183 research outputs found

    Vision and advocacy of optoelectronic technology developments in the AECO sector

    Get PDF
    Purpose This research presents a literature review of laser scanning and 3D modelling devices, modes of delivery and applications within the architecture, engineering, construction and owner-operated (AECO) sector. Such devices are inextricably linked to modern digital built environment practices, particularly when used in conjunction with as-built building information modelling (BIM) development. The research also reports upon innovative technological advancements (such as machine vision) that coalesce with 3D scanning solutions. Design/methodology/approach A synthesis of literature is used to develop: a hierarchy of the modes of delivery for laser scan devices; a thematic analysis of 3D terrestrial laser scan technology applications; and a componential cross-comparative tabulation of laser scan technology and specifications. Findings Findings reveal that the costly and labour intensive attributes of laser scanning devices have stimulated the development of hybrid automated and intelligent technologies to improve performance. Such developments are set to satisfy the increasing demand for digitisation of both existing and new buildings into BIM. Future work proposed will seek to: review what coalescence of digital technologies will provide an optimal and cost effective solution to accurately reconstructing the digital built environment; conduct case studies that implement hybrid digital solutions in pragmatic facilities management scenarios to measure their performance and user satisfaction; and eliminate manual remodelling tasks (such as point cloud reconstruction) via the use of computational intelligence algorithms integral within cloud based BIM platforms. Originality/value Although laser scanning and 3D modelling have been widely covered en passant within the literature, scant research has conducted an holistic review of the technology, its applications and future developments. This review presents concise and lucid reference guidance that will intellectually challenge, and better inform, both practitioners and researchers

    Bridge Construction Monitoring using LIDAR for Quantified, Objective Quality-Control Quality-Assurance (QOQCQA)

    Get PDF
    Transportation infrastructure construction quality control and quality assurance demands construction monitoring by field inspectors. Currently, these inspectors monitor infrastructure by measuring and photographing structures. These tasks allow them to assess any correction decision during construction or to inform about the quality of the construction process for the future. In order to promote and objective decisions obtained during infrastructure construction, the proposed research project developed and implemented a methodology to measure construction progress and compared it with the designed 3D shape, quantifying the difference. This proposed project includes implementation for the development of DOT standards that could be added in near future bridge construction documents. The New Mexico Department of Transportation (NMDOT) showed a strong interest in this topic. The experience of the PIs on bridge design and construction, field inspection, and LIDAR technology was integrated in order to evaluate the results with impact both in research and in industry. Specifically, the research results outline recommendations about standards for implementation of technology in specifications for NMDOT or other DOTs

    Development of Bridge Information Model (BrIM) for digital twinning and management using TLS technology

    Get PDF
    In the current modern era of information and technology, the concept of Building Information Model (BIM), has made revolutionary changes in different aspects of engineering design, construction, and management of infrastructure assets, especially bridges. In the field of bridge engineering, Bridge Information Model (BrIM), as a specific form of BIM, includes digital twining of the physical asset associated with geometrical inspections and non-geometrical data, which has eliminated the use of traditional paper-based documentation and hand-written reports, enabling professionals and managers to operate more efficiently and effectively. However, concerns remain about the quality of the acquired inspection data and utilizing BrIM information for remedial decisions in a reliable Bridge Management System (BMS) which are still reliant on the knowledge and experience of the involved inspectors, or asset manager, and are susceptible to a certain degree of subjectivity. Therefore, this research study aims not only to introduce the valuable benefits of Terrestrial Laser Scanning (TLS) as a precise, rapid, and qualitative inspection method, but also to serve a novel sliced-based approach for bridge geometric Computer-Aided Design (CAD) model extraction using TLS-based point cloud, and to contribute to BrIM development. Moreover, this study presents a comprehensive methodology for incorporating generated BrIM in a redeveloped element-based condition assessment model while integrating a Decision Support System (DSS) to propose an innovative BMS. This methodology was further implemented in a designed software plugin and validated by a real case study on the Werrington Bridge, a cable-stayed bridge in New South Wales, Australia. The finding of this research confirms the reliability of the TLS-derived 3D model in terms of quality of acquired data and accuracy of the proposed novel slice-based method, as well as BrIM implementation, and integration of the proposed BMS into the developed BrIM. Furthermore, the results of this study showed that the proposed integrated model addresses the subjective nature of decision-making by conducting a risk assessment and utilising structured decision-making tools for priority ranking of remedial actions. The findings demonstrated acceptable agreement in utilizing the proposed BMS for priority ranking of structural elements that require more attention, as well as efficient optimisation of remedial actions to preserve bridge health and safety

    Mapping the knowledge domains of emerging advanced technologies in the management of prefabricated construction

    Get PDF
    Emerging advanced technologies (EAT) have been regarded as significant technological innovations which can greatly improve the transforming construction industry. Given that research on EAT related to the management of prefabricated construction (MPC) has not yet been conducted, various researchers require a state-of-the-art summary of EAT research and implementation in the MPC field. The purpose of this paper is to provide a systematic literature review by analysing the selected 526 related publications in peer-reviewed leading journals during 2009–2020. Through a thorough review of selected papers from the state-of-the-art academic journals in the construction industry, EAT is recognised as the key area affecting the development of the MPC discipline. This study has value in offering original insights to summarise the advanced status quo of this field, helping subsequent researchers gain an in-depth understanding of the underlying structure of this field and allowing them to continue future research directions

    Automatic Change-based Diagnosis of Structures Using Spatiotemporal Data and As- Designed Model

    Get PDF
    abstract: Civil infrastructures undergo frequent spatial changes such as deviations between as-designed model and as-is condition, rigid body motions of the structure, and deformations of individual elements of the structure, etc. These spatial changes can occur during the design phase, the construction phase, or during the service life of a structure. Inability to accurately detect and analyze the impact of such changes may miss opportunities for early detections of pending structural integrity and stability issues. Commercial Building Information Modeling (BIM) tools could hardly track differences between as-designed and as-built conditions as they mainly focus on design changes and rely on project managers to manually update and analyze the impact of field changes on the project performance. Structural engineers collect detailed onsite data of a civil infrastructure to perform manual updates of the model for structural analysis, but such approach tends to become tedious and complicated while handling large civil infrastructures. Previous studies started collecting detailed geometric data generated by 3D laser scanners for defect detection and geometric change analysis of structures. However, previous studies have not yet systematically examined methods for exploring the correlation between the detected geometric changes and their relation to the behaviors of the structural system. Manually checking every possible loading combination leading to the observed geometric change is tedious and sometimes error-prone. The work presented in this dissertation develops a spatial change analysis framework that utilizes spatiotemporal data collected using 3D laser scanning technology and the as-designed models of the structures to automatically detect, classify, and correlate the spatial changes of a structure. The change detection part of the developed framework is computationally efficient and can automatically detect spatial changes between as-designed model and as-built data or between two sets of as-built data collected using 3D laser scanning technology. Then a spatial change classification algorithm automatically classifies the detected spatial changes as global (rigid body motion) and local deformations (tension, compression). Finally, a change correlation technique utilizes a qualitative shape-based reasoning approach for identifying correlated deformations of structure elements connected at joints that contradicts the joint equilibrium. Those contradicting deformations can help to eliminate improbable loading combinations therefore guiding the loading path analysis of the structure.Dissertation/ThesisDoctoral Dissertation Civil and Environmental Engineering 201

    Enabling the Development and Implementation of Digital Twins : Proceedings of the 20th International Conference on Construction Applications of Virtual Reality

    Get PDF
    Welcome to the 20th International Conference on Construction Applications of Virtual Reality (CONVR 2020). This year we are meeting on-line due to the current Coronavirus pandemic. The overarching theme for CONVR2020 is "Enabling the development and implementation of Digital Twins". CONVR is one of the world-leading conferences in the areas of virtual reality, augmented reality and building information modelling. Each year, more than 100 participants from all around the globe meet to discuss and exchange the latest developments and applications of virtual technologies in the architectural, engineering, construction and operation industry (AECO). The conference is also known for having a unique blend of participants from both academia and industry. This year, with all the difficulties of replicating a real face to face meetings, we are carefully planning the conference to ensure that all participants have a perfect experience. We have a group of leading keynote speakers from industry and academia who are covering up to date hot topics and are enthusiastic and keen to share their knowledge with you. CONVR participants are very loyal to the conference and have attended most of the editions over the last eighteen editions. This year we are welcoming numerous first timers and we aim to help them make the most of the conference by introducing them to other participants
    • …
    corecore