intensive societies. The Open Educational Resources movement offers one solution for extending the reach of education and expanding learning opportunities. The goal of the movement is to equalize access to knowledge worldwide through openly and freely available online high-quality content. Over the course of two years, the international community came together in a series of online discussion forums to discuss the concept of Open Educational Resources and its potential. This publication makes the background papers and reports from those discussions available in print.--Publisher's description.A first forum : presenting the open educational resources (OER) movement. Open educational resources : an introductory note / Sally Johnstone -- Providing OER and related issues : an introductory note / Anne Margulies, ... [et al.] -- Using OER and related issues : in introductory note / Mohammed-Nabil Sabry, ... [et al.] -- Discussion highlights / Paul Albright -- Ongoing discussion. A research agenda for OER : discussion highlights / Kim Tucker and Peter Bateman -- A 'do-it-yourself' resource for OER : discussion highlights / Boris Vukovic -- Free and open source software (FOSS) and OER -- A second forum : discussing the OECD study of OER. Mapping procedures and users / Jan Hylén -- Why individuals and institutions share and use OER / Jan Hylén -- Discussion highlights / Alexa Joyce -- Priorities for action. Open educational resources : the way forward / Susan D'Antoni

    The iPlant Collaborative: Cyberinfrastructure for Plant Biology

    Get PDF
    The iPlant Collaborative (iPlant) is a United States National Science Foundation (NSF) funded project that aims to create an innovative, comprehensive, and foundational cyberinfrastructure in support of plant biology research (PSCIC, 2006). iPlant is developing cyberinfrastructure that uniquely enables scientists throughout the diverse fields that comprise plant biology to address Grand Challenges in new ways, to stimulate and facilitate cross-disciplinary research, to promote biology and computer science research interactions, and to train the next generation of scientists on the use of cyberinfrastructure in research and education. Meeting humanity's projected demands for agricultural and forest products and the expectation that natural ecosystems be managed sustainably will require synergies from the application of information technologies. The iPlant cyberinfrastructure design is based on an unprecedented period of research community input, and leverages developments in high-performance computing, data storage, and cyberinfrastructure for the physical sciences. iPlant is an open-source project with application programming interfaces that allow the community to extend the infrastructure to meet its needs. iPlant is sponsoring community-driven workshops addressing specific scientific questions via analysis tool integration and hypothesis testing. These workshops teach researchers how to add bioinformatics tools and/or datasets into the iPlant cyberinfrastructure enabling plant scientists to perform complex analyses on large datasets without the need to master the command-line or high-performance computational services

    Virtual teams: A literature review

    Get PDF
    In the competitive market, virtual teams represent a growing response to the need for fasting time-to-market, low-cost and rapid solutions to complex organizational problems. Virtual teams enable organizations to pool the talents and expertise of employees and non-employees by eliminating time and space barriers. Nowadays, companies are heavily investing in virtual team to enhance their performance and competitiveness. Despite virtual teams growing prevalence, relatively little is known about this new form of team. Hence the study offers an extensive literature review with definitions of virtual teams and a structured analysis of the present body of knowledge of virtual teams. First, we distinguish virtual teams from conventional teams, different types of virtual teams to identify where current knowledge applies. Second, we distinguish what is needed for effective virtual team considering the people, process and technology point of view and underlying characteristics of virtual teams and challenges they entail. Finally, we have identified and extended 12 key factors that need to be considered, and describes a methodology focused on supporting virtual team working, with a new approach that has not been specifically addressed in the existing literature and some guide line for future research extracted.Virtual team, Literature review, Effective virtual team,

    Models in the Cloud: Exploring Next Generation Environmental Software Systems

    Get PDF
    There is growing interest in the application of the latest trends in computing and data science methods to improve environmental science. However we found the penetration of best practice from computing domains such as software engineering and cloud computing into supporting every day environmental science to be poor. We take from this work a real need to re-evaluate the complexity of software tools and bring these to the right level of abstraction for environmental scientists to be able to leverage the latest developments in computing. In the Models in the Cloud project, we look at the role of model driven engineering, software frameworks and cloud computing in achieving this abstraction. As a case study we deployed a complex weather model to the cloud and developed a collaborative notebook interface for orchestrating the deployment and analysis of results. We navigate relatively poor support for complex high performance computing in the cloud to develop abstractions from complexity in cloud deployment and model configuration. We found great potential in cloud computing to transform science by enabling models to leverage elastic, flexible computing infrastructure and support new ways to deliver collaborative and open science

    Collaborative environment to support a professional community

    Get PDF
    Dissertação apresentada na Faculdade de CiĂȘncias e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia ElectrotĂ©cnica e de ComputadoresRecent manufacturing roadmaps stress current production systems limitations, emphasizing social, economic and ecologic consequences for Europe of a non-evolution to sustainable Production Systems. Hence, both academic institutions and enterprises are committed to develop solutions that would endow enterprises to survive in nowadays’ extremely competitive business environment. A research effort is being carried on by the Evolvable Production Systems consortium towards attaining Production Systems that can cope with current technological, economical, ecological and social demands fulfilling recent roadmaps. Nevertheless research success depends on attaining consensus in the scientific community and therefore an accurate critical mass support is required in the whole process. The main goal of this thesis is the development of a Collaborative Environment Tool to assist Evolvable Production Systems consortium in such research efforts and to enhance Evolvable Assembly Systems paradigm dissemination. This work resulted in EASET (Evolvable Assembly Systems Environment Tool), a collaborative environment tool which promotes EAS dissemination and brings forth improvements through the raise of critical mass and collaboration between entities

    Enabling Machine Understandable Exchange of Energy Consumption Information in Intelligent Domotic Environments

    Get PDF
    In the 21st century, all the major countries around the world are coming together to reduce the impact of energy generation and consumption on the global environment. Energy conservation and its efficient usage has become a top agenda on the desks of many governments. In the last decade, the drive to make homes automated and to deliver a better assisted living picked pace and the research into home automation systems accelerated, usually based on a centralized residential gateway. However most devised solutions fail to provide users with information about power consumption of different house appliances. The ability to collect power consumption information can lead us to have a more energy efficient society. The goal addressed in this paper is to enable residential gateways to provide the energy consumption information, in a machine understandable format, to support third party applications and services. To reach this goal, we propose a Semantic Energy Information Publishing Framework. The proposed framework publishes, for different appliances in the house, their power consumption information and other properties, in a machine understandable format. Appliance properties are exposed according to the existing semantic modeling supported by residential gateways, while instantaneous power consumption is modeled through a new modular Energy Profile ontolog
    • 

    corecore