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The construction industry is a key contributor to the Gross Domestic Product (GDP) of 

many countries around the world and is valued at more than $10 trillion globally. 

Schedule, cost and quality are the main performance measures of construction projects. 

The primary goal for project stakeholders in the construction industry is to ensure that 

a project is delivered on time and on budget, while meeting the project specific quality 

standards. However, cost and schedule overruns, and rework have become the costly 

standard for most construction projects. In particular, transportation construction 

projects are very sensitive to cost and schedule overruns due to the magnitude of risk 

and uncertainty involved. The inaccuracies, inconsistencies, and delays associated with 

manual collection of project progress data further contribute to the inefficient tracking 

of resources, activities, and cost, consequently causing issues to be overlooked and 

leaving them unresolved. Another major issue in the construction industry is related to 

the assessment of the quality of work in a timely fashion in order to avoid rework. 

Focusing on measuring the quality of concrete slabs, several concrete surface waviness 

assessment methods have been developed to overcome the disadvantages of one 

assessment method over the other. Floor surface waviness assessment over multiple 



 

 

one-dimensional (1D)-survey lines may not accurately reflect the actual condition or 

waviness of an entire floor. Thus, it can be concluded that the current practices for 

performing project quality control and progress tracking are prone to errors, labor-

intensive, and time-consuming, and there is a need to develop novel, technology 

supplemented methodologies to improve current project quality control and progress 

tracking practices. 

 

This dissertation proposes two technology-supplemented frameworks for project 

progress tracking and dimensional quality control, and is comprised of three 

manuscripts. The first manuscript presents a framework that uses mobile lidar data and 

four dimensional- (4D-) design models for tracking the progress of bridge construction 

projects. The framework is capable of determining the completion of individual bridge 

elements in an accurate and efficient manner, and the progress information is reported 

as Percentage of Completion (POC). The second manuscript presents a framework that 

enables assessment of a concrete surface in two-dimensional (2D) domain using the 

synergy between Terrestrial Laser Scanning (TLS) and Continuous Wavelet Transform 

(CWT). 2D CWT analysis provides information not only about the periods of the 

surface undulations, but also the location of such undulations. The third manuscript 

presents a sensitivity analysis of the impact of various TLS point cloud scanning 

resolutions on surface waviness results. Furthermore, the surface waviness results 

obtained using TLS and Unmanned Aerial Vehicles (UAV)-based laser scanning are 

compared and analyzed.  
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Executive Summary 

 

Emerging technologies are transforming several industries with improvements in product 

quality, increase in production rates and reduction in long-term costs. The construction 

industry is also increasingly adopting novel technologies and new construction techniques 

to improve productivity and efficiency of construction practices. The integration of these 

tools and technologies into construction practices is speeding up the process of 

digitalization in the construction industry. The potential impact resulting from introducing 

various innovative tools and technologies into existing construction practices can be 

broadened if efficient methodologies are designed for their implementation in various 

areas. In fact, the Construction Industry Institute (CII) [1] and the National Research 

Council (NRC) of the National Academies [2] have emphasized the identification and 

prioritization of technology-centric solutions to advance productivity and increase 

efficiency in the construction industry. In 2017, the McKinsey Global Institute reported 

that there is a correlation between the level of digitalization and the productivity increase 

in several sectors [3]. Furthermore, a number of unique challenges arising in the 

construction industry due to the increasing complexity of construction projects has 

necessitated the integration of information technology into traditional construction 

practices.  

 

The construction industry is a key contributor to the Gross Domestic Product (GDP) of 

several countries and is valued at more than $10 trillion globally [4]. With schedule, cost 

and quality as the main performance measures of construction projects, the primary goal 

for project stakeholders in the construction industry is to ensure that a project is delivered 

on time and on budget, while meeting the project specific quality standards. However, cost 

and schedule overruns, and rework have become the standard for most construction 

projects. In fact, according to Klynveld Peat Marwick Goerdeler’s (KPMG’s) 2015 Global 

Construction Survey, only 25% of projects were completed within 10% of the specified 

deadlines, and 31% of projects were completed within 10% of the budget. Similarly, repair, 
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demolition, removal, and replacement of defective concrete elements entail costs that could 

amount to as much as 12% of the project contract value [5–8].  

 

Accurate as-built data collected from on-going construction projects assists project field 

engineers with tracking the progress of construction work. The comparison of as-planned 

status against the as-built status of construction enables the involved parties to determine 

project performance. Periodic monitoring of project performance enables timely 

identification of discrepancies between the schedule baseline and the actual project 

schedule. The rapid identification of any discrepancies allows necessary measures to be 

taken to minimize the impact of a delay on the construction workflow. In transportation 

projects, the traditional means of acquiring as-built data from a construction site prevents 

involved parties from receiving the required information from the site in a timely manner. 

The delay in the communication of information ultimately causes subsequent delays in 

implementing necessary courses of action targeted toward improving the workflow. 

Similarly, failure to communicate project performance with all involved parties in an 

effective and timely manner lead to delays and cost-overruns in construction work [9]. 

Furthermore, manually collected progress tracking information may not be readily 

available for analyzing project performance. Thus, it can be concluded that the traditional 

methods of measuring progress in transportation projects are inconsistent and prone to 

error. While the use of light detection and ranging (lidar) and BIM for progress monitoring 

in vertical construction projects has been investigated by several researchers [10]–[19], 

previous frameworks developed for building construction are not directly applicable to 

horizontal construction projects due to the differences in the physical design and 

construction methods between building and horizontal construction projects. The 

implementation of such frameworks in horizontal construction projects may not necessarily 

provide accurate progress information. The majority of the previously developed progress 

tracking frameworks deliver object detection results for completed construction 

components in terms of Boolean variables. In other words, in a given time frame, a 

component in the building structure is reported as either fully constructed or not 

constructed. In practice, the completion status of some components requires to be reported 
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in terms of percentage of completion (POC). For instance, in bridge replacement projects, 

it is a common practice to have one of the lanes operating while construction work proceeds 

on the other lane. This practice may result in only a section of the bridge deck being 

completed, as opposed to the entire deck. In such a scenario, an accurate progress report 

would reflect the progress of the bridge deck placement in terms of POC. In addition, a 

progress tracking framework for such projects should take the formwork placed into 

account for partially completed elements. Furthermore, road construction projects may 

consist of several design layers, and the progress of these layered surfaces should also be 

reported. Misclassification of road design layers can potentially arise from registration 

errors, which needs to be addressed.   

 

One of the other major difficulties in the construction industry is related to the quality 

assessment of work in a timely fashion in order to avoid rework. The primary causes of 

rework include poor workmanship, failure to detect the imperfections in newly constructed 

surfaces during the early stages of construction, and lack of timely communication [20]. 

The traditional processes of performing quality control and progress tracking are labor-

intensive and time-consuming. Focusing on measuring the quality of concrete slabs, several 

concrete surface waviness assessment methods have been developed to overcome the 

disadvantages of one assessment method over the other. For example, the F-number 

method was developed to overcome the disadvantages of the Straightedge method, and the 

Waviness Index (WI) method was developed to overcome the disadvantages of the F-

number method. The sparseness of measurements associated with each of these methods 

prevents from achieving a better understanding of how elevations and undulations change 

across the surface. Assessing waviness over multiple one-dimensional (1D)-survey lines, 

as is done with traditional methods, may not accurately reflect the actual condition or 

waviness of the entire floor. Using 3D point clouds obtained using terrestrial laser scanning 

(TLS) and as-designed geometry information from Building Information Modelling (BIM), 

Bosché and Guenet [21] developed an approach based on BIM and TLS data to assess 

whether the geometry of as-is elements adhere to the specified surface flatness tolerances. 

An experiment was conducted to compare the results obtained using the proposed method 
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with the ones obtained from the digitally encoded Straightedge and F-number methods. 

The digital application of Straightedge and F-Number, as presented in [18], significantly 

reduces the time required for data collection and analysis, compared to traditional methods. 

However, in current practice, surface flatness is analyzed along sparsely surveyed 1D 

survey lines, which delivers results limited in spatial and wavelength resolution. Bosché 

and Biotteau [22] developed a method that applied 1D Continuous Wavelet Transform 

(CWT) to TLS data to characterize surface undulation  periods, which addresses the 

limitation of previous works in wavelength resolution, i.e. the approach examines surface 

waviness at a wider range of wavelengths or characteristic periods. However, it remains 

based on measurements along 1D lines that do not enable an analysis of flatness in all 

possible directions, and provide results with limited spatial resolution.  

 

The first study in this dissertation, Chapter 4, discusses a technology-supplemented 

progress monitoring approach.  The main research question for the study was ‘How can we 

report the progress of horizontal construction projects in terms of percentage of 

completion?’ To answer this question, a framework was designed and tested using the data 

collected from a bridge construction project near Albany, Oregon. The framework 

implements as-built data obtained using mobile lidar technology, which enables rapid 

collection of data while ensuring the safety of the data collector. The proposed framework 

utilizes point cloud data and 4D design models to identify deviations of the performed work 

from the planned work. The framework was tested using as-built data acquired from an on-

going bridge construction project, and Percentage of Completion (POC) for the as-built 

bridge elements are calculated and compared with the as-planned POC. The differences 

between these two POC values for each element, on a particular scan date, are used for 

assessing the performance of the proposed framework. The difference between as-built and 

as-planned POC values ranged from -7% to 6% for most elements, which shows that the 

developed framework enables tracking the completion of individual bridge elements in an 

accurate and efficient manner. 
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The second study in this dissertation is described in Chapter 5. The main research question 

this study attempts to answer is ‘How can the traditional methods of measuring surface 

waviness along 1D lines be extended to measuring surface flatness along the 2D surface 

and provide a more comprehensive assessment of surface geometry?’. The methodology 

presented in Chapter 5 presents a compliance-checking algorithm for detecting elements 

where their dimensions exceed specified construction tolerances. It also enables 

assessment of a concrete surface in 2D using the synergy between TLS and CWT analysis. 

2D CWT analysis provides information not only about the periods of the surface 

undulations, but also the location of such undulations. The validity of the methodology is 

established by running a test on point clouds obtained from a warehouse project near 

Gresham, Oregon. A rigorous comparison between one of the existing floor waviness 

measurement methods, the waviness index method, and the proposed method is made. The 

results showed that the proposed methodology delivers accurate results that enable the 

localization of surface undulations of various characteristic periods.  

 

Chapter 6 presents a comparative analysis of floor waviness measurement results obtained 

using UAV-based (mounted with a 3D laser scanning sensor) and TLS-based technologies. 

One of the major drawbacks in using 3D dense point clouds is related to storing and 

processing large volumes of point cloud data. Using lower resolution settings during 

scanning can save time and cost. However, a sensitivity analysis is required to understand 

the data quality requirements for localization of surface defects. The main research 

question for this study is ‘How does the resolution of point clouds affect the localization 

of surface defects?’ The TLS data from two projects are used to investigate how the quality 

of surface waviness results are affected by the scanning resolution. The point cloud data 

were analyzed at scanning resolutions of 0.02°, 0.04°, 0.06°, 0.08° and 0.1°, which are 

typical resolution settings for most commercially available TLS systems. The findings 

showed that for the Magruder Hall Expansion Project, using only one scan (in our case 

Scan 2) ensured that the CWT results matched the ground truth results, for scanning 

resolutions ranging from 0.02° through 0.08°. If scans are collected from two scanning 

locations, scanning resolutions ranging from 0.02° through 0.1° can be used. Each of the 
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scanning locations for the two scans may be as far as 12.46 m from the furthest point in the 

slab. Table 6.3 shows that this distance could have been 18.5 m but a conservative distance 

was chosen to ensure accurate results. Note that the scanner is setup within the boundaries 

of the slab surface. The results from the Vista Logistic Park Project has shown that using 

four scans (in our case Scan 1, Scan 2, Scan 3 and Scan 4) ensured that the CWT results 

matched the ground truth results for scanning resolutions ranging from 0.02° through 0.08°. 

Each of the scanning locations for the four scans may be as far as 22.69 m from the furthest 

point in the slab. Note that the scanner is setup within the boundaries of the slab surface. 

Furthermore, the results obtained from analyzing UAV-based point cloud data and TLS 

point cloud data for measuring floor flatness shows that comparable results are obtained 

for the scales of 30, 60 and 75. However, UAV-based point cloud did not produce 

acceptable results for scales of 15 and 30. Thus, it was concluded that UAV-based point 

cloud data on its own does not ensure localization of all kinds of surface undulations and 

TLS should be the preferred choice.  

 

Chapter 7 summarizes the results of the three studies described in the dissertation. The 

research questions defined in Chapter 3 for each research study are validated, and 

limitations are discussed. In summary, two novel technology-centric frameworks have 

been developed to overcome the disadvantages associated with traditional methods of 

progress tracking and dimensional quality control. A framework that utilizes the synergy 

between lidar and BIM technologies to precisely track the progress of construction projects 

is developed.  Another framework based on lidar technology is designed to implement 3D 

geometric information obtained from construction sites and provide information that 

supports dimensional quality control processes. Furthermore, sensitivity analysis was 

performed to analyze the surface waviness results obtained from point clouds with different 

resolutions. A comparison between surface waviness results obtained using TLS and UAV-

based point clouds was also performed. Chapter 7 provides conclusions for the studies 

performed in this dissertation. Future research directions are also discussed.   
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1 Introduction and Motivation 

 

1.1 Progress Tracking in the Construction Industry  

 

The investment in transportation infrastructure in the United States is estimated to reach 

$278.1 billion in 2019 [23]. Every four years, the American Society of Civil Engineers 

(ASCE) releases a comprehensive assessment of the U.S. infrastructure as a “report card”. 

The most recent report card that ASCE published in 2017 issued an overall grade of D+ 

(poor) for the nation’s infrastructure, and C+ (mediocre) for bridges. The report estimated 

that 188 million trips were taken daily across deteriorating roads, bridges and highways 

[24]. Based on their assessment, the current state of transportation infrastructure resulted 

in increased travel times and a number of accidents on roads [25]. Ultimately, these 

conditions has a negative impact on the cost of delivered goods and personal income [25]. 

Frequent inspection of existing transportation infrastructure and performing necessary 

repair work in a timely manner can ensure good conditions of roads and bridges. In addition 

to performing comprehensive inspections regularly after the construction phase, proper 

measures implemented during the construction phase also help ensure good quality. During 

the pre-construction phase, the various parties involved in a project collectively define the 

milestones of the project based on the expected duration of completion and the available 

budget. Under the constant pressure of completing the required work within a given time 

period while monitoring the available budget, the quality of work performed may be 

compromised [26]. Transportation construction projects often experience significant cost 

overruns and schedule delays [27]–[29]. In addition, failure to communicate the project 

performance with all involved parties in an effective and timely manner may lead to delays 

and cost-overruns in construction work [9]. 
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Systematic collection of accurate and detailed data from on-going construction projects is 

important for monitoring project progress. The acquired data can be processed to generate 

information about the status of completion of various activities. This information can be 

used by various parties involved in the project for decision-making and to find effective 

solutions to overcome any delays. Timely identification of construction delays is possible 

if such information is collected frequently and with sufficient detail from the construction 

site. Construction progress monitoring is traditionally a labor-intensive process. Foreman 

daily or weekly reports are primarily used to record the amount of work performed on site. 

While such reports are versatile and provide several types of information including the 

availability of resources, potential risks, inventory checklists and incidents occurred, they 

fail to capture three-dimensional (3D) geometric information of the work that has been 

completed. Obtaining 3D geometric information is a crucial component of a progress 

monitoring process as it ensures that the information collected regarding the as-built status 

is not subjective. 3D geometric information serves as a mirror of the work that has been 

completed on site within a certain period of time. Moreover, substantial delays may be 

experienced before foremen daily or weekly reports are analyzed and any important 

information is relayed to concerned parties. The overall process may prevent corrective 

actions from taking place in a timely manner and contribute toward schedule delays. Thus, 

it is essential that such reports are supplemented, if not replaced, with as-built 3D geometric 

information to minimize the delays occurring in a construction project.  

 

Obtaining reliable progress information pertaining to on-site activities would enable 

identification of issues that may cause delays in the completion of these activities. Progress 

information acquired using current manual-based progress measurement workflows are 

prone to errors and are time consuming [30]. Additionally, multiple site visits may be 

required if the collected data is inaccurate or incomplete. Therefore, the inefficiencies 

associated with manual-based progress measurement methods indicates the need for 

adopting new technologies for project progress monitoring. 
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1.2 Dimensional Quality Control in the Construction Industry 

 

As-built dimensions of cast-in-place concrete elements often differ from the dimensions 

originally specified in as-designed plans [31]. Dimensional Quality Control (QC) verifies 

that elements are constructed in compliance with the specified dimensional tolerances. For 

instance, when combining precast and cast-in-place elements, checking dimensional 

tolerance of all elements is necessary for ensuring acceptable performance of joints and 

interfacing materials [32]. In addition, failure to detect the imperfections in newly 

constructed surfaces during the earlier stages of construction causes delays in carrying out 

necessary repair works [20]. The repair, demolition, removal and replacement of defective 

concrete elements entail additional costs that could amount to as much as 12% of the 

project contract value [3-6]. Thus, upon the completion of concrete elements, it is crucial 

to carry out inspections in a timely manner. Furthermore, traditional inspection procedures 

related to dimensional QC are labor intensive and time consuming.     

 

Focusing on concrete slabs, several factors influence the dimensional quality of cast-in-

place concrete slabs, such as sweltering temperatures, placement and finishing techniques 

that are applied during construction. Proper regulation and control of these factors are 

essential for achieving specified levels of waviness and levelness. The defects resulting 

from the waviness of concrete slabs not only create aesthetic issues but also affect the 

efficiency of lift trucks and very narrow aisle (VNA) vehicles. Even if waviness present in 

slabs is not immediately noticeable, the waviness of the concrete slabs in industrial 

facilities, such as large warehouses, must be strictly examined since failing to detect 

waviness and deviations from the specified tolerances can greatly affect the operational 

activities that the floor is designed to handle [22]. Figure 1.1 illustrates how irregularities 

on the floor affect the stability of VNA trucks. Variations in elevation between the left and 

right wheels (d) of a VNA truck results in static lean (s) of VNA trucks. The static lean can 

potentially increase up to ten times due to the waviness present in concrete slabs [33].  
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Figure 1.1 The effect of difference in elevation between the wheels on the static lean for a 

VNA 

The methods for measuring concrete slab waviness, which are currently prevalent in the 

construction industry, require intensive human intervention, are tedious and time-

consuming, and yet are based on sparse measurements. These methods entail the surveying 

of 1D lines for differences in elevations and characterizing undulations of specific periods.   

 

The Straightedge method involves laying a 10-ft (3.05 m) Straightedge across a survey line 

on the floor and measuring the distance between the Straightedge and the floor using a 

stainless steel slip gauge [31]. While the results obtained with this method are easily 

comprehensible, the process of laying out the Straightedge over large surface areas is labor-

intensive and engenders random errors in the measurements [34]. In addition, this time-

intensive method provides information about the deviations between as-built and as-

designed points only at relatively few measured points.  

 

The introduction of the F-numbers method was aimed towards eradicating random errors 

in measurements, via the use of instruments that enable measurement of elevation 

differences at fix intervals to produce more accurate results. It provides the results in the 

form of two numbers: Floor Flatness (FF) and Floor Levelness (FL). FF describes the 
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flatness associated with the measured floor surface point, whereas FL describes the 

levelness of the measured floor surface point. As described in the ASTM E1155-14 

standard [35], the measurements are carried out at intervals of 1-ft along each survey line, 

and the measurements collected from multiple survey lines are statistically processed to 

generate FF and FL numbers that describe the conditions of the entire floor surface. In 

addition, results produced from the F-number method are in the form of flatness numbers 

(FF and FL values) that are hard to comprehend. 

 

The Waviness Index (WI) method, as described in ASTM E1486-14 [36], was developed 

later because the F-number method provides information only about the floor undulations 

with periods of 1.5 to 4-ft (0.46 – 1.22 m) and 15 to 80-ft (4.6 – 24.4 m). In contrast, the 

WI method identifies various periods of floor undulations between 2-ft and 10-ft, which 

correspond to the periods of surface undulation that affect the operation of forklifts 

[37][22][38]. The results obtained using the WI method are expressed in inches and are 

relatively easier to comprehend. 

  

Despite having a significant advantage over the Straightedge and the F-number methods, 

the WI method shares similar drawbacks with those methods. Sparse measurements yielded 

by the three methods fail to ensure that the collected data is an accurate representation of 

the geometric features of the surface. Although results may be repeatable with a certain 

error, they fail to capture the geometric details of the entire 2D floor surface and essentially 

do not impart information about the waviness of the 2D surface. Data collection from large 

surface areas using these methods demands significant amount of time and manual labor. 

Since these methods require measurement tools to be manually moved across the surface 

of the floor, the results obtained are prone to human error. Random errors, which 

potentially arise due to possible carelessness exerted while handling the measurement 

instruments, contribute toward inaccuracies in measurements. Moreover, the inability to 

retrieve similar results between different measurement sessions is one of the prominent 

drawbacks of these methods. And finally, applying these methods to measure the floor 

waviness of large floor areas, such as warehouse projects, is quite difficult. It is important 
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to note that warehouse projects typically have floor surface areas that are larger than 4,000 

m2. Consequently, using these methods for such projects generate results that are not 

repeatable. In addition, the obtained results are limited in the orientation of the defects and 

the range of wavelength.  Furthermore, the inability to explicitly reveal the location of those 

undulations remains a disadvantage for these methods [22]. 

 

1.3 Tolerance Issues in the Architecture, Engineering and Construction (AEC) 

Industry  

 

There are a number of unique challenges arising in the construction industry due to the 

increasing complexity of construction projects, which has necessitated the integration of 

information technology into traditional construction practices. Building Information 

Modelling (BIM) is one of these technologies that has revolutionized the traditional ways 

of information retrieval and management in the construction industry [39][40][41]. BIM 

enables 3D parametric representation of building elements and facilitates “a more 

integrated design and construction process that results in better quality buildings at lower 

cost and reduced project duration [40].” In addition, the traditional way of using 2D 

drawings for documenting as-designed and/or as-built state of buildings are slowly being 

replaced by BIM [42]. The quality of as-built information acquired from project sites 

heavily affects the work that they are being used for. For the purposes of dimensional 

compliance checking and control as well as renovations, it is extremely important to have 

access to data that is very accurate. Terrestrial Laser Scanning (TLS) is a popular 

technology used in today’s construction industry for acquiring accurate as-built 

information of the existing conditions [43][44][45][46].  

 

In current practice, upon completion of a project, as part of quality control contract 

requirements, a contractor highlights the changes made during the construction on paper-

based as-designed plans and submits them to the owner. Often, as-built plans of cast-in-

place concrete elements fail to accurately reflect the geometrical attributes of elements that 

were originally specified in the as-designed plans [31]. Due to the changes made during 
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the construction phase, the dimensions and locations of an element specified in the as-

designed plans may be different from the ones present in its as-built plan. Accordingly, it 

is impossible to perfectly align the as-built and as-designed plans with each other. 

However, potential rework as a result of those discrepancies can certainly be minimized by 

specifying appropriate tolerances, which would make construction work easier for 

contractors, superintendents, foremen and inspectors while help keeping project on 

schedule and within budget [47].  

 

As-built information collected from construction projects is vital for decision making in 

various stages of a project’s lifecycle including dimensional quality control and assessment 

[48][49][50], project progress monitoring [51][45][13] and facilities/asset management 

[52][53][54][55][41]. Renovation/restoration/remodeling activities require the use of as-

built information to meticulously plan the dimensional features and locations of new 

installations and assign working groups accordingly. Modern non-contact based 

measurement systems enable capturing as-built data with millimeter level accuracy while 

decreasing the time required for data collection. An owner can heavily benefit from the 

accurate information about the discrepancies present between the as-built and as-designed 

models, which would help them assess dimensional tolerance compliance during 

construction. Accurate as-built 3D models can further be used for maintenance purposes 

and other possible future works during Operations and Maintenance (O&M) phase. At the 

same time, accurate as-built information could also support contractor’s tasks during 

project closeout such as creating 2D drawings or 3D models as part of the submittal 

documents.  

 

Various sources in the literature describe the failure design - construction integration as 

one of the prime reasons for such discrepancies [56][57][58] and focus on eliminating the 

sources of errors prior to construction. Several codes have been established to ensure the 

dimensional compliance of as-built elements, but it can be inferred that the defect can only 

be corrected after they occur [31]. Possible solutions for each perspective exist. In order to 

efficiently carry out post construction assessment, a tolerance compliance checking 
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framework could be devised. It has the advantage of carrying out timely and accurate 

measurements, but would not solve the core problem of why the problems exist in the first 

place. This approach could be extended to as-built modelling from available data to assess 

the existing conditions during renovation work involving removal of components or 

installation of new ones. A compliance checking framework could be devised so that prior 

to construction, owners, designers and contractors could establish acceptable tolerances, 

integrate that information in as-designed BIM, and then begin construction. This could help 

eliminate problems related to explicitly specified tolerance information on 2D paper-based 

plans and make the process easier by integrating all related information into a single digital 

platform. 

 

The traditional way of using 2D drawings for documenting as-designed and/or as-built state 

of buildings are slowly being replaced by BIM [42]. The quality of as-built information 

acquired from project sites heavily affects the work that they are being used for. For the 

purposes of dimensional compliance checking and control as well as renovations, it is 

extremely important to have access to data that is very accurate. Terrestrial Laser Scanning 

(TLS) is a popular technology used in today’s construction industry for acquiring accurate 

as-built information of the existing conditions [43][44][45][46].  

 

In current practice, upon completion of a project, as part of quality control contract 

requirements, a contractor highlights the changes made during the construction on paper-

based as-designed plans and submits them to the owner. Often, as-built plans of cast-in-

place concrete elements fail to accurately reflect the geometrical attributes of elements that 

were originally specified in the as-designed plans [31]. Due to the changes made during 

the construction phase, the dimensions and locations of an element specified in the as-

designed plans may be different from the ones present in its as-built plan. Accordingly, it 

is impossible to perfectly align the as-built and as-designed plans with each other. 

However, potential rework as a result of those discrepancies can certainly be minimized by 

specifying appropriate tolerances, which would make construction work easier for 
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contractors, superintendents, foremen and inspectors while help keeping project on 

schedule and within budget [47].  

 

As-built information collected from construction projects is vital for decision making in 

various stages of a project’s lifecycle including dimensional quality control and assessment 

[48][49][50], project progress monitoring [51][45][13] and facilities/asset management 

[52][53][54][55][41]. Renovation/restoration/remodeling activities require the use of as-

built information to meticulously plan the dimensional features and locations of new 

installations and assign working groups accordingly. Modern non-contact based 

measurement systems enable capturing as-built data with millimeter level accuracy while 

decreasing the time required for data collection. An owner can heavily benefit from the 

accurate information about the discrepancies present between the as-built and as-designed 

models, which would help them assess dimensional tolerance compliance during 

construction. Accurate as-built 3D models can further be used for maintenance purposes 

and other possible future works during Operations and Maintenance (O&M) phase. At the 

same time, accurate as-built information could also support contractor’s tasks during 

project closeout such as creating 2D drawings or 3D models as part of the submittal 

documents.  

 

Various sources in the literature describe the failure in design - construction integration as 

one of the primary reasons for such discrepancies [56][57][58] and focus on eliminating 

the sources of errors prior to construction. Several codes have been established to ensure 

the dimensional compliance of as-built elements, but it can be inferred that the defect can 

only be corrected after they occur [31]. Possible solutions for each perspective exist. In 

order to efficiently carry out post construction assessment, a tolerance compliance 

checking framework could be devised. It has the advantage of carrying out timely and 

accurate measurements, but would not solve the core problem of why the problems exist 

in the first place. This approach could be extended to as-built modelling from available 

data to assess the existing conditions during renovation work involving removal of 

components or installation of new ones. A compliance checking framework could be 
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devised so that prior to construction, owners, designers and contractors could establish 

acceptable tolerances, integrate that information in as-designed BIM, and then begin 

construction. This could help eliminate problems related to explicitly specified tolerance 

information on 2D paper-based plans and make the process easier by integrating all related 

information into a single digital platform. 
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2 Background 

 

2.1 Construction Progress Tracking  

 

2.1.1 Progress Tracking in Vertical Construction Projects  

 

Construction industry, compared to other non-farm industries, has been relatively slow in 

adopting new technologies and tools into its practices [59]. However, within the last 

decade, the construction industry has started adopting novel remote sensing and 

information technologies into its practices at a faster rate to increase the level of 

automation. The traditional way of recording as-built information and construction updates 

in highway construction projects is using Daily Work Reports (DWR) [60], which is time 

consuming and prone to errors. Therefore, several technologies including lidar, 

photogrammetry, radio-frequency identification (RFID), ultra-wideband (UWB) and BIM 

have been tested by several researchers for construction progress monitoring. The analysis 

of as-built data obtained using these technologies yields accurate progress information that 

is not subjective. In other words, progress information will not be misinterpreted by 

individuals based on their level of experience. UWB technology is commonly used for real-

time location and orientation estimation in indoor and outdoor environments across various 

disciplines, mainly in the military and communications [61]. High accuracy localization is 

an important property of UWB technology, which enables UWB to be used for resource 

tracking. Teizer et al. [62] experimented with the applicability of the technology for 

tracking the location of individual steel beams in construction projects. The study 

concluded that UWB is an effective tool that can be used to monitor resources during the 

construction phase of a project. Furthermore, UWB technology was tested in real-life 

construction environment and the results showed that it is capable of delivering accurate 

positioning results in large and spacious outdoor environments [63]. Although such 

systems are capable of offering high precision positioning data, several factors have 

potentially hindered the widespread use of this technology for progress monitoring 

purposes. Systems using UWB technology have been commonly used for tracking 
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individual resources. On a construction site, it is impractical to use such tags on cast-in-

place elements. In addition, the time required for the installation of such systems requires 

significant human effort, especially when used in large construction projects.  

 

RFID is a wireless data collection system that is capable of uniquely identifying and 

tracking objects. It can be used in construction sites to automatically identify components 

that have been installed [64]. A study described in [65] developed a structural steel 

component tracking system called Comp-TRAK. The tracking system utilized RFID tags 

attached to components establish their location and orientation in the construction site. 

Similarly, Chin et al. [66] used RFID technology to correctly identify structural steel 

members prior to their installation at a given location. The data collected using RFID 

technology was integrated into 4D CAD to monitor the as-built status of the installation 

process. Similar to UWB, RFID technology enables tracking of a single component by 

providing single point coordinates for each element, and shares similar disadvantages, thus 

it is not practical to use them for monitoring the progress of cast-in-place concrete 

elements.  

 

Capturing site photographs on a daily basis is one of the methods of recording as-built 

progress information. Traditionally, site photographs are collected and stored as a visual 

record of on-going progress. However, 2D information captured in these photographs fail 

to provide 3D geometric information about the as-built status of construction projects. 

Consequently, several research efforts have been directed toward processing the obtained 

photographs to generate 3D point clouds using photogrammetry and computer vision 

techniques together so that they can be compared with 3D design models and used for 

automated progress monitoring. Structure-from-Motion (SfM) is one of the most 

commonly used techniques for this purpose. Images are collected from a construction site 

on a daily basis using consumer grade [13] or UAV –mounted (Unmanned Aerial Vehicles-

mounted) cameras [67][68]. The images are taken from various angles with 95% or more 

overlap to enable the creation of a 3D as-built point cloud model after applying SfM 

technique [69]. SfM technique can be used to extract 3D geometry information of the 
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elements of the structure of interest, as described in [13]. The approach involves identifying 

keypoints or interest points in a set of collected images. A keypoint detection algorithm, 

such as Scale Invariant Feature Transform (SIFT), can be used for detecting interest points. 

It is possible to obtain both the interest points and the descriptors associated with each of 

the points using the SIFT algorithm. The descriptor part is essential for correctly matching 

the detected interest points across images. Furthermore, in [13], the researchers used 

Random sample consensus (RANSAC) to refine the matching feature results by removing 

false matches. The intrinsic and extrinsic camera parameters are estimated and a 3D point 

cloud is reconstructed in the next step. The output point cloud data is aligned with the 4D 

information model (3D models combined with project schedule) to generate visual 

information about the on-going progress on site. This manual process can be significantly 

improved by using a Building Information Modelling (BIM) model to assist the existing 

SfM approach [70][71]. Photogrammetry offers significant advantages over previously 

discussed technologies for monitoring the construction progress of cast-in-place elements. 

It provides a 3D geometric representation of the construction site, and the progress 

monitoring results can be visualized in augmented reality environment [13]. Another study 

quantified the economic benefits of using high-resolution cameras for progress monitoring 

[72].  

 

Lidar technology enables collection of 3D geometric information from a construction site 

at mm-level accuracy. The horizontal and vertical resolutions of the output scans can be 

specified in the TLS device before the scanning process. In addition, it is possible to control 

the density of the point cloud. Several studies have shown that TLS point clouds can be 

compared with 4D design BIM for project progress tracking [17][18][16][18]. The first 

step involves developing the 3D model using the 2D drawings if there is not a readily 

available 3D model of the structure of interest, and then the project schedule is linked to 

the 3D model, resulting in a 4D model. The 3D model and the point cloud data are then 

superimposed by performing a coarse registration. This step can be performed either 

manually [51][73] or by using a local region-based method [16]. The registration can be 

further tuned by using an Iterative Closed Point (ICP) algorithm before proceeding with 
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the object recognition step. The constructed elements are identified by applying an object-

matching method to the aligned dataset, i.e. 3D design BIM and the as-built point cloud 

data [16][17]. In real work environments, the detection results may contain false positives 

or negatives due to the presence of occlusions, reinforcement bars or formwork. The 

method developed in [74][69] correctly classifies elements under such conditions. The 

actual progress completed can then be determined by computing the ratio of the actual 

work performed to the planned work. The obtained progress information can then be used 

to automatically update the as-planned schedule [16]. Lidar-based progress tracking 

methods have been well explored for the building construction projects. However, their 

application to monitoring horizontal construction projects has been limited and requires 

further investigation.   

 

2.1.2 Progress Monitoring in Horizontal Construction Projects: CIM Practices 

 

Technological advancements are constantly leveraged in academia and industry to develop 

innovative solutions to tackle inefficient construction practices. The adoption rate of 

technologies for improving construction processes is increasing exponentially in the 

vertical (building) construction industry. On the other hand, the horizontal construction 

industry is lagging behind in the adoption of various technologies into its practices. The 

Federal Highway Administration (FHWA) initiative known as Every Day Counts (EDC) 

encourages representatives from private industry, local governments and state 

transportation departments to promote new technologies and develop innovative solutions. 

The EDC-2 initiative was quite an important landmark as it promoted the use of 3D design 

models in an industry which predominantly relies on 2D paper-based drawings. Extending 

these efforts into the EDC-3 initiative, the use of 4D and 5D design models and lidar was 

encouraged for recording the as-built status of transportation projects. Several studies have 

focused on developing frameworks for mobile lidar data processing for transportation asset 

management and safety-related applications such as pavement segmentation [75], 

identifying crosswalks [76], road markings [77] and edges extraction [78] in mobile lidar 

point clouds automatically, and improving mobile lidar trajectory reconstruction and 
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segmentation [79]. The costs of integrating 3D models into project delivery processes for 

highway construction projects have also been have also examined [80]. The adaptation and 

implementation of a wide range of technologies to improve transportation construction 

processes is termed as Civil Integrated Management (CIM). In the light of several efforts 

and initiatives made to promote the use of technological tools and innovation, the adoption 

of such technologies in the horizontal construction industry increased by 180% from 2009 

to 2012 [81].  

 

2.1.3 Technologies used for as-built data collection 

 

The adoption and implementation of various tools and technologies for improving 

construction practices is slowly gaining momentum in horizontal construction projects, 

compared to vertical construction projects. GPS, RFID sensors and photographs collected 

using UAV have been used to measure the productivity and monitor resources in 

transportation projects [82][83][84][85]. Similarly, the application of lidar technology is 

limited to measuring quantities of earthwork materials [86]. Vick and Brilakis [87] 

developed an approach for automatically detecting road design surfaces. The novel 

approach developed by the authors can be used for progress monitoring of road 

construction projects to improve project performance. The approach utilized UAV-derived 

images to obtain as-built data and a 3D BIM for obtaining as-planned information. It 

showed good performance when tested on unlabeled as-built point cloud. One of the 

drawbacks of this approach is that misclassification can be encountered in regions of 

wearing surface layer. Misclassification may occur if the registration error is larger than 

the thickness of the road design layers. In this scenario, the accuracy of detection can 

potentially be improved using lidar technology instead of UAV-derived images for as-built 

data collection.  

 

While the efficacy of using lidar and BIM for progress monitoring in vertical construction 

projects has been validated by several researchers [10]–[19], the state-of-the-art 

frameworks developed in this pursuit remain to be tested on horizontal construction 
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projects. The adoption of such frameworks in horizontal construction projects may not 

necessarily provide accurate progress information. Most of the frameworks deliver object 

detection results for completed construction components in terms of Boolean functions. In 

other words, in a given time frame, a component in the building structure is reported as 

either fully constructed or not constructed. In practice, the completion status of some 

building components requires to be reported in terms of percentage of completion. For 

instance, in bridge replacement projects, it is a common practice to have one of the lanes 

operating while construction work proceeds on the other lane. This practice may result in 

only a section of the bridge deck being completed, as opposed to the entire deck. In such a 

scenario, an accurate progress report would reflect the progress of the bridge deck 

placement in terms of percentage of completion. In addition, a progress tracking framework 

for such projects should take the formwork placed into account for partially completed 

elements. In addition, misclassification of road design layers, which can potentially arise 

from registration errors, should be addressed in the framework.   

 

2.2 Dimensional Quality Control: Surface Flatness Measurement using TLS 

 

2.2.1 Dimensional Tolerances for Floor Flatness and Waviness 

 

The dimensions of newly constructed and existing building elements can vary, slightly or 

significantly, from the dimensions specified in the design documents [31]. Tolerances, or 

allowable deviations in those dimensions, are typically specified during the design phase 

for different measures such as length, width, thickness, perpendicularity, or verticality. ACI 

117-90 Standard Document, for example, provides a comprehensive list of tolerance 

criteria for cast-in-place concrete elements, such as vertical, lateral, and level alignments, 

and cross-sectional dimensions. The specified dimensional tolerances are an output of 

economical and practical considerations [88]. The role of QC inspectors is to ensure that 

the specified tolerance values are achieved as construction progresses. Inaccuracies in the 

geometry of concrete elements during construction arise from improper establishment of a 
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reference system for controlling the alignment, manual measurements, poor workmanship 

and in some cases, the method used for measurement [89].  

 

2.2.2 Terrestrial Laser Scanning (TLS) Point Clouds for Project Control  

 

Acquisition of accurate project as-built data is crucial for dimensional quality control 

measurements, so that informed decisions can be made in a timely manner. TLS is a 

modern surveying technology that has been gaining popularity increasingly in the 

Architectural, Engineering, Construction and Facilities Management (AEC&FM) industry. 

The versatility of the Terrestrial Laser Scanning (TLS) technology has been tested in 

various fields of AEC&FM. For example, TLS has been used for assessing the conditions 

of remote environments where human access is difficult or dangerous [90], for generating 

BIMs that represent the as-built conditions of building facilities [91], as well as 

construction progress control [15–19].  

 

2.2.3 TLS Point Clouds for Quality Control  

 

The use of TLS for dimensional QC is gaining interest due to its ability to rapidly provide 

inspectors with project as-built data in the form of both dense and accurate 3D point clouds 

(sub mm to mm-level accuracy) [93]. Using TLS not only solves the problems associated 

with accuracy and repeatability, but also enables the acquisition of data that represents the 

geometry of entire surfaces, thereby addressing the data sparsity limitations of existing 

surveying methods. Focusing on flatness measurement, compared to existing measurement 

tools employed in current standard flatness measurement methods, TLS thus offers an 

efficient way of collecting dense as-built data covering entire slab surface.  

 

Regarding the processing of TLS data for QC, Fuchs et al. [94] and Shafer and Weber [95] 

developed deformation monitoring algorithms to find the differences in positions of TLS 

data points with respect to a reference surface. In [96], a color map generated from the TLS 

data was used to assess the flatness of facades in a multi-story building and the additional 

costs arising from placing excess mortar on these facades was evaluated based on the 
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volumetric quantities derived from TLS data. In [97], a methodology that identifies the 

geometric irregularities in precast concrete elements by comparing as-built data obtained 

from TLS and as-designed data obtained from BIM was developed. Tang et al. [8] 

developed three algorithms which helped in finding the difference in elevation of the points 

in the point cloud with respect to a plane taken from a BIM model or a plane specified by 

the user. The method described in [98] used an elevation map where each interval in height 

were represented with different colors. This approach represented the height of each point 

with respect to a reference plane obtained from a BIM model. All these methodologies and 

existing approaches detected areas where different degrees of deviations occurred, however 

they have failed to characterize the waviness or the periods of surface undulations.  

 

2.2.4 Wavelet Transform for Surface Characterization 

 

Wavelet Transform (WT) has a wide range of applications in engineering, some of which 

include seismic signal analysis [99], sound pattern analysis [100] and quantum mechanics 

[101]. WT is also widely used in the area of surface texture characterization, where  it is 

used to break down the 2D profiles of surfaces into the roughness and waviness 

components [102]. WT has been applied to characterize surface roughness and waviness 

in several studies, and it has many applications in the field of point cloud processing such 

as point cloud de-noising and rock surface roughness quantification [31–33]. A technique 

using 1D WT for characterizing different types of surfaces was introduced by Chen et al. 

[106]. Josso et al. [107] performed 2D multi-scaled decomposition using images instead of 

profiles. Stępień and Makieła [108] applied 2D WT to analyze the deviations of cylindrical 

surfaces. Jiang et al. [109], Coiffman and Maggioni [110] and Hussein et al. [111] 

described the concepts of lifting wavelets and diffusion wavelets and used them for surface 

filtering. WT can be extended from 1D analysis to multi-dimensional signals as well 

[22][112]. Some applications of 2D CWT include characterizing the wavelengths of 

landslide areas and identifying the regions having high risk of landslides using topographic 

images [113]. Additional information about the different types of wavelets and the 

application of wavelet transform, can be found in [114] and [115]. And, as reviewed above, 
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the CWT has been previously suggested in [22] for use in construction surface flatness 

assessment. 

 

2.2.5 Continuous Wavelet Transform and TLS for surface flatness measurement 

 

The continuous wavelet transform (CWT) of a given function is the inner product of the 

function with the scaled and shifted versions of the mother wavelet [114]. The output of 

the inner product is the wavelet coefficient at a specific time or location and scale [115]. 

In order for a function, ψ(t) ϵ L2 (ℝ), to qualify as a mother wavelet, it has to satisfy a 

condition known as the admissibility condition as stated below [116]: 

 

 0 <  𝐶𝜓: = ∫
|𝜓(𝜔)|

|𝜔|
𝑑𝜔

∞

−∞
<  ∞ ( 2.1 ) 

where, Cψ is the admissibility condition and ω is the angular (or radian) frequency.  

 

This condition can also be written as [116]:  

 𝛹(0)  = ∫ 𝜓(𝑡)𝑑𝑡 = 0
∞

−∞
 ( 2.2 ) 

 

This implies that the function ψ(t) has to move above and below the t-axis in a wave-like 

manner with decaying properties. Figure 2.1 demonstrates such properties with the 

example of a typical wavelet function commonly known as the Mexican Hat wavelet.  

 

Figure 2.1 1D (left) and 2D (right) Mexican Hat Wavelet 
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CWT can be used to describe the time and frequency components of a temporal signal in 

detail. 1D CWT involves taking the original function and displaying the output function in 

terms of two variables, which are time and scale. The spectral information about a 2D 

signal for any scale s and location (x, y) is given by the 2D CWT [117], that is an extension 

of the 1D CWT and can be represented as follows [118]: 

 

 𝐶𝑊𝑇 (𝑎, 𝑏, 𝑠) =
1

𝑠
∫ ∫ 𝑔(𝑥, 𝑦)

∞

−∞

∞

−∞
𝜓𝑎𝑏𝑠(𝑥, 𝑦) 𝑑𝑥𝑑𝑦  ( 2.3 ) 

 

where, ψabs(x,y) is the mother wavelet, g(x,y) is the continuous 2D signal, s is the 

scale (dilating parameter) and (a,b) represents the location (translating parameter).  

 

Different values of the translating and dilating parameters of the mother wavelet help in 

describing the different frequencies of undulations present in the surface [119]. The 

convolution of ψ and g provides the wavelengths (or periods) of the undulations present in 

the surface. The coefficients CWT (a, b, s) quantify the degree of correlation between the 

wavelet  ψ  and the function g at each point. In this way, apart from analyzing signals in 

time and frequency, the CWT can be extended to analyze signals, together in space and 

scale (space-scale analysis).  

 

Different wavelets can be used as the mother wavelet to detect different types of 

undulations. The selection of an appropriate type of wavelet determines how efficiently the 

different components of a signal are extracted [120]. The geometric shapes of the wavelet 

is considered an important criteria when selecting the type of mother wavelet. The 

resemblance between the shape of the wavelet and the geometric features of a signal 

provides a cue for the selection of an appropriate wavelet. The defects present in as-built 

or as-is concrete surfaces resembles waves in the form of small bumps and dips, and the 

shape of 2D Mexican Hat wavelet closely resembles the shape of the surface undulations 

present on concrete surfaces, as shown in Figure 2.1. The Mexican Hat wavelet is a real 

and isotropic wavelet that is good for detecting contour features [121][122]. The use of 
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different values of the translation and scale parameters of the mother wavelet enable the 

detection of undulations corresponding to different characteristic periods in the point cloud 

data. Therefore, it is chosen as the mother wavelet in this study. 2D Mexican Hat wavelet 

in spatial domain is depicted as follows:  

 

 𝜓(x,y) = 
1

2𝜋
(2 − 𝑥2 − 𝑦2) ∗ 𝑒−

1

2
(𝑥2+𝑦2)

 ( 2.4 ) 

 

Using 3D point clouds obtained from TLS and as-designed geometry information from 

BIM, Bosché and Guenet [21] developed an approach based on BIM and TLS data to assess 

whether the geometry of as-is elements adhere to the specified surface flatness tolerances. 

An experiment was conducted to compare the results obtained using the proposed method 

with the ones obtained from Straightedge and F-number methods. The digital application 

of Straightedge and F-Number, as presented in that study, significantly reduces the time 

required for data collection and analysis, compared to traditional methods. However, 

flatness analysis remains conducted along sparsely surveyed 1D survey lines, which 

delivers results limited in spatial and wavelength resolution. Bosché and Biotteau [22] 

developed a method that applies 1D CWT to TLS data to characterize surface undulation  

periods. That approach addresses the limitation of previous works in wavelength 

resolution, i.e. the approach examines surface waviness at a wider range of wavelengths or 

characteristic periods. However, the study remains based on measurements along 1D lines 

that do not enable an analysis of flatness in all possible directions, and  still provide results 

with limited spatial resolution.  

 

2.3 Dimensional Quality Control: Point Cloud Data Quality Analysis for Surface 

Flatness Measurement  

 

Lidar technology has a wide range of applications in the civil engineering industry, such 

as quantifying erosion rates and surface deformation [123], to landslide inventorying and 

mapping hazards [124], structural health monitoring [43], [125]–[127], road roughness 

quantification [128]–[132] and survey and maintenance of historic buildings [133]–[135]. 
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In the construction industry, lidar is primarily used for as-built documentation that supports 

progress tracking [3]–[7], facility management [8]–[13], dimensional quality control [22], 

[48], [49], [136]–[138] in construction projects. In the area of dimensional quality control, 

lidar technology is commonly used for acquiring as-built data, owing to its ability to 

capture millions of points with mm-level accuracy. The acquired data is processed with the 

help of a multitude of algorithms, based on the desired applications. Few of the applications 

include assessing the flatness of the exterior facades using a color map derived from TLS 

point clouds [96], visualizing the elevation differences across a floor using elevation map 

generated from point cloud data [8] and assessing the dimensional compliance of concrete 

elements using BIM and TLS-based point cloud data [21]. Lidar-based point clouds, with 

the application of the Continuous Wavelet Transform (CWT), were also used in the 

assessment of floor waviness in [22], [137]. The study in [137] demonstrated the efficacy 

of applying the two-dimensional CWT (2D CWT) to lidar-based point cloud data for 

assessing the waviness of concrete surfaces. The comparative analysis between results 

obtained using the framework and those obtained using the Waviness Index (WI) method 

showed that the framework accurately identifies regions on the floor where surface 

waviness of different characteristics may exist. The framework utilized TLS-derived point 

cloud data to assess the surface waviness of concrete floors.  

 

Unmanned Aircraft Vehicles (UAVs) are exponentially gaining popularity for collecting 

as-built data from construction sites. UAVs mounted with photographic cameras, thermal 

cameras and lidar sensors or “pucks” have been widely used for survey data collection. 

Compared to TLS, UAV-mounted lidar sensors are capable of collecting data from large 

survey areas in a non-intrusive manner with limited occlusions [38][39]. For instance, a 

person standing in front of the laser scanner can create a larger obstruction during data 

collection using TLS, compared to UAV-based scanning. Moreover, using TLS for 

collecting as-built data from working surfaces may hinder on-going operations and may 

interrupt workers on the surface. Thus, a comparison of the results of floor waviness 

obtained using point clouds derived from TLS and UAV. Additionally, a sensitivity 
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analysis of floor flatness measurement results must be performed to identify the appropriate 

scanning resolution of point clouds that are suited for surface waviness measurements.  
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3 Research Objective and Questions 

 

The overarching goal of this research is to advance the body of knowledge in the area of 

utilizing remote sensing technologies, namely terrestrial and mobile lidar, and BIM to 

address the inefficiencies in existing construction practices in the field of dimensional 

quality assessment, quality inspection and progress tracking in the AEC industry.  

 

A comprehensive literature review on construction progress tracking and dimensional 

quality control is included in Chapter 2 The main findings of the literature review are that 

the traditional data collection methods from construction sites pose several challenges for 

collecting as-built data that is accurate and comprehensive, and BIM and lidar technologies 

could potentially be leveraged to design better solutions to overcome the existing issues. 

Leveraging this knowledge, two main research questions were posed:  

 

1. What are the existing inefficient practices for as-built data collection in the fields 

of dimensional quality assessment, quality inspection and progress tracking in the 

construction?  

2. How can technology-supplemented as-built data collection improve dimensional 

quality assessment, quality inspection and progress tracking processes? 

 

Further delving into the topic, specific objectives and research questions were identified 

and included in Chapters 4, 5 and 6 of the dissertation, and are listed below. 

 

3.1 Objective 1 

 

The state-of-the-art frameworks developed for progress monitoring of vertical construction 

are not directly applicable on horizontal construction projects. The adoption of such 

frameworks in horizontal construction projects may not necessarily provide accurate 

progress information. Most of the developed frameworks deliver object detection results 

for completed construction components in terms of Boolean variables. In other words, in a 
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given time frame, a component in a building structure is reported as either fully constructed 

or not constructed. In horizontal construction projects, work completed is often reported in 

terms of percentage of completion (POC) rather than checking the presence or counting the 

number of components. However, an accurate progress report would reflect the progress 

of bridge elements in terms of percentage of completion. In addition, a progress tracking 

framework for such projects should consider the formwork placed for partially completed 

elements. Therefore, the main objective of Chapter 4 is to develop a solution to address the 

inefficiencies associated with the existing methods for accurately reporting progress 

information for bridge construction projects.  

 

The secondary objectives are listed below: 

1. Explore the current progress tracking practices in horizontal and vertical 

construction projects, and identify existing gaps in knowledge in the field of 

progress tracking. 

2. Develop a framework utilizing mobile laser scanning (MLS) data and four-

dimensional (4D) BIM for bridge construction progress tracking.  

 

Chapter 4 addresses the flowing research questions:  

1. How can we report the progress of horizontal construction projects in terms of 

percentage of completion? 

2. How can the synergy between MLS data and 4D BIM be defined to identify the 

built status of each element and road design layer in bridge construction projects? 

 

3.2 Objective 2 

 

The F-number and WI methods are the state-of-the-art practices in measuring the waviness 

of concrete slabs. To overcome the challenges associated with the implementation of these 

methods, newer technologies, such as terrestrial laser scanning (TLS), can be leveraged to 

measure surface waviness in a more efficient manner. The ability of a TLS device to 

accurately capture the geometric information from concrete surfaces provides an 
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opportunity to reconsider the assessment of surface waviness using traditional 

measurement instruments. Therefore, the objective of Chapter 5 is to develop a 

methodology that uses TLS to obtain accurate waviness information about newly 

constructed and existing concrete surfaces in an efficient manner. It aims to understand 

how traditional floor flatness measurement methods impact the accuracy of the data, and 

develops a framework to address these concerns. 

 

Secondary objectives include: 

 

1. Analyze how the inefficiencies associated with traditional surface waviness 

measurement methods could potentially be addressed using TLS data. 

2. Develop a framework that utilizes TLS data to overcome the identified 

inefficiencies associated with the traditional floor flatness measurement methods.  

 

Chapter 5 addresses the following research questions:  

 

1. How can the traditional surface waviness measurement methods along 1D lines be 

extended to measure surface flatness along 2D surfaces to provide a more 

comprehensive assessment of surface geometry?  

2. What tools and concepts can be applied to process data obtained using TLS to detect 

surface undulations in concrete slabs, and provide surface waviness results that 

strongly correlate with the results obtained using traditional methods? 

 

3.3 Objective 3  

 

The main objective of Chapter 6 is to compare the accuracy of floor waviness measurement 

results obtained using UAV-based (mounted with a 3D laser scanning sensor) and TLS-

based technologies, and to determine whether UAS-based technology could produce 

comparable results that can be used in practice. The accuracy of the depth maps generated 

using as-built data obtained with an UAV and TLS are compared. Chapter 6 aims to 
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advance the application of TLS and UAV-based laser scanning in the field of dimensional 

quality assessment. The secondary objectives are listed below:  

 

1. Perform a sensitivity analysis of floor flatness results obtained using TLS point 

clouds of various resolutions 

2. Compare the results obtained using TLS and UAV-based point clouds. 

 

Chapter 6 addresses the following research questions:  

 

1. Can UAV and TLS-based 3D point cloud data produce comparable results for 

surface waviness detection of concrete slabs? 

2. Do different resolution of point clouds affect the localization of surface defects? 
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4 Bridge Construction Progress Monitoring using Lidar and 4D 

Design Models 

 

4.1 Summary 

 

Figure 4.1 Overall research goal and contribution  

 

The objective of this Chapter, as shown in Figure 4.1, is to overcome the shortcomings of 

the state-of-the-art techniques for monitoring bridge construction projects. The framework 

presented in this manuscript provides improvements over the existing semi-automated / 

automated progress techniques developed for measuring the progress of vertical 

construction projects in two main areas:  

 

1. Incremental construction progress reporting as opposed to conventional binary 

classification of constructed elements. 
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2. Accurate classification of a road design layer (Asphalt Concrete Wearing Surface 

(ACWS)) 

 

The proposed framework is based on an algorithm that computes the percentage of 

completion for each bridge element in the laser scan data collected on a given date. In 

addition, the classification of a road design layer is performed accurately using the 

framework. The framework is expected to facilitate the wider adoption of new technologies 

for tracking horizontal construction projects’ progress. State Department of 

Transportations (DOTs), which are in the midst of adopting BIM for infrastructure, can 

utilize 3D project design models together with lidar data for tracking the progress of bridge 

construction projects. This enables state DOTs to take full advantage of the lidar (terrestrial 

or mobile) data, which could be used for several other applications throughout the project 

lifecycle such as asset management [141].  

 

4.2 Methodology 

 

In this paper, a semi-automated methodology for monitoring bridge construction projects 

is proposed. The methodology is built upon the semi-automated comparison between 

project as-built data (3D point clouds) and 4D project design model (3D design model 

combined with project schedule) for determining the project status. To mimic the current 

progress monitoring process, as-built (lidar) data was collected from a bridge construction 

site on a weekly or biweekly basis depending on the type and duration of an activity 

scheduled for a given time frame. The raw data collected using mobile lidar system requires 

an initial pre-processing step. The pre-processed data is used together with the 4D project 

design model of the bridge to determine the status of a particular activity during 

construction.  

 

The process involves identifying model elements in the 3D model that have been 

completed, are in the process of construction and remain to be completed. First, the point 

cloud data and 3D model are coarsely registered in the same coordinate system. To fine 
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tune the registration, an iterative process is implemented, where the distance between the 

3D point cloud (registered scan) and 3D model is minimized at the end of each iteration. 

The object recognition process is implemented after the fine registration process to 

determine construction progress. Figure 4.2 demonstrates the semi-automated bridge 

progress monitoring methodology proposed in this study.  

 

 

Figure 4.2 Proposed framework for project progress tracking 
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4.2.1  Data Preprocessing 

 

The data extracted from the mobile lidar system is processed using Global Navigation and 

Satellite System (GNSS) and inertial measurement unit (IMU) data to generate the point 

cloud data representing the geometric as-built status of the bridge project. The GNSS data 

is obtained from the closest permanent GNSS station to the project site. This data helps 

account for the errors occurring due to ionospheric disturbance and various systematic 

errors. Typically, this data is available in the form of Receiver Independent Exchange 

(RINEX) files from the Oregon Real Time Network maintained by the Oregon Department 

of Transportation (ODOT), the National Geodetic Survey Continually Operating Reference 

Stations (CORs), or the Plate Boundary Observation (PBO) network maintained by 

UNAVCO. Point cloud data is generated processing the raw mobile lidar data consisting 

of ranges, angles and timestamps referenced to the origin of the scanner, GNSS and IMU 

data. The data collected using the mobile lidar system may be combined with terrestrial 

lidar data depending on the project requirements. The point cloud dataset, which can be 

stored in several formats such as LAS and E57, can then be used for further processing.  

 

4.2.2 Data Processing 

 

Data processing comprises of coarse registration, fine registration, segmentation, object 

recognition and percentage of completion (POC) calculation steps. The as-built data that 

was saved in LAS file format is coarsely registered with the virtual point cloud of the design 

model, which is derived from the STL file format of the as-planned 4D model (3D design 

model (Figure 4.3) + project schedule). The coarse registration process is facilitated by the 

selection of corresponding pair of points in the virtual point cloud and as-built point cloud. 

The efficiency of the coarse registration process can be improved by developing the 3D 

model in the same coordinate system as the as-built point cloud. The fine registration step, 

based on the ICP algorithm developed in [142] is applied to fine-tune the registration. The 

segmentation, object recognition and POC calculation steps are then applied to the finely 

registered as-built and virtual point clouds.  
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Figure 4.3 3D model of Truax Creek Bridge, developed from its 2D design drawings  

 

4.2.3 Registration of as-built data with the 3D design model 

 

4.2.3.1  Coarse Registration 

The preprocessed point cloud data is aligned with the 3D as-planned (design) model to 

facilitate the identification and comparison of bridge components in the point cloud dataset 

and the as-planned model. The initial step requires converting the 3D bridge model 

developed by the researchers using Revit Software into STereoLithography (STL) file 

format. The next step is to manually identify and select corresponding points in the 3D 

design model (virtual point cloud) and the 3D as-built point cloud for the coarse registration 

step, i.e. aligning the two datasets in the same coordinate system. Note that the as-built 

point cloud is fixed and the virtual point cloud is moving during the entire registration 

process.  
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4.2.3.2 Fine Registration 

 

After the coarse registration process, a nearest neighbor algorithm is implemented to find 

points in the as-built point cloud, that are nearest to the query points in the virtual point 

cloud. The nearest neighbor algorithm finds one point in the as-built point cloud for every 

query point of the virtual point cloud, and is equivalent to a one-to-one matching process. 

In the following step, the points in the as-built point cloud that exceed a predefined 

threshold (7 cm) are discarded. A threshold that corresponds to the noise present in the as-

built data is selected. The resulting point cloud has fewer number of points as only the 

points that correspond to the elements in the 3D model are retained. Next, an iterative 

closest point (ICP) algorithm is implemented to better align the point cloud and the 3D 

design model, which is necessary for accurate object recognition. The process involves 

minimizing the Euclidean distance between the selected pair of points between the as-built 

point cloud and the 3D design model (virtual point cloud) in a series of iterative processes, 

governed by either a maximum threshold distance or the maximum number of iterations. 

The output of the coarse and fine registration steps are subsampled versions of the as-built 

and virtual point clouds, which contain points corresponding to the actual work performed 

on site. The virtual point cloud obtained in this step has equal or smaller number of points 

than the original virtual cloud. This is because process of obtaining the nearest neighbor 

points eliminates points that do not correspond to the as-built point cloud obtained for a 

certain date.  

 

A composite transformation matrix, combining both transformation matrices obtained from 

the coarse and fine registration steps, was obtained and used in segmentation and object 

recognition steps. A summary of the coarse and fine registration steps are shown in Figure 

4.4.  
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Figure 4.4 Overview of the fine registration step 

 

4.2.4 Registration of as-built data with each element in the 3D design model 

 

Correspondence between each bridge element in the 3D model and the subsampled as-built 

point cloud is established in this step. This is achieved by repeating the coarse and fine 

registration process for each virtual point cloud corresponding to each bridge element in 

the 3D model. The process is simpler compared to the registration process discussed in the 

previous step because it involves directly applying a composite transformation matrix to 

the virtual point clouds of each bridge element. The composite transformation matrix, 

comprised of the transformations for the coarse and fine registrations, is obtained from the 

registration process between the virtual point cloud (derived from the STL file) and the as-

built point cloud collected for a particular date, in the previous step. 

 

To register as-built data with each single element in the 3D design model, each bridge 

element needs to be exported as a separate STL file, and virtual point clouds for each of 

those elements should be generated. The next step requires to apply the composite 

transformation matrix to each of these elements separately. During this process, the 

elements undergo processes of coarse and fine registrations, similar to the previous 

registration step between the entire STL model and the as-built point cloud. This step 

enables keeping a track of the element that is registered, and assigning a percentage of 

completion to that element.  
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4.2.5 Segmentation and Object Recognition  

 

The subsampled virtual point cloud and finely registered virtual point cloud of each of the 

individual bridge elements obtained in the previous step are used for segmentation. The 

STL file of each bridge element carries the label of each bridge element, which is passed 

onto the corresponding virtual point cloud of each bridge element. Generating STL files, 

and thus, virtual point clouds for each bridge element, helps keep track of the POC values 

of each bridge element on a given scan date.  

 

The segmentation process involves finding the nearest neighbor of each query point in the 

finely registered virtual point cloud of an individual bridge element within the segmented 

subsampled virtual point cloud for a given scan date. The process is carried out using the 

same threshold (7 cm) used in the registration step. A virtual point cloud of an individual 

element that accurately represents the as-built status of that element on a given scan date 

is obtained from the one-to-one matching process. For a given bridge element, the one-to-

one matching process between the segmented subsampled virtual point cloud and the finely 

registered virtual point cloud of the element yields a fragment of the segmented subsampled 

virtual point cloud that accurately represents the as-built status of that element for a given 

date. This fragment of the segmented subsampled virtual point cloud for a bridge element 

is an indicator that the bridge element is detected as constructed or under construction. The 

percentage of completion is calculated in the next step.  

 

It is important to note that at any given scan date, if a bridge element has not been 

constructed, or if a constructed bridge element is occluded from the scanner’s view, no 

overlapping region exists between subsampled virtual point cloud and finely registered 

virtual point cloud of an individual bridge element, therefore it is not detected. 
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4.2.6 Asphalt Concrete Wearing Surface (ACWS) Detection 

 

The detection and POC calculation of bridge elements relies upon the accuracy of the 

registration between the as-built point cloud and the virtual as-planned point cloud. 

However, adopting this approach for the detection of road design layers in the as-built point 

clouds may not yield accurate results. The inaccuracies in detection may result from 

registration error, construction errors, or due to noise inherent in the instrument. The output 

of coarse registration and fine registration steps described in Sections 4.2.3 may not be 

accurate if the sum of these errors exceed the thickness of the ACWS layer. Consequently, 

the object recognition step in 4.2.5 might misclassify a road design layer in the presence of 

multiple road design layers. Hence, a new approach is required for identifying road design 

layers, specifically the upper layer which is typically 2.5 – 5 cm in thickness.  

 

Power Spectral Density (PSD) is used for distinguishing between the road design layers. 

PSD has been widely used in the area of texture and material classification, determining 

roughness and pavement friction evaluation [143]–[147]. PSD quantifies the power of each 

frequency content of a signal, and it is calculated using the square of the magnitude of the 

Fourier Transform. Initially, depth maps of the surfaces are created. The depth maps are 

converted from the spatial domain to the frequency domain using Fourier Transform. The 

wavelengths that are present in the 2D spatial “signal” are then identified.  

 

The Fourier Transform of a 2D signal, f(x,y) can be represented as [148]: 

F(u,v)=∫ f (x,y)e -I 2π(ux+uy) dx dy
+∞

−∞
       ( 4.1 ) 

where, f is the frequency in Hertz.  

 

The spectral density, C(q) is given by [149]: 

C(q) =
1

U
*

a2

M*N*(2π)2
|F(u,v)| 2        ( 4.2 ) 

where U is the normalization constant, a is the interval size of the depth map, M and N 

represent the size of the depth map and X(f) is the Fourier Transform.  
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The area under the power spectral density curve calculated over all wavelengths is given 

by [143]:  

RMS2 = 
(2π)2

M*N*a2
∑ ∑ |C(q)| 2 NM        ( 4.3 )                              

where RMS (Root Mean Square) represents the total energy level across a frequency range 

in the form of a single value.  

 

Typically, the RMS parameter characterizes surface roughness. The scope of this study is 

limited to detecting only the ACWS layer, and the RMS values for the road surface before 

and after placing the ACWS layers will have different values. Thus, in our case, the RMS 

is simply considered as a parameter whose value is used to distinguish one surface from 

another. Point cloud data obtained using a TLS can be used for roughness analysis purposes 

because it is more accurate compared to mobile laser scanning (MLS) data, and the use of 

the RMS roughness parameter for identifying multiple road design layers will be discussed 

in future work.  

 

After the detection of a road design layer, the POC calculation step in Section Percentage 

of Completion can be used for determining the progress status of the ACWS layer, similar 

to other bridge elements.   

 

4.2.7 Percentage of Completion 

 

The detection of a particular bridge in the object recognition step enables assigning a 

percentage of completion (POC) to that element. The status of completion of an element 

can be determined using the POC values. The process of segmentation described in the 

previous step generates a point cloud that accurately represents the geometric as-built status 

on a given date for each virtual point cloud of an individual bridge element. The alignment 

between the overall virtual point cloud of the bridge and the virtual point cloud of the 

individual element reveals the geometric faces of a bridge element that overlap in the two 

scans. The face containing the maximum number of overlapping points are chosen and a 
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convex hull of the face is constructed in both point clouds. The percentage of completion 

(POC) for an element e at a given date d is computed using the following formula: 

POCe,d= 
A

A′
∗ 100 %        ( 4.4 ) 

where, A is the area of the convex hull of one of the common faces in the segmented virtual 

point cloud of one as-built element. A’ is the area of the convex hull of the same face as in 

A.  

The output of the one-to-one matching process between the segmented subsampled virtual 

point cloud and the finely registered virtual point cloud of the element for a given scan date 

shows whether the construction of an element has started on that day. If the element was 

not detected in the segmented subsampled virtual point cloud, an empty output is obtained. 

A non-empty output signifies that an element was detected. Precedence relationships 

representing the dependencies of construction of one element on the other is developed to 

verify the POC calculated for all elements at a given scan date. The calculation of POC for 

all possible cases are summarized below: 

 

1. If an element is recognized, POCe,d is the maximum value between the existing 

POC (if it exists) and the POC calculated using Equation 4.4 for that day. Note that 

the element may have an existing POC if one of its successors is more than 80% 

complete (using the information from the precedence relations). Majority of the 

bridge elements in this project were either 30%, 50% or 100% complete on different 

scan dates. In some cases, the elements that are fully constructed (100% complete) 

may be inaccurately reported to be 85% or 90% complete. In such cases, it would 

still be safe to assume that the predecessor of the bridge element is 100% complete 

if its successor is anywhere above 50% complete. As a conservative estimate, 80% 

was chosen. If the POCe,2 is lower than the POCe,1 for an element, POCe,2 is set to 

the value of POCe,1, and so on. This can be observed when the fully completed 

element is occluded from the scanner’s view. 

 

2. If an element is not recognized for reasons discussed above, POCe,d is set to the 

maximum value between zero and the existing POC (if it exists). Again, note that 
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the element may have an existing POC if one of its successors is more than 80% 

complete.   

 

3. Datei represents the date the scans were collected, where Date1 represents the first 

day of scanning. Once the POCs for all elements for a particular scan date Datei are 

computed, the results are verified using the precedence relations. If the POCe,d 

reaches over 80% at a given date, the POCs for all other elements that are its 

predecessors during construction are set to 100%. This may also occur when a fully 

completed element is not visible to the scanner (occluded elements).  

 

The segmentation, object recognition and POC calculation steps are summarized in Figure 

4.5.  

 

 

Figure 4.5 Overview of segmentation, object recognition and POC calculation steps 

 

4.3 Experimental Results 

 

The selection of a suitable bridge construction project was important for this study. To be 

suitable for data collection, the project had to meet the following requirements. 1) The 

project must be preferably in the initial stages of construction, so that the construction of 

each bridge element can be captured. 2) The data collection cycles should be tentatively 

based on the provided construction schedule. This is important to make sure that the as-

built data for each bridge element is captured. If a particular data collection cycle is too 

long, the construction of some bridge elements may not be captured. In this study, the 
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Truax Creek Bridge Replacement project located in Albany, OR was selected for the case 

study. The bridge replacement project involved demolishing the existing bridge structure 

and building a new one. When the data collection commenced, the northbound lane had 

been completed, but was not yet open to traffic. The traffic was operating on the 

southbound lane. The new bridge structure is approximately 108 feet in length and 42 feet 

in width. The construction site is shown in Figure 4.6. Depending on the work scheduled 

for a particular week, the scans were collected from the construction site on a weekly or 

bi-weekly basis.  

 

 

Figure 4.6 Study site, Truax Creek Bridge in Albany, OR. Left: Google Maps showing the 

location of the bridge. Right: Photo showing the southbound lane near its completion date. 

 

A TOPCON IP-S2 mobile mapping system was used to collect as-built data from the site. 

The mapping system consists of an IMU, GNSS sensor and a HDL-64E S2.2 lidar scanner 

developed by Velodyne. The lidar scanner generates 1.3 million points per second, 

capturing data from targets up to 100 m away, across a 360° horizontal field of view and a 

30° vertical field of view. On average, three passes were made along the length of the 

bridge construction site to capture as much detail as possible. At the end of each data 

collection cycle, the progress made on the project from the start of construction until the 

scan date is captured.  
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4.3.1 Data Preprocessing 

 

The GNSS data was obtained from the National Geodetic Survey (NGS) Continuously 

Operating Reference Station (CORS) website in the form of RINEX files. The files were 

downloaded in .gz format, which were imported into GeoClean software. The 

configuration of the base profile used in processing the GNSS data is presented in Table 

4.1. The output file was generated in *.las file format in grid coordinate system (XYZ 

coordinates).  

 

Table 4.1 Base profile entry configuration in GeoClean 

Antenna Type Dorne Margolin with chokerings, Model 70 

Coordinate Type (IGS08 

Epoch 2005) 

ECEF 

X [m] -2498423.869 

Y [m] -38028020.840 

Z [m] 4454737.819 

 

4.3.2 Registration 

 

The 3D model of the Truax Creek Bridge structure was developed using the 2D design 

drawings obtained from the Oregon Department of Transportation (ODOT). The model 

was developed in Autodesk Revit software in Revit (.rvt) file format and exported into 

stereolithography (STL) format. However, the properties of the output STL file, including 

triangle count, could not be modified during the export. Thus, the exported STL file was 

imported into Gmsh, an open source software that allows further tessellation of the model, 

i.e. increase the triangle count. At the end of this process, another STL file of the model 

including 2,949,120 triangles was obtained. It is important to note that higher triangle count 

enables better one-to-one point matching process. The STL model is comprised of a 

tessellation of triangles that represent the geometric faces of the bridge elements in the 3D 

model. The .las files exported from the Geoclean software (original as-built point cloud), 

and the STL file of the bridge model (original virtual point cloud derived from it), are both 
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imported into CloudCompare software for coarse registration. The original virtual point 

cloud derived from the STL file of the model, and the original as-built point cloud collected 

on 06/22/2017 are shown in Figure 4.7 and Figure 4.9 respectively. Five points in the 

original as-built point cloud and the original virtual point cloud were selected for the coarse 

registration step. Figure 4.8 and Figure 4.10 show the output subsampled virtual point 

cloud and the subsampled as-built built cloud, obtained at the end of the one-to-one 

matching process, respectively. 

 

 

Figure 4.7 Original virtual point cloud derived from the STL model. 
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Figure 4.8 Subsampled version of the original virtual point cloud obtained from the STL 

model. 

 

Figure 4.9 Original as-built point cloud scan collected on June 22, 2018. 
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Figure 4.10 Subsampled version of the as-built point cloud collected on June 22, 2018. 

 

To further improve the registration results, upon the completion of the coarse registration 

process, the original as-built point cloud and the original virtual point cloud are finely 

registered using pairs of points in both point clouds. For a pair of points, one point belongs 

to the original virtual point cloud (query point), and the other point belongs to the original 

point cloud that is nearest to the query point. After this step, each of the points in the 

original virtual point cloud is matched with a corresponding point in the original as-built 

point cloud. When implementing this process, 7 cm was chosen as the threshold distance 

to account for the noise levels of the velodyne lidar system and construction errors. A slice 

of the alignment between the as-built (red, green and yellow colored points) and virtual 

point cloud (white colored points) is shown in Figure 4.11. From the distance between a 

pair of points in the as-built and virtual point clouds, it is evident that the scan data contains 

noise that is approximately 3-4 cm (1 sigma (σ)). Thus, 7 cm was chosen as the threshold 

to account both for noise in the as-built data and construction errors. 
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Figure 4.11 A section of the aligned as-built (red, green and yellow colored points) and 

virtual point clouds (white colored points) (scan date: October 22, 2018) 

 

Upon identifying the nearest neighbors, a filtered as-built point cloud was generated, which 

is a subsampled version of the original as-built point cloud that is free from noise. This 

one-to-one matching process simultaneously generates a subsampled version of the 

original virtual point cloud, which contains the same number of points as the subsampled 

version of the original as-built point cloud. Following this step, the subsampled as-built 

point cloud was registered (fixed) with the subsampled virtual point cloud (moving) using 

an ICP algorithm. A point-to-point based distance minimization metric was defined to 

facilitate the fine registration process. The algorithm was designed to terminate when the 

error between three consecutive iterations is less than 1*10^-6. Table 4.2 presents the 

registration results for the scans collected from the bridge construction site over a period 

of three months. Following this step, a composite transformation matrix, comprised of 
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coarse and fine registration transformation matrices, was applied to the virtual point clouds 

of the 14 individual elements of the 3D model.  

 

Table 4.2 RMS errors for the coarse and fine registrations 

Scan Date 

Number of 

Points in 

Original As-built 

Point Cloud 

Number of Points 

after NN 

matching (before 

fine registration) 

Fine registration RMSE 

[m] 

6/22/2018 3,669,647 179,247 0.021 

7/6/2018 3,983,640 257,160 0.028 

7/13/2018 2,275,266 280,656 0.031 

7/24/2018 5,151,269 350,009 0.030 

8/1/2018 4,257,637 386,029 0.029 

8/14/2018 6,082,413 351,194 0.030 

8/22/2018 2,775,230 308,500 0.031 

9/4/2018 6,327,087 375,488 0.024 

10/22/2018 3,522,971 273,200 0.031 

 

 

 

4.3.3 Segmentation and Object Recognition 

 

The segmentation process is facilitated by finding the nearest neighbor of each query point 

in the finely registered virtual point cloud of an individual bridge element, within the 

segmented subsampled virtual point cloud for a given scan date. The nearest neighbor 

search, similar to the previous step, is also carried out using the same predefined threshold, 

7 cm. Figure 4.12 shows the result of the segmentation process applied to the bridge deck 

using the scan collected on June 22, 2018. The virtual point cloud of an individual bridge 

element and the fragment of the segmented subsampled virtual point cloud are used to 

determine common pairs of geometric faces corresponding to the bridge elements. For this 

project, using a mobile lidar for data collection ensured that the upper face of the as-built 

bridge elements were scanned. For this reason, the upper face, containing maximum 

number of points that overlapped in the virtual point cloud of an individual bridge element 
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and the fragment of the segmented subsampled virtual point cloud, was chosen for POC 

calculations in the next step. The convex hull for the two sets of point clouds was then 

calculated. The resulting convex hull for these point clouds are shown in Figure 4.13. 

 

 

Figure 4.12 Fraction of the segmented subsampled virtual point cloud (shown in blue dots) 

obtained at the end of segmentation process between the subsampled virtual point cloud 

and the virtual point cloud of the bridge deck (scan date: June 22, 2018) 
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Figure 4.13 Convex hull for both point cloud datasets for the bridge deck (scan date: June 

22, 2018) 

 

4.3.4 ACWS Detection 

 

The road surface on the southbound lane was manually extracted for the unpaved and paved 

surfaces using the as-built point clouds collected on August 22, 2018 and October 22, 2018 

respectively. Each of the as-built point clouds were divided into six sections, generating a 

total of six point clouds for the unpaved road and another six point clouds for the paved 

road. The reason for creating sections is to evaluate the PSD for all of these sections 

individually, and to validate that the RMS values for the paved road sections are 

significantly different from the RMS values for the unpaved road sections. Next, a depth 

map was generated from each of the as-built point clouds of the two road surfaces, a total 

of 12 depth maps, using a sampling interval of 4 cm. The sampling interval value was 

determined based on a manual inspection of the point cloud data, which revealed that the 

point spacing in the as-built point clouds along the x-y plane is approximately 2-3 cm. Note 

that the point spacing can be improved significantly to mm-level by using a terrestrial laser 

scanner for data collection. Figure 4.14 and Figure 4.15 represent the PSD data obtained 

after analyzing the twelve profiles.  
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Figure 4.14 PSD data for the six sections of the unpaved road (scan date: 22nd October, 

2018)  

 

 

Figure 4.15 PSD data for the six sections of the paved road (scan date: 22nd August, 2018) 
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The RMS values obtained for the unpaved road surfaces are higher than those obtained for 

the paved road surfaces. A lower RMS value indicates a smoother surface, which is similar 

to our case since paved surfaces are smoother than the unpaved surfaces. An independent 

samples t-test was conducted to compare RMS values of paved and unpaved road surfaces. 

There was a significant difference in scores for paved (M=0.11, SD=0.01) and unpaved 

road (M=0.22, SD=0.01) conditions; t (10) = 16.47. From these results, it can be concluded 

that the two road surfaces have been distinguished from one another. Specifically, the 

results suggest that PSD can be used to analyze road design layers and distinguish layers 

based on the characterization of surface properties.  

 

4.3.5 POC calculation 

 

The as-planned and as-built POC for the bridge project are shown in Table 4.3 and Table 

4.4 respectively. The as-planned POC values in Table 4.3 were calculated manually by 

referring to the obtained schedule. The purpose of preparing the as-planned POC is to help 

in validating the accuracy of the POC calculations. 
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Table 4.3 As-planned POC (%) 

Scheduled 

progress (%) 

6/22 7/6 7/13 7/24 8/1 8/14 8/22 9/4 10/22 

'Abutment_N' 30 30 50 100 100 100 100 100 100 

'Abutment_S' 30 30 50 100 100 100 100 100 100 

'BridgeEndPanel_N' 30 30 30 30 100 100 100 100 100 

'BridgeEndPanel_S' 30 30 30 30 100 100 100 100 100 

'Deck' 30 30 30 100 100 100 100 100 100 

'Parapet_E' 100 10

0 

100 100 100 100 100 100 100 

'Parapet_W' 0 0 0 0 0 50 50 100 100 

'Sidewalk' 0 0 0 0 0 100 100 100 100 

'Wingwall_NL' 0 0 0 100 100 100 100 100 100 

'Wingwall_NR' 100 10

0 

100 100 100 100 100 100 100 

'Wingwall_SL' 0 0 0 100 100 100 100 100 100 

'Wingwall_SR' 100 10

0 

100 100 100 100 100 100 100 

'ACWS' 0 0 0 0 0 0 0 0 100 

 

Table 4.4 As-built POC 

Actual progress (%) 6/22 7/6 7/13 7/24 8/1 8/14 8/22 9/4 10/22 

'Abutment_N' 31 35 35 100 100 100 100 100 100 

'Abutment_S' 35 35 35 100 100 100 100 100 100 

'BridgeEndPanel_N' 36 36 36 36 93 100 100 100 100 

'BridgeEndPanel_S' 35 35 35 35 98 100 100 100 100 

'Deck' 34 34 34 97 100 100 100 100 100 

'Parapet_E' 99 100 100 100 100 100 100 100 100 

'Parapet_W' 0 0 0 0 0 3 70 70 94 

'Sidewalk' 0 0 0 1 5 100 100 100 100 

'Wingwall_NL' 0 0 100 100 100 100 100 100 100 

'Wingwall_NR' 100 100 100 100 100 100 100 100 100 

'Wingwall_SL' 0 0 84 100 100 100 100 100 100 

'Wingwall_SR' 100 100 100 100 100 100 100 100 100 

'ACWS' 0 0 0 0 0 0 0 0 97 
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The differences between corresponding as-planned POC values in Table 4.3 and as-built 

POC values in Table 4.4, are shown in Table 4.5. The error values marked in yellow 

represent errors due to the limitations inherent in the convex hull algorithm that calculates 

overlapping area between the faces of the virtual and as-built point clouds, and the POC is 

defined as the ratio of these two. The planned POC may reflect an element to be 100% 

complete but the as-built POC may reflect it to be 96% complete. Practically, if such values 

are obtained, it can be interpreted as the slab being complete. The errors ranging from -6% 

to 7% in the yellow cells are the result of including or excluding a few as-built points 

belonging to these elements. This is likely to occur during the segmentation step since not 

all points (especially the ones on boundaries) are classified as belonging or not belonging 

to a particular element. Addition of a few points, depending on their location, can 

significantly impact the convex hull results, and consequently, the POC values. Note that 

for ACWS, the POC values are zero from scan dates June 22, 2018 through September 4, 

2018, as shown Table 4.4. This is because the framework detects the ACWS layer only 

after the deck is 100% complete. A visual inspection of the as-built scans belonging to 

these dates reveal that the corresponding values in Table 4.5 are reasonable. In addition, 

Table 4.6 shows the differences in as-built POC (manual-based) and as-built POC 

(framework-based) for all the bridge elements for different scan dates (in terms of 

percentage), and the values help validate the performance of the framework. The as-built 

POC (manual-based) values are calculated by manually measuring the dimensions of the 

as-built point in CloudCompare software. The definitions are provided below:  

• As-built POC (manual-based) 

– POC based on Actual Progress  

– Calculated based on the manual measurements performed on the as-built 

point cloud 

• As-built POC (framework-based)  

– POC based on Recognized progress 

– Calculated using the POC calculation formula  

• As-planned POC (schedule-based) 

– POC based on Scheduled progress 
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– Calculated based on project schedule 

 

Table 4.5 Differences in POC for all the bridge elements on different scan dates (%) 

Differences in POC 

(%) 

6/2

2 

7/6 7/13 7/24 8/1 8/14 8/22 9/4 10/2

2 

'Abutment_N' -1 -5 15 0 0 0 0 0 0 

'Abutment_S' -5 -5 15 0 0 0 0 0 0 

'BridgeEndPanel_N' -6 -6 -6 -6 7 0 0 0 0 

'BridgeEndPanel_S' -5 -5 -5 -5 2 0 0 0 0 

'Deck' -4 -4 -4 3 0 0 0 0 0 

'Parapet_E' 2 0 0 0 0 0 0 0 0 

'Parapet_W' 0 0 0 0 0 -3 -20 30 6 

'Sidewalk' 0 0 0 -1 -5 0 0 0 0 

'Wingwall_NL' 0 0 -10 0 0 0 0 0 0 

'Wingwall_NR' 0 0 0 0 0 0 0 0 0 

'Wingwall_SL' 0 0 6 0 0 0 0 0 0 

'Wingwall_SR' 0 0 0 0 0 0 0 0 0 

 

Table 4.6 Differences in as-built POC (manual-based) and as-built POC (Framework-

based) for all the bridge elements on different scan dates (%) 

Differences in POC 

(%) 

6/22 7/6 7/13 7/24 8/1 8/14 8/22 9/4 10/2

2 

'Abutment_N' -2 2 -12 0 0 0 0 0 0 

'Abutment_S' 5 5 -11 0 0 0 0 0 0 

'BridgeEndPanel_N' -1 -1 0 0 0 0 0 0 0 

'BridgeEndPanel_S' -2 -2 0 0 0 0 0 0 0 

'Deck' -2 -2 -4 -3 0 0 0 0 0 

'Parapet_E' -2 0 0 0 0 0 0 0 0 

'Parapet_W' 0 0 0 0 0 0 -23 -30 -6 

'Sidewalk' 0 0 0 1 5 0 0 0 0 

'Wingwall_NL' 0 0 12 0 0 0 0 0 0 

'Wingwall_NR' 0 0 0 0 0 0 0 0 0 

'Wingwall_SL' 0 0 -2 0 0 0 0 0 0 

'Wingwall_SR' 0 0 0 0 0 0 0 0 0 

 

The framework used in this study produced unacceptable results, i.e. POC values, for some 

of the elements. These values are highlighted in the red cells. For example, for the scan 

that was collected on July 13, 2018, the northbound abutment (Abutment_N) and the 
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southbound abutment (Abutment_S) both show 15% error. Referring to the as-built scans, 

the formwork was set in place for both abutments on that date. The planned POC (Table 

4.4) shows a value of 50%. This value was set to 50% from 35% on the previous scan date 

to indicate that installation of the formwork amounted to an additional increase in progress. 

Note that the right half (approximately 35%) of both abutments had been constructed by 

this date. The framework calculates the POC based on the area of the convex hull spanned 

by the outermost points of the upper most face of the bridge element. The convex hull 

algorithm discards points that are disconnected from the main cluster of points that 

accurately represent the as-built status of the element. Figure 4.16 shows that the points 

encircled in blue are sparser compared to the points encircled in yellow. Thus, only the 

ones in yellow are considered in the convex hull calculations. Although the algorithm was 

specifically designed to handle cases, such as the one shown in Figure 4.17, it poses a 

limitation for certain cases.  

 

 

Figure 4.16 Virtual point cloud of southbound abutment with the point cloud representing 

the as-built status of the same element (red). The points encircled in yellow were included 

in convex hull calculations whereas the points encircled in blue are discarded.  
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Figure 4.17 Outliers (in light blue) causing significant error in the convex hull calculations. 

The convex hull algorithm is designed to discard those points and keep the purple points. 

 

Table 4.5 also shows erroneous values for the western parapet (Parapet_W) on scan dates 

August 22, 2018 and September 4, 2018. The corresponding values for this element in 

Table 4.3 shows that the western parapet is set to be 50% and 100% completed, 

respectively, on those dates. 50% was set for August 22, 2018 since most of the formwork 

and reinforcement bars had already been set up on that day. On scan date September 4, 

2018, the parapet was complete. Figure 4.18 illustrates that the convex hull calculations 

did not account for the surface correctly. This is attributed to the fact that railings were not 

included in the 3D model and the top of the parapet was not modeled precisely to account 

for the placement of railings. Based on the provided schedule, it is assumed that the 

completion of the parapet signifies the completion of the railings placement. Similarly, this 

explanation applies to the error obtained (-10%) for the left northbound wingwall 

(Wingwall_NL) in the scan collected on July 13, 2018.  
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Figure 4.18 Western parapet convex hull (August 22, 2018). The right part represents an 

enlarged view of the convex hull. The red line on the enlarged section on the right side 

represents the extent of the area that should have been covered, and the blue region 

represents the area that was covered. 

 

4.4 Discussion and Limitations 

 

The performance of the progress tracking framework was tested using the data collected 

from Truax Creek Bridge construction project. The performance of the framework was 

reflected in the difference between as-built POC (framework-based) and as-built POC 

(manual-based) values, as shown in Table 4.6.The quality of the progress tracking results, 

i.e. the POC values, are sensitive to numerous factors. For instance, the number of passes 

during the data collection can affect the density of the point cloud data obtained, which 

could impact the POC values. At the same time, the number of passes made during each 

data collection cycle has a direct impact on data collection time. The future research should 

investigate the number of passes required to obtain optimum results. The limitations of the 

proposed framework are detailed below.  
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4.4.1 Amount of Manual Effort Required 

 

Although the framework automatically computes the POC values, there are manual tasks 

which should be performed to support the automated processes described in the framework. 

The presence of false positives directly impacts the POC calculations. Thus, the initial 

process of manually removing false positives should be performed carefully. The removal 

process of false positives should ensure that points not belonging to the structure or part of 

the structure are completely removed. Figure 4.19 and Figure 4.20 illustrate this problem.  

 

 

Figure 4.19 Scan data collected on July, 13, 2018 
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Figure 4.20 Scan data overlapped with the finely registered original virtual point cloud. 

Regions of unwanted overlap bounded by red circles (Scan date: July, 13, 2018.) 

 

As shown in Figure 4.20, the part of the original virtual point cloud corresponding to the 

two bridge end panels have overlapped with the original as-built scans. During the object 

recognition phase, the progress of panels will be reported as “under construction”, and will 

be assigned a percentage of completion, based on the percentage of overlap between the 

original virtual point cloud and the original as-built scans. Carefully cleaning the point 

cloud will result in better detection results. In addition, manual work was required for 

separating the road surface from the rest of bridge structure for the ACWS layer detection. 

Future work will focus on improving the framework to enable automatic segmentation of 

road surface from the as-built data.  

 

4.4.2 Accuracy of the Mobile Mapping System 

 

Figure 4.11 shows that approximately 3-4 cm noise was present in the as-built data. The 

presence of noise directly affected the selection of the threshold during the fine registration 

and segmentation steps. The limitation can be overcome by using a more accurate scanning 

system, such as the Pegasus mobile mapping system, or a terrestrial laser scanner. 

Consequently, the threshold could be lowered by approximately 3 – 4 cm, which should 

improve the accuracy of the POC calculations.  
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4.4.3 Manual processing time per epoch 

 

Table 4.7 summarizes the approximate time taken for the manual and automated processes 

in the framework, including the software used for each step. Note that the orange color 

denotes processes that need to be performed only once. The blue color represents processes 

that have to be performed multiple times (refer to the comments column). Apart from 

manual processes that are required to be performed only once (highlighted in orange), the 

data processing time required for each epoch takes approximately 1 hour and 15 minutes. 

Please note that if a 3D project design at Level of Development (LOD) 300 is already 

available, it can be converted into STL format directly, which would lower the time 

required for processes to be performed manually at the beginning of the project (processes 

highlighted in orange) down to approximately 12 minutes. 3D models are becoming more 

and more commonly used for infrastructure projects; hence, this time window would not 

need to be considered as time to utilize this workflow for progress monitoring.  
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Table 4.7 Time taken for manual tasks for the proposed framework for the case study 

Process Software 

used 

Time 

Taken 

Comments 

Data Collection 

Average time required for each data collection cycle N/A 20 mins Time includes 2-3 passes, depends on bridge length 

Data Download and Upload to external hard drive (4 

TB) 

N/A 2 mins For 15-20 GB file size, depends on data storage device 

used 

Manual Processes 

Development of 3D model (equivalent to BIM Level 

of Development 300 (LOD 300)) 

Autodesk 

Revit 

4-5 hours  Time includes studying 2D drawings 

Creation of as-planned POC table MS Excel 10 mins  

Generating STL files Gmsh 2 mins Per STL file 

Manual Processes (per epoch) 

Point cloud pre-processing Geoclean TOPCON 

Geoclean 

20 - 30 

mins 

Per as-built point cloud  

Point Cloud Cleaning (after preprocessing) CloudComp

are 

15 mins  Per as-built point cloud  

#Coarse Registration CloudComp

are 

20 mins  Per set of as-built point cloud and virtual point cloud  

Automated Processes 

Fine Registration Step (Approximate value, depends 

on size of point cloud) 

MATLAB 15 mins Per set of as-built point cloud and virtual point cloud, 

includes the time required for one-to-one matching 

Segmentation, Object Recognition and POC 

calculations 

MATLAB 5 secs Per virtual point cloud of an object 

 

Table Notes: 

# The Coarse Registration step can be avoided by using a consistent coordinate system for the models and the mobile lidar data.  
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5 Assessment of Compliance of Dimensional Tolerances in Concrete 

Slabs using TLS data and the 2D Continuous Wavelet Transform 

 

5.1 Summary 

 

Figure 5.1 Overall research goal and contribution  

 

Chapter 4 presented a framework that combines and processes mobile lidar data and 4D 

design models to track the progress of bridge construction projects, and addresses the 

problems related to cost and schedule overruns. The objective of Chapter 5, as shown in 

Figure 5.1, is to address the issues related to dimensional quality control in construction. 

Chapter 5 achieves this by proposing a framework that uses TLS to obtain accurate 

waviness information about newly constructed and existing concrete surfaces rapidly. This 

paper presents a methodology that applies the two-dimensional Continuous Wavelet 

Transform (2D CWT) to TLS point clouds to measure concrete slab surface waviness. The 
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approach builds on preliminary works published in [138] [150], but presents and analyses 

it in a more comprehensive manner. The proposed methodology is designed to help carry 

out tolerance compliance control tasks for slabs based on project specifications describing 

their waviness tolerances. Uniquely, the methodology is able to perform an accurate and 

comprehensive assessment of the surface geometry in both spatial and frequency domains. 

 

5.2 Proposed Methodology 

 

The proposed methodology is summarized in Figure 5.2. The raw 3D point cloud 

consists of data points from a concrete slab as well as its surrounding environment, 

including workers, equipment and surrounding buildings. The point cloud is typically the 

result of multiple laser scans co-registered using a standard (reliable) target-based 

approach. First, the raw point cloud is pre-processed to isolate the area of interest, the 

concrete slab in this case, from the raw point cloud. The next step is to develop a depth 

map, which is used as input to the 2D CWT. The areas with undulations corresponding to 

various characteristic periods are identified after applying the 2D CWT with the Mexican 

Hat wavelet.  

 

 

Figure 5.2 Overview of the research methodology 
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5.2.1 Data pre-processing 

 

As stated in the overview of the research methodology, the raw point cloud data should be 

pre-processed before 2D CWT can be applied to it. The input is a raw point cloud that may 

be the result of the co-registration of multiple scans collected during the scanning process. 

The noise present in the registered point cloud data is removed using a corresponding 

functionality provided by a commercial point cloud processing software, leaving a clean 

point cloud of the area of interest (i.e. concrete slab). The pre-processed point cloud 

corresponding to the slab surface is aligned (parallel) to the x-y plane, which is likely to be 

the case already. Accordingly, z coordinates represent the elevation of each point, 

facilitating further analysis.  

 

In order to analyze the frequencies of undulations present on the surface, the point cloud 

data should have equispaced rows and columns along the x and y axes [151]. Because raw 

point cloud data from slabs typically has a random arrangement, it is converted into a 

regular grid, with intervals along the x and y axes were both set to p = 1 cm. This sampling 

interval ensures robust localization of defects across the 2D surface. Triangulation-based 

linear interpolation is used to obtain the values of z-coordinates at each grid point. 

Consequently, a 2D depth map is created, which represents the height of the surface for 

points at p = 1 cm intervals along the x- and y-axes. 

 

5.2.2 Detection of Undulations using 2D Continuous Wavelet Transform  

 

 The depth map resulting from the previous operation is used as the input “signal” to the 

2D CWT. The scale a at which the CWT is applied relates to a few parameters, as in 

Equation 5.1 [115]: 

 

 a = 
𝑓𝑐

𝑓 .𝛿𝑝 
 = 

𝑇 .𝑓𝑐

𝛿𝑝 
 ( 1.1 ) 
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where f represents the frequency of the undulation, T the characteristic period of 

the signal, and fc, the main frequency component of the Fourier Transform of the mother 

wavelet. For the Mexican Hat wavelet, fc = 0.252 cm-1. 

 

The output of applying the 2D CWT is a series of scalograms that report the CWT response 

at each grid point on the depth map. These maps are meaningful to some extent, but should 

be further processed to accurately define the exact characteristic period at each location. 

Indeed, a wavy region will result in peak responses at several scales, i.e. frequencies, as 

can be seen in Figure 5.6 for example. However, not all those peaks correspond to defects 

whose size matches the period associated to that scale. First, peak values (i.e. local 

maxima) are detected in each 2D CWT response map. Next, different isolines are then 

calculated around each peak, which connect pixels with the same CWT response. These 

isolines may describe irregular shapes whose mathematical analysis, and further 

comparison with other defects, can be truly complex. Therefore, areas enclosed by isolines 

are described by means of ellipses, and the two main axes of each ellipse are determined 

to be used as reference values. If any of the axes matches the period associated to the scale 

of interest, a surface deviation is detected in that area for that particular period. The result 

of this process is a set of clear waviness defect detections at all the scales/periods 

considered, which can be combined in a single diagram. 

 

5.2.3 Correspondence between WI and 2D CWT methods 

 

The correspondence between the WI method and the 2D CWT method in terms of 

their response to similar surface wavelengths (or periods) is shown in Table 5.1. The k 

values of the WI method correspond to characteristic periods of different lengths. The 

corresponding CWT scales for each of these k values are calculated using Equation 5.1 

with  δp =1 cm. The characteristic periods (T) selected in this table represent the floor 

undulations, with periods of 0.61, 1.22, 1.83, 24.4 and 30.5 m (2, 4, 6, 8 and 10 ft) that are 

the focus of the WI method. 
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Table 5.1 Continuous Wavelet Transform scales and equivalent Waviness Index [22] 

Characteristic period 

(T) [cm] 

CWT scale (a) Waviness Index 

(k values) 

61 15 1 

121.9 30 2 

182.9 45 3 

243.8 60 4 

304.8 75 5 

 

5.3 Experimental Results 

 

5.3.1 Data Collection and Pre-Processing 

 

An in-situ concrete slab from a warehouse project in Gresham, Oregon was scanned after 

5-6 hours of placement. The surface of the concrete slab was sturdy enough for foot traffic 

and for setting up the tripod of the scanner. The concrete slab of the warehouse building 

was scanned using a Leica ScanStation P40 3D laser scanner. The scanner has 8” horizontal 

and 8” vertical angular accuracy. The 3D position accuracy is ±3mm at 50 m and ±6 mm 

at 100 m [152].  

 

Figure 5.3 shows the plan view of the concrete slab as well as one of the 3D point clouds 

captured. The area of interest with a surface area of approximately 1500 m2 is highlighted 

in both the plan view and the point cloud. It was determined that scans taken from four 

different locations would be sufficient to capture the surface with sufficient detail. Six 

targets were placed at different locations on site to facilitate the point cloud registration 

process.  
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Figure 5.3 The floor plan (left) and the 3D point cloud (right) of the warehouse building. 

The area of interest is highlighted in red. 

 

The overall scanning process, including setup, scanning, dismantling and re-locating, took 

approximately 45 minutes. The data pre-processing stage, comprising of registering the 

point clouds in the same coordinate system and removing the noise, took 50 minutes. The 

raw point clouds, i.e. laser scans including noise, were first imported into a commercial 

point cloud processing software. The four laser scans were registered under the same 

coordinate system using the targets placed at strategic locations on the construction site. 

After the registration was complete, the point cloud of the area of interest was manually 

isolated from the rest. The point cloud corresponding to the slab section of interest had 

approximately 100,000,000 points. Figure 5.4 shows an image of the scan after registration 

and noise removal. 
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Figure 5.4 Top view of the point cloud of the area of interest obtained after the 

registration of the four scans and noise removal. The color scale represents elevation 

values in cm. 

 

5.3.2 Data Processing 

 

Following pre-processing, the point cloud is converted into a 3242 x 4629 depth map with 

1 cm intervals in both horizontal and vertical directions, with the z-coordinates at each grid 

point calculated as described in Section 5.2.1. Figure 5.5 shows the resulting depth map. 

As seen in Figure 5.5, the height of the concrete slab with respect to the xy plane, varies 

most in the interval of -2 cm to 2 cm. Thus, the color map was adjusted accordingly to 

highlight the height differences between various areas across the floor.  
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Figure 5.5 Depth map derived from the TLS data, with color map limits set to [-1, 1] cm 

(left) and [-2, 2] cm (right) 
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5.3.3 CWT Results 

 

5.3.3.1 CWT Scalogram   

 

Figure 5.6 presents the results obtained using the scales (a) 15, 30, 45, 60 and 75 of the 

mother wavelet. The regions where the input “signal” strongly correlates with the mother 

wavelet applied at the scales above are highlighted in yellow in Figure 5.6. 

 

The point cloud in Figure 5.4 and the depth maps in Figure 5.5 show that the surface of the 

investigated slab is relatively flat with a few “peaks”. For the entire slab surface, the 

average value of the deviation in the z-axis was 0.0 cm with a standard deviation of 0.3 

cm. Figure 5.6(a) represents the regions where the wavelength of the undulations present 

on the surface correlates with the mother wavelet of scale 15. The scalogram shows that 

the regions near (1900 cm, 3100 cm) has an undulation of this characteristic period present 

on the slab surface. Figure 5.6 (b) shows regions near (1900 cm, 3100 cm) and (2400 cm, 

1700 cm) have undulations that correspond to the mother wavelet of scale 30. Similarly, 

the scalograms in Figure 5.6 (c), (d) and (e) show that the region near (2400 cm, 1700 cm), 

(300 cm, 3400 cm) and (4200 cm, 2400 cm) have undulations corresponding to scales 45, 

60 and 75. The region near (2400 cm, 1700 cm) shows responses for all these three scales. 

Thus, the identification of the scale which has the top response at that location is necessary. 

Furthermore, such analysis is an added advantage of using the proposed 2D CWT method 

and cannot be done using the WI method. 
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Figure 5.6 The coefficients obtained from the wavelet transformation corresponding to 

scales 15 (a), 30 (b), 45 (c), 60 (d) and 75 (e) are plotted on the map. The areas in the 

slabs where undulations corresponding to these scales are present are shown. 

 

5.3.3.2 Surface analysis and automatic defect detection 

 

Figure 5.7 illustrates regions, enclosed by ellipses, where potential defects have been 

identified for two of the five scales in Figure 5.6. Note that no defective regions were found 

for the other three scales.  

 

Figure 5.7 Potential defective areas for a) 61cm (±2cm) and b) 244cm (±2cm). 
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The advantage of our approach is that it combines dense 3D data from TLS with the 2D 

CWT that can support the analysis of waviness with essentially any characteristic period 

(i.e. wavelength). This enables our approach to study waviness not just for a few discrete 

wavelengths (like the 5 above), but for dense and large ranges of wavelengths. This is 

demonstrated in Figure 5.8 that summarizes the potential defects on the slab for any 

wavelength within the continuous range of 20 to 400 cm.   
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Figure 5.8 Detected defects for periods between 20 and 400 cm, with area within the 

dotted rectangles showing close-up views for the corresponding regions in the depth map 

 

 

5.3.4  Comparison of Results with WI method 

 

The ASTM E1486-14 standard describes the test method for measuring the waviness 

of concrete floors using the WI method. In a similar way to [22], we propose to apply the 

WI method as defined in this standard, but using the digitized slab surface as the surface 

of application (instead of the real slab). Referring to this standard, 103 survey lines along 

the x-axis and 148 lines along the y-axis were defined on the slab, as shown in Figure 5.9. 
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The lines are spaced at 1-ft intervals. This is much denser that what would normally be 

achieved in normal practice, but is useful to conduct the comparison with the proposed 

CWT approach. 

 

Figure 5.9 The 251 survey lines (103 along the x-axis and 148 along the y-axis) that are 

defined across the slab surface.  

 

The length adjusted RMS deviation (LAD) responses are calculated for each line. The 

survey lines are parallel to each other and are spaced at a distance of 30.5 cm (1ft). Survey 

points with a spacing s=30.5 cm (1ft) are measured along those lines. The standard defines 

chord length as the length of the imaginary line joining two points on the surface of the 

concrete floor. The chord length is equal to 2ks, where k= {1, 2, 3, 4 and 5}. The vertical 

distance between the midpoint of the chord and the survey point on the surface, Dkj, is 

calculated using the following formula, 

Dkj = hj+k -0.5(hj+hj+2k)                                                                        ( 5.2 ) 

where, hj+k, hj and hj+2k represent the heights of the survey point and the two end points of 

the chord, respectively.  
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After the deviation Dkj is calculated, the length adjusted RMS deviation (LADk) is 

calculated using Equation 5.3.  

LADl,k = √
Lr

2ks
[∑ (Dl,k,j)2]

jmaxl,k
i=1

jmaxl,k
                                                                             ( 5.3 ) 

where Lr corresponds to the reference length of 1 ft. jmaxk corresponds to the total number 

of deviation calculations with a chord length 2ks along a survey line and l denotes the 

survey line being tested.  

 

Similarly, the 2D CWT responses at the jth sampled location, CWTl,a,j, for scales 15, 30, 

45, 60 and 75 were obtained in section 5.3.3.1. These scales correspond to the WI k-values 

1, 2, 3, 4 and 5 respectively. It is proposed that the CWT responses for each of the 210 

lines for those 5 scales, CWTl,a,  be calculated using the similar formula: 

CWTl,a = √
∑ CWT2

l,a,j
jmaxl,a
i=1

jmaxl,a
                                                                     ( 5.4 )  

where jmaxk corresponds to number of locations at which the 2D CWT response have been 

calculated.  

 

The correlation between the LADl,k and CWTl,a responses is calculated to compare the 

surface waviness results obtained using the WI and 2D CWT methods. 15 survey lines 

along the x-axis and 15 survey lines along the y-axis, as shown in Figure 5.10, are randomly 

selected (out of the previously defined 251 lines), to illustrate the correlation results 

presented in Figure 5.11 and Figure 5.12. The correlation coefficients, denoted by r2, are 

included in the top left-hand corner of each graph. The values indicate a strong correlation 

between the results obtained using the WI and 2D CWT methods. This strongly validates 

the value of the proposed approach, which has the additional advantage of being able to 

more precisely define defects’ wavelengths and locations (including actual orientation). 

Table 5.2 provides the summary statistics for the correlation between LADl,k and CWTl,a 

responses at five different characteristic undulation periods [61, 121.9, 182.9, 243.8, 304.8] 

cm for the 30 lines along the x and y axes. 
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Figure 5.10 The 30 survey lines (15 along each axis) that were selected for the generation 

of correlation results. 

 
 

 
Figure 5.11 Correlation between LADl,k and CWTl,a responses for the five characteristic 

undulation periods [61, 121.9, 182.9, 243.8, 304.8] cm, along 15 lines along the x-axis 

shown in Figure 5.10. 
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Figure 5.12 Correlation between LADl,k and CWTl,a responses for the five characteristic 

undulation periods [61, 121.9, 182.9, 243.8, 304.8] cm, along 15 lines along the y-axis 

shown in Figure 5.10. 
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Table 5.2 Summary statistics for the correlation between LADl,k and CWTl,a responses 

for the five characteristic undulation periods [61, 121.9, 182.9, 243.8, 304.8] cm, along 

16 lines along the y-axis shown in Figure 5.11 and Figure 5.12. 

Correlation Statistics 

Minimum 0.42 

Maximum 1.00 

Range 0.58 

Count 30.00 

Sum 27.39 

Mean 0.91 

Median 0.98 

Mode 0.9833, 0.9890 

Standard Deviation 0.15 

Variance 0.02 

Mid Range 0.71 

Quartiles   

Q1 0.90 

Q2 0.98 

Q3 0.99 

Interquartile Range (IQR) 0.09 

Sum of Squares 0.65 

Mean Absolute Deviation 0.10 

Root Mean Square (RMS) 0.92 

Std Error of Mean 0.03 

Skewness -2.23 

Kurtosis 6.79 

Coefficient of Variation 0.16 

Relative Standard Deviation 16.42% 

 

The proposed approach overcomes all of the drawbacks of traditional waviness assessment 

methods mentioned earlier. The 2D CWT method enables a comprehensive analysis of the 

waviness of 2D surfaces, both in the spatial and wavelength domains. In contrast to the F-

number and WI methods, the output of the CWT-based approach enables easy visual 

representations of where waviness defects are located on the surface (as shown in Figure 

5.6). This can help users with minimal knowledge about 3D TLS or 2D CWT to quickly 

determine where surface corrections should be applied, for example.  
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6 Analyzing the Impact of Point Cloud Resolution on Surface Flatness 

Measurements 

 

6.1 Summary 

 

 

Figure 6.1 Overall research goal and contribution 

 

The study in Chapter 5 presents the framework developed to process 2D as built 

information in the form of depth maps, as opposed to 1D survey lines derived from TLS-

based point clouds to impart waviness information of newly constructed concrete slabs. 

This study, as shown in Figure 6.1, focusses on performing a comparative analysis of the 

floor waviness results obtained using point cloud data collected using TLS and lidar senor 

mounted UAV. The method of comparison presented in this study uses waviness detection 

results from TLS point clouds as ground truths. Furthermore, the impact of point cloud 
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resolution is analyzed to provide recommendations on the number of TLS scans required 

and the scanning resolution.   

  

6.2 Comparison of TLS-based and UAV-based Point Clouds for Surface Waviness 

Measurement 

 

6.2.1 Data Collection and Preprocessing  

 

The data was collected from a newly constructed floor of a lecture hall under the 

Magruder Hall Expansion project in Corvallis, OR. Figure 6.2 shows the region of 

interest, and its surface area was approximately 140 m2. The Leica P40 scanner was setup 

in two locations across the floor. After registering the two scans, the resolution of the 

output point cloud was approximately 5 mm within a range of 10 m.  

 

The UAV mounted with the lidar sensor was operated at a constant height of 

approximately 60 m above the surface of the ground, making two passes over the area of 

interest. It is assumed that the beam divergence is constant throughout the flight. The 

preprocessing steps for the UAV data involved processing the flight trajectory and 

computing the point cloud data from the processed trajectory. The final resolution of the 

output point cloud collected from the UAV system was 5 cm within a range of 60 m.   
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Figure 6.2 The region of interest is marked in orange. 

 

6.2.2 Data Processing 

 

The framework developed in [137] was used to process the data obtained from TLS and 

UAV. The obtained point clouds from the TLS and UAV systems were imported into a 

commercial point cloud processing software to remove scans corresponding to workers 

working on the floor and various construction debris. A depth map is developed using 

triangulation-based linear interpolation on a grid with regular intervals of 1 cm. This 

process generated a map showing z-coordinates at the each query points, where each 

query point is represented by the intersection of lines on the x-y plane of the grid. CWT, 

using the Mexican Hat wavelet as the mother wavelet, was applied to the depth map at 

different scales. For simplifying the analysis, only five scales were chosen for the CWT: 

15, 30, 45, 60 and 75. The five scales correspond to the five undulation periods that are 

focused upon in the WI method: 2, 4, 6, 8 and 10 ft respectively. The correspondence 

between the WI index values and the CWT scales are shown in Table 1.  
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Table 6.1 Waviness Index values and corresponding continuous wavelet transform scales 

[3][4] 

Characteristic period 

(T) [cm] 

CWT scale (a) Waviness Index (k 

values) 

61 15 1 

121.9 30 2 

182.9 45 3 

   

6.2.3 CWT Results 

 

The surface waviness results obtained for the TLS- and UAV-based point clouds are 

shown in Figure 2.As shown in the scalogram, peak responses are shown for the CWT 

coefficient values lie 10% below the maximum value. The location of these peak 

responses for each of the five scales are used for our analysis. Figure 6.3 shows the peaks 

detected for the CWT responses at the five scales.  
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Figure 6.3 The results of the CWT analysis with peak detection 

 

The waviness results obtained from the TLS-based point clouds are used as ground truth 

for measuring the performance of the UAV-based point clouds for generating the 

waviness results. Figure 6.3 shows the peak detection results for the UAV-based and TLS-

based point clouds.  

In the TLS based results, for scale 15, the ground truth shows that there are 3 peaks that 

correspond to undulations having a characteristic period of 61 cm. Only one of those 

peaks are detected in the waviness results derived from the UAV point cloud. For scale 

30, two peaks that correspond to the characteristic period of 121.9 cm were detected in 

both the TLS and UAV based results. At scale 45, one peak corresponding to 182.9 cm 

was obtained in the TLS and two peaks in the TLS based results. Similarly, for scales 60 

and 75, 1 peak corresponding to the characteristic period of 304.8 cm was detected in both 

the TLS and UAV based results.  
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Table 6.2 Peak detection results for the TLS-based and UAV-based point cloud data 

Scales 
Number of peaks 

correctly identified  

Number of peaks 

incorrectly identified 

or failed to identify 

 Actual number of peaks 

(based on 0.01° scanning 

resolution) 

15 1 2 3 

30 2 0 2 

45 1 1 1 

60 1 0 1 

75 1 0 1 

 

The surface waviness results for scales 60 and 75 using the TLS and UAV based point 

clouds are comparable. For scale 45, a false positive was detected near [1283 cm,481 cm]. 

The same region near the TLS was inspected and no peak was found. The CWT response 

at that region for the UAV based results was 0.8816, and 0.1674 for the TLS. This 

discrepancy might be attributed to the difference in the z-values shown in the depth maps 

of the TLS and UAV point clouds. The TLS based depth map shows the elevation at [1283 

cm,481 cm] to be approximately 2.8 cm and the UAV based depth map shows 1.75 cm. 

Although the TLS and UAV scans were collected almost simultaneously, there were 

workers actively working on the work surface. This may be due to dynamic changes 

resulting from moved objects or debris on the surface of the floors. Due to a lower 

resolution of the UAV point cloud, the points in that region may have been visually 

classified as part of the floor and not removed. For scale 15, the results are not comparable 

to each other. A possible reason could be that using TLS-based a high-resolution point 

cloud accurately detected undulations of a lower characteristic period (61 cm). The lower 

resolution UAV-based point cloud may have failed to capture the undulations. While 

generating the depth map, the z-coordinates are smoothed out to a higher degree if less 

neighboring points are present around the query points. For the true positives obtained in 

the peak detection results, mean average error is calculated to determine the magnitude 

with which the position of the detected peaks deviate from the ground truth values.  
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6.3 TLS Point Cloud Resolution Analysis 

 

The framework developed in [137] was used to process the data obtained using the TLS 

system. The data used analysis in this section was collected from the Magruder Hall 

Expansion project in Corvallis, OR and the Vista Logistics Park project in Gresham, OR. 

The slab from the Magruder Hall expansion project represents the floor of a new classroom 

and is approximately 140 m2. The in-situ concrete slab from the Vista Logistics project 

represents the floor of an industrial space which is approximately 500 m2. 

 

6.3.1 Magruder Hall Expansion Project 

 

6.3.1.1  Data Collection 

 

A total of two scans were collected from the Magruder Hall Expansion project. Figure 6.4 

shows the 9.4 m x 15.1 m slab with the two scan positions. As shown in the picture, several 

gaps exist in the point cloud, which resulted from cleaning the point cloud. During the 

creation of depth map, these regions will acquire z-values as a result of the interpolation of 

z-values of the neighboring points. Table 6.3 provides details about the collected scans. 
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Figure 6.4 Point cloud data for the floor of the Magruder Hall expansion project showing 

the two scan positions. 

 

The scans were collected using the Leica P40 scanning system with the resolution setting 

of 2mm @10 m. Using simple trigonometry, this resolution setting can be converted into 

degrees as follows:  

 

d = 2* tan-1 (
0.5∗𝑑

𝐷∗1000
) ∗ (

180°

𝜋
)         ( 6.1 ) 

 

where, D is the distance between the scanner and an object, and d is the point spacing. 

Using this relation, it was found that 2mm @10 m corresponds to 0.01°. Note that Equation 

6.1 is assuming that laser pulses come in contact with the surface at perfect incidence. In 

practice, this angle of incidence varies across the floor surface, contrary to the assumption 

made in Equation 6.1.  
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Table 6.3 Information on the two scans for the Magruder Hall expansion project 

 

Number of 

Points 

Original 

Scanning 

Resolution 

Distance from 

Scan Position 

to Center of 

Slab [m] 

Nearest 

point from 

Scan 

Position to 

Edge of 

Slab [m] 

Furthest 

point from 

Scan 

Position to 

Edge of 

Slab [m] 

Point 

Cloud 1 

(SW1) 12,648,589 0.01° 10.38 3.01 18.5 

Point 

Cloud 2 

(SW2) 

                                       

73,312,914  0.01° 3.86 1.75 12.46 

 

6.3.1.2 Data Processing 

 

The point cloud is converted into a depth map with 1 cm intervals in both horizontal and 

vertical directions and the z-coordinates at each grid point is calculated based on the 

procedure described in section 5.2.1. The two point clouds, each having 0.01° scanning 

resolution are used.  The resulting depth map is shown in Figure 6.5. The color ma limits 

were set to [-1,1] cm because the height of the slab varies mostly from -1 cm to 1 cm. These 

limits enable the variations in elevation along the slab surface to be distinguished easily.    
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Figure 6.5 Depth map derived from the Magruder Hall TLS data, with color map limits set 

to [−1, 1] cm; scanning resolution of 0.01°. 

 

6.3.1.3 CWT Results 

 

Figure 6.6 shows the results obtained for the scales 15, 30, 45, 60 and 75 of the mother 

wavelet for the Magruder Hall TLS data having two scans, each at a resolution of 0.01°. 

The point cloud consisting of the two scans each at scanning resolution of 0.01° is 

considered as the ground truth for comparing and analyzing CWT results. This is justified 

because the correspondence between the WI method and the 2D CWT method in [137] was 

established based on a point cloud having a consisting of four scans at scanning resolution 

of 0.01°. The regions where the input “signal”, the slab surface, strongly correlates with 

the mother wavelet applied at the scales above are highlighted in yellow in Figure 6.6. 
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Figure 6.6 The coefficients obtained from the wavelet transformation corresponding to 

scales 15 (a), 30 (b), 45 (c), 60 (d) and 75 (e) are plotted on the map for the Magruder Hall 

slab. The areas in the slabs where undulations corresponding to these scales are present are 

shown. The peaks are marked in red. The two scans are at scanning resolution 0.01° each.  

 

Each of the collected scans for the Magruder Hall extension project are analyzed for five 

different scan resolutions of 0.02°, 0.04°, 0.06°, 0.08° and 0.1°. The estimated scanning 

times for the scan resolutions of 0.01°, 0.02°, 0.04°, 0.06°, 0.08° and 0.1° are 13 min, 4 

min, 2 min, 1 min and 0.5 min and 0.3 min respectively (not including the times for 

collecting the images) assuming normal speed mode. They represent times for collecting 

scans only (without images). When scans are collected from multiple scanning positions, 
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it can be assumed that the time for dismantling and setting up the TLS for each scan 

position requires 5-8 minutes. Three different cases have been analyzed for the Magruder 

Hall slab. The first case analyses, a discussed in section 6.3.1.3.1, the CWT result at the 

five angular resolutions for Scan 1. The second and third cases defined in sections 6.3.1.3.2 

and 6.3.1.3.3 represent similar analyses for Scan 2, and Scan 1 and Scan 2 combined, 

respectively. Scan 1 and Scan 2 were analyzed separately in order to study the effect of the 

distance between scanner location and the geometric center of the slab, on the CWT results. 

As shown in Table 6.3, the scanner position for Scan 1 is 10.3 m away from the geometric 

center of the slab, whereas for Scan 2, this value is 3.68 m. This discrepancy between the 

two point clouds fundamentally affects the density of the point cloud in the region of 

interest. Thus, further analyses is presented in section 6.3.1.3.1.  

 

6.3.1.3.1 Case 1: Number of Scans =1 (Scan 1) 

 

The coefficients obtained from the wavelet transformation corresponding to scales 15 (a), 

30 (b), 45 (c), 60 (d) and 75 (e) are plotted on the map for the Magruder Hall slab. The 

areas in the slabs where undulations corresponding to these scales are present are shown in 

Appendix CWT results from Chapter 6 . The peaks are marked in red. Scan 1 is at scanning 

resolution of 0.02°. 

 

The surface waviness results for scales 60 and 75 using the 0.01° and 0.02° scanning 

resolution point clouds are comparable, as shown in Figure 6.6 The coefficients obtained 

from the wavelet transformation corresponding to scales 15 (a), 30 (b), 45 (c), 60 (d) and 

75 (e) are plotted on the map for the Magruder Hall slab. The areas in the slabs where 

undulations corresponding to these scales are present are shown. The peaks are marked in 

red. The two scans are at scanning resolution 0.01° each. For scale 15, a false positive was 

detected near [600 cm, 390 cm]. The same region in the point cloud having scanning 

resolution of 0.01° was inspected and no peak was found. This discrepancy might be 

attributed to the difference in the z-values shown in the depth maps of the two point clouds. 

The depth map of point cloud having scanning resolution of 0.01° shows the elevation at 
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[600 cm, 390 cm] to be approximately 0.7 cm and the depth map of point cloud having 

scanning resolution of 0.01° shows more than 1 cm. This discrepancy is due to a gap in the 

point cloud resulting from filtering out noise. However, the same argument does not justify 

the presence of two false negatives that were detected for scale 15, as shown in Figure 6.6 

The coefficients obtained from the wavelet transformation corresponding to scales 15 (a), 

30 (b), 45 (c), 60 (d) and 75 (e) are plotted on the map for the Magruder Hall slab. The 

areas in the slabs where undulations corresponding to these scales are present are shown. 

The peaks are marked in red. The two scans are at scanning resolution 0.01° each. 

Similarly, the results for scan resolutions 0.04°, 0.06°, 0.08° and 0.1° fail to accurately and 

precisely detect the location of defects for various scales, as shown in Appendix A.2: 

Magruder Hall Expansion Project:. The results for all scales are summarized in Appendix 

A.2: Magruder Hall Expansion Project: for the five angular resolutions. 

 

6.3.1.3.2 Case 2: Number of Scans =1 (Scan 2) 

 

For Scan 2, results of the scanning resolution angles of 0.02°, 0.04°, 0.06° and 0.08°. 

showed that they match with our ground truth results. For scanning resolution of 0.1°, a 

discrepancy is observed for scale 30, where one peak is misclassified. The resolution of the 

point cloud has affected the CWT result at the scanning resolution of 0.1°. Appendix A.2: 

Magruder Hall Expansion Project: summarizes the results of the CWT analysis for the five 

scanning resolutions.   

 

6.3.1.3.3 Case 3: Number of Scans =2 (Scan 1 + Scan 2) 

 

For this case, scan 1 and scan 2, each having the same scanning resolution, are combined 

and analyzed. For Scan 1 and 2, results of the scanning resolution angles of 0.02°, 0.04°, 

0.06°, 0.08° and 0.1° showed that they match with our ground truth results Appendix A.2: 

Magruder Hall Expansion Project:  summarizes the results of the CWT analysis for the five 

scanning resolutions.   
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6.3.1.3.4 Discussion  

 

The results from section 6.3.1.3.1, 6.3.1.3.2 and 6.3.1.3.3 show that the CWT analysis five 

resolutions for the combined scans (Scan 1 and Scan 2) give results that match the ground 

truth in the Magruder Project. There are significant discrepancies between the results 

obtained using only Scan 1 and only Scan 2 for the five scanning resolutions. This can be 

attributed to the fact that Scan 2 has 6 times as many points as Scan 1. This is due to the 

different scanning positions chosen for the two scans. The results are summarized in Table 

6.4. 

 

Table 6.4 Summary of results for the Magruder Hall expansion project. The cells that are 

in red color denote that the test case results did not match the ground truth results, whereas 

the cells that are in yellow color denote that the test case results did match the ground truth 

results.   

 
0.02˚ 0.04˚ 0.06˚ 0.08˚ 0.10˚ 

Scan 1      

Scan 2      

Scan 1 + 

Scan 2 

     

 

Using only one scan (in our case Scan 2) ensured that the CWT results matched the ground 

truth results for scanning resolutions ranging from 0.02° through 0.08°. 

Thus, it can be concluded that collecting one scan can give accurate surface waviness 

results for scanning position as far as a 12.46 m from the furthest point in slab (Table 6.3). 

Note that the scanner is setup within the boundaries of the slab surface.  

 

 If scans are collected from two scanning locations, scanning resolutions ranging from 

0.02° through 0.1° can be used. Each of the scanning locations for the two scans may be as 
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far as 12.46 m from the furthest point in the slab. Table 6.3 shows that this distance could 

have been 18.5 m but a conservative distance was chosen to generate accurate results. Note 

that the scanner is setup within the boundaries of the slab surface. 

 

6.3.2 Vista Logistics Park Project 

 

6.3.2.1 Data Collection  

 

Four different scanning positions were chosen for collecting data from the Vista Logistics 

Park Project. The concrete slab from this project is shown in Figure 6.7 and has dimensions 

of 25.5 m x 19.5 m. Details on the collected scans are shown in Table 6.5. 

 

 

Figure 6.7 Point cloud data for the concrete slab of the Vista Logistics Park project showing 

four scan positions. 

 



105 

 

 

Table 6.5 Details on the four scans collected from the concrete slab of the Vista Logistics 

Park project showing four scan positions 

 

Number of 

Points 

Original 

Scanning 

Resolution 

Distance 

from Scan 

Position to 

Center of 

Slab [m] 

Nearest 

point from 

Scan 

Position to 

Edge of 

Slab [m] 

Furthest 

point from 

Scan Position 

to Edge of 

Slab [m] 

Point Cloud 

1 (SW1) 68,710,907 
0.01° 11.89 2.21 25.85 

Point Cloud 

2 (SW2) 68,579,657 
0.01° 8.40 3.4 22.69 

Point Cloud 

3 (SW3) 27,566,521 
0.01° 

19.26 
6.46 33.28 

Point Cloud 

4 (SW4) 22,260,828 
0.01° 17.53 2.32 36.73 

 

 

6.3.2.2 Data Processing 

 

A depth map with 1 cm intervals in both horizontal and vertical directions is created using 

the four point clouds, each having a scanning resolution of 0.01°. The z-coordinates at each 

grid point is calculated based on the procedure described in section 5.2.1. The depth map 

is shown in Figure 6.8. The color limits were set to [-1,1] cm because the height of the slab 

varies predominantly between -1 cm to 1 cm, and variations in elevation along the slab 

surface can be distinguished easily.    
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Figure 6.8 Depth map derived from the Vista Logistics Park project TLS data, with color 

map limits set to [−1, 1] cm; scanning resolution of 0.01°. 

 

6.3.2.3 CWT Results 

 

Figure 6.9 shows the results obtained for the scales 15, 30, 45, 60 and 75 of the mother 

wavelet for the Magruder Hall TLS data having two scans, each at a resolution of 0.01°. 

The point cloud consisting of the two scans each of scanning resolution of 0.01° is 

considered as the ground truth for comparing and analyzing CWT results. The regions 

where the input “signal”, the slab surface, strongly correlates with the mother wavelet 

applied at the scales above are highlighted in yellow in Figure 6.9. 
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Figure 6.9 The coefficients obtained from the wavelet transformation corresponding to 

scales 15 (a), 30 (b), 45 (c), 60 (d) and 75 (e) are plotted on the map for the Vista Logistics 

Park project slab. The areas in the slabs where undulations corresponding to these scales 

are present are shown. The peaks are marked in red. The four scans are at scanning 

resolution 0.01° each.  

 

The four scans collected for the Vista Logistics Park project extension project are analyzed 

for five different scan resolutions of 0.02°, 0.04°, 0.06°, 0.08° and 0.1°. Four different cases 

have been analyzed for the Vista Logistics Park project slab. The first case analyses the 

CWT result at the five angular resolutions for Scan 2. Scan 2 was chosen because the scan 
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position was relatively closer to the geometric center of the slab. The second case 

represents similar analyses for Scan 1 and Scan 2 combined. The third and fourth cases 

analyze Scans 1, 2 and 4 combined, and Scans 1, 2, 3 and 4 combined, respectively.  

 

6.3.2.3.1 Case 1: Number of Scans =1 (Scan 2) 

 

The coefficients obtained from the wavelet transformation corresponding to scales 15 (a), 

30 (b), 45 (c), 60 (d) and 75 (e) are plotted on the map for Scan 2 of the Vista Logistics 

Park project slab. The areas in the slabs where undulations corresponding to these scales 

are present are shown. The peaks are marked in red. Scan 2 is at scanning resolution of 

0.02°. The CWT analyses of all five scanning resolutions showed that the surface waviness 

results for scale 15 were significantly different from the ground truth results. The surface 

waviness results for scales 30, 45, 60 and 75 using the ground truth and 0.02° scanning 

resolution point cloud (Scan 2) are comparable, as shown in Figure 6.6 and Figure 6.10. 

The results are summarized in Table 6.6. 
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Figure 6.10 The coefficients obtained from the wavelet transformation corresponding to 

scales 15 (a), 30 (b), 45 (c), 60 (d) and 75 (e) are plotted on the map for Scan 2 of the Vista 

Logistics Park project slab. The areas in the slabs where undulations corresponding to these 

scales are present are shown. The peaks are marked in red. The scan is at scanning 

resolution 0.02°. 
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Table 6.6 Peak detection results for Scan 2 at scanning resolution 0.02° 

Scales 
Number of peaks 

correctly identified  

Number of peaks 

incorrectly identified 

or failed to identify 

 Actual number of peaks 

(based on 0.01° scanning 

resolution) 

15 3 3 3 

30 1 0 1 

45 1 0 1 

60 1 0 1 

75 1 0 1 

 

For scale 15, one false positive was detected near [1050 cm, 750 cm]. This discrepancy 

might be attributed to the difference in the z-values shown in the depth maps of the two 

point clouds. The depth map of point cloud having scanning resolution of 0.01° shows the 

elevation at [1050 cm, 750 cm] to be approximately 0.75 cm and the depth map of point 

cloud (Scan 2) having scanning resolution of 0.02° shows 0.1 cm.  Two other false positives 

were detected near [2000 m, 1600 m] and [2400 m, 1600m]. The same region in the point 

cloud having scanning resolution of 0.01° was inspected and no peak was found. This 

discrepancy is due to a gap in the point cloud resulting from filtering out noise. Similarly, 

the results for scan resolutions 0.04°, 0.06°, 0.08° and 0.1° fail to accurately and precisely 

detect the location of defects for scale 15, as shown in Appendix A.3: Vista Logistics park 

project:. The results for all other scales are summarized in Appendix A.3: Vista Logistics 

park project: for the five angular resolutions. 

 

6.3.2.3.2 Case 2: Number of Scans =2 (Scan 1 + Scan 2) 

 

Scan 1 and Scan 2 are both at scanning resolution of 0.02°. For Scan 1 and Scan 2 

combined, results of the scanning resolution angles of 0.02°, 0.04°, 0.06° and 0.08° showed 

that they match with our ground truth results for scales 30 45, 60 and 75. For scanning 

resolution of 0.1°, a discrepancy is observed for scales 15, 30 and 75. The resolution of the 

point cloud has affected the CWT result at the scanning resolution of 0.1°. Appendix A.3: 

Vista Logistics park project: summarizes the results of the CWT analysis for the five 

scanning resolutions.   
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6.3.2.3.3 Case 3: Number of Scans =2 (Scan 1 + Scan 2+ Scan 4) 

 

Scan 1, Scan 2 and Scan 4 are all at scanning resolution of 0.02°. For Scan 1, Scan 2 and 

Scan 4 combined, results of the scanning resolution angles of 0.02°, 0.04°, 0.06° and 0.08° 

showed that they match with our ground truth results for scales 30 45, 60 and 75. For 

scanning resolution of 0.1°, a discrepancy is observed for scales 15 and 75. The resolution 

of the point cloud has affected the CWT result at the scanning resolution of 0.1°. Appendix 

A.3: Vista Logistics park project: summarizes the results of the CWT analysis for the five 

scanning resolutions.   

 

6.3.2.3.4 Case 4: Number of Scans =2 (Scan 1 + Scan 2 + Scan 3 + Scan 4) 

 

Scan 1, Scan 2, Scan 3 and Scan 4, in their original form, are at scanning resolution of 

0.01°. For Scan 1, Scan 2, Scan 3 and Scan 4 combined, results of the scanning resolution 

angles of 0.02° show that the results match the ground truth results for all five scales. The 

results from 0.04°, 0.06° and 0.08° showed that they match with our ground truth results 

for scales 30, 45 and 60. For scanning resolution of 0.1°, a discrepancy is observed for 

scales 15, 30 and 75. The resolution of the point cloud has affected the CWT result at the 

scanning resolution of 0.1°. Appendix A.3: Vista Logistics park project: summarizes the 

results of the CWT analysis for the five scanning resolutions.   

 

6.3.2.3.5 Discussion  

 

The results from section 6.3.2.3.1, 6.3.2.3.2, 6.3.2.3.3, 6.3.2.3.4 and 6.3.1.3.3 show that 

Scan 1, Scan 2, Scan 3 and Scan 4, combined, at 0.02° scanning resolution each, give 

results that match the ground truth in the Vista Logistics Park project. There are significant 

discrepancies between the results obtained using only Scan 1 and Scan 1 and Scan 2, 

combined, for the five scanning resolutions. Similarly, for other scanning resolutions 

(0.04°, 0.06° and 0.08°) in Case 4, the results were identical to the ground truth results for 
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scales 30, 45, 60 and 75. However, the results were different for scale 15 and thus, these 

scanning resolutions cannot be recommended. The results are summarized in Table 6.7. 

 

Table 6.7 Summary of results for Vista Logistics Park Project. The cells that are in red 

color denote that the test case results did not match the ground truth results, whereas the 

cells that are in yellow color denote that the test case results did match the ground truth 

results.   

 
0.02˚ 0.04˚ 0.06˚ 0.08˚ 0.10˚ 

Scan 1      

Scan 1 + 

Scan 2 

     

Scan 1 + 

Scan 2 + 

Scan 4 

     

Scan 1 + 

Scan 2 + 

Scan 3 + 

Scan 4 

     

 

Using four scans (in our case Scan 1, Scan 2, Scan 3 and Scan 4) ensured that the CWT 

results matched the ground truth results for scanning resolutions ranging from 0.02° 

through 0.08°. Thus, it can be concluded that collecting four scans can give accurate surface 

waviness results. Scanning resolutions ranging from 0.02° through 0.08° can be used. Each 

of the scanning locations for the four scans may be as far as 22 m from the furthest point 

in the slab. Note that the scanner is setup within the boundaries of the slab surface. Table 

6.3 shows that this distance could have been 25 m, 33 m and 36 m but a conservative 

distance was chosen to generate accurate results.  

 



113 

 

 

7 Limitations and Conclusions 

 

This chapter discusses and summarizes the findings in the Chapters 4, 5 and 6. In addition, 

it analyses whether the research objectives defined in Chapter 3 have been achieved. The 

conclusions and limitations of the work presented in this dissertation are also discussed.  

 

7.1 Limitations and Future Work  

 

A progress tracking framework for transportation projects, bridge construction 

projects in particular, was developed and demonstrated in this dissertation. The framework 

combines information from 3D design models and construction schedule and lidar data to 

report project progress information. Using mobile lidar for as-built data collection provides 

significant benefits over manual methods for progress tracking by facilitating faster as-

built data collection and accurately capturing 3D geometric information from construction 

sites. The developed framework was evaluated using data collected from the Truax Creek 

bridge project, a small bridge construction project located in Albany, OR. The results of 

the case study demonstrated that the developed framework enables tracking the completion 

of individual bridge elements accurately and efficiently. The process of obtaining progress 

results using the framework is mostly automated. The steps that require manual work 

include removing irrelevant sections in the preprocessed point clouds that overlap with 

bridge elements. The object detection relies upon the geometric alignment between the as-

built point cloud and virtual point cloud. Hence, overlap between as-built data and 

irrelevant regions, such as earthwork material may lead to misclassification. Furthermore, 

the manual processing time for each epoch is approximately 1 hour and 15 minutes for the 

case study. This time could be further reduced by continued development and refinement 

of algorithms to complete these manual processing tasks, which were beyond the scope of 

this study.  

 

Future work should focus on implementing this framework on multiple larger bridge 

construction projects that contain elements with complex geometrical shapes. Although the 
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bridge used in this study was of a small scale, the framework is scalable for application to 

larger bridges. Furthermore, only the x, y, and z coordinates of the collected scan are 

utilized by the proposed framework. Integration of RGB (Red-Green-Blue) and intensity 

values into the framework may enable material classification. Integration of RGB values 

can contribute toward accurate segmentation and object recognition results by correctly 

classifying points. Furthermore, using a high accuracy scanning system could enable road 

design layer classification. In this study, only two surfaces, paved and unpaved, were 

analyzed using PSD to help track progress tracking in horizontal construction projects. 

Higher accuracy data can be gathered from different road layers (surfaces) during 

construction. The surface characteristics or roughness of different road design layers can 

then be effectively analyzed to generate a metric which enables distinguishing one layer 

from another.   

 

TLS technology has a promising future in the construction industry owing to its ability to 

rapidly and accurately capture and record as-built conditions. Research efforts are being 

concentrated to identify specific areas, which could particularly benefit from the 

application of TLS. Dimensional QC is one such area. The analysis performed using the 

2D CWT for QC provides great flexibility for examining the surface undulations with a 

wide range of characteristic periods. The localization property of 2D CWT highlights 

regions on the surface and helps in compliance assessment and corrective work planning.  

The proposed approach in this paper demonstrates how TLS data of a concrete surface can 

be used to characterize waviness by implementing 2D CWT, using Mexican Hat Wavelet 

as the mother wavelet. The comparative analysis of the various methods of measuring 

waviness in concrete slabs reveals that the 2D CWT method provides results that strongly 

correlate with those of the WI method (the current state of the art), but has numerous 

advantages over it and other existing methods. 

 

Future research efforts can be directed toward improving the practicality of implementing 

laser scanning for measuring floor surface waviness. The method proposed in this paper 

can be used in conjunction with augmented reality devices to enable the visualization of 
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undulations corresponding to various characteristic periods on site. The proposed method 

can be further improved by developing algorithms for automatically removing noise and 

generating scan plans to estimate optimal scanning positions. For this study, manual effort 

was required for preparing scan plans, setting up the scanner and collecting the point cloud 

data.  Automated registration of laser scans can be further explored. In addition, the 

analysis presented in Chapter 6 can be extended to larger slab surface areas. Furthermore, 

the impact of various scanning positions can be explored in detail. The findings can be 

summarized to develop a TLS scan planning tool that provides guidelines on optimal 

locations for scanner setups and the optimal scanning resolutions.  

 

7.2 Conclusions: Addressing Research Questions and Objectives  

 

The overall research questions developed for this dissertation were: 

 

1. What are the existing inefficient practices for as-built data collection in the fields 

of dimensional quality assessment, quality inspection and progress tracking in the 

construction?  

2. How can technology-supplemented as-built data collection improve dimensional 

quality assessment, quality inspection and progress tracking processes? 

 

The comprehensive literature review performed prior to the beginning of each chapter 

provided an understanding about the existing practices for as-built documentation in the 

fields of dimensional quality control quality inspection and progress tracking. The 

disadvantages of the traditional methods that are prevalent in the industry today were 

identified. In order to overcome drawbacks related to manual error-prone measurements, 

challenges related to repeatability of results, labor-intensive inspection procedures and the 

traditional pen-and-paper method of recording as-built information from on-going 

construction sites, technology supplemented frameworks are developed and tested. To 

further narrow the scope of the research, this dissertation focused on the existing problems 

related to measuring surface waviness in concrete slabs and the progress tracking of bridge 

construction projects. Section 7.2 provides details about the developed frameworks and 

describe how technology supplemented frameworks can be used to improve existing 
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practices in the fields of progress tracking and quality assessment. Although the developed 

frameworks are not fully automated and still require some degree of human interference, 

the proposed frameworks can be used in conjunction with existing practices to make these 

practices more efficient. 

 

The first study in this dissertation, Chapter 4, discusses a technology-supplemented 

progress monitoring approach.  The main research question for the study was ‘How can we 

report the progress of horizontal construction projects in terms of percentage of 

completion?’ 

 

 To answer this question, a framework was designed and tested on a real-life bridge 

construction project. The framework analyses as-built data that is obtained using mobile 

lidar technology from a jobsite rapidly while ensuring the safety of the data collector. The 

proposed framework utilizes point cloud data and 4D design models to identify deviations 

of the performed work from the planned work. In order to achieve this, the framework was 

tested using as-built data acquired from an on-going bridge construction project. The as-

built mobile laser scanning data was first registered with the 4D model. The progress 

information for each bridge component was calculated by segmenting a region of the point 

cloud that corresponds to each bridge component. Using the object recognition algorithm 

developed in the study, the percentage of bridge component that was completed on a given 

scan date was computed. Percentage of Completion (POC) for the as-built bridge elements 

are calculated and compared with the as-planned POC. The differences between these two 

POC values for each element, on a particular scan date, are used for assessing the 

performance of the proposed framework. The obtained difference between as-built and as-

planned POC values ranged from -7% to 6% for most elements, which shows that the 

developed framework enables tracking the completion of individual bridge elements in an 

accurate and efficient manner. The framework overcomes the disadvantages associated 

with manual methods of progress tracking because field inspectors no longer have to rely 

on subjective data. Additionally, the progress tracking information is less prone to error 

because the results can be verified using the collected 3D point clouds. In addition, it saves 

the need to perform multiple site visits incase as-built data is not recorded properly.  
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The second study in this dissertation is described in Chapter 5. The main research question 

this study attempts to answer is ‘How can the traditional methods of measuring surface 

waviness along 1D lines be extended to measuring surface flatness along the 2D surface 

and provide a more comprehensive assessment of surface geometry?’  

 

Chapter 5 proposes using TLS data for measuring floor flatness as opposed to the 

traditional methods. Using TLS data will enable assessing the surface flatness in a 

comprehensive manner because 2D/3D data is used to capture the overall geometry of the 

surface as opposed to 1D lines. In order to process TLS data for obtaining surface waviness 

information, a compliance-checking algorithm is presented for detecting elements where 

their dimensions exceed specified construction tolerances. First, the TLS data is cleaned to 

remove points associated with debris and workers on the surface. The TLS data is then 

converted into a depth map having 1 cm in both the x and y directions. The CWT is used 

to analyze the depth map to provide surface waviness information.  

 

Thus, the framework enables assessment of a concrete surface in two-dimensional (2D) 

domain using the synergy of Terrestrial Laser Scanning (TLS) technology and Continuous 

Wavelet Transform (CWT) analysis. 2D CWT analysis provides information not only 

about the periods of the surface undulations, but also the location of such undulations. The 

traditional methods of measuring surface waviness are not efficient while measuring 

surface waviness over areas as large 45,000 sq. ft., which is the typical surface area of a 

warehouse floor.  

 

The validity of the methodology is established by running a test on point clouds obtained 

from a warehouse project near Gresham, Oregon. A rigorous comparison between one of 

the existing floor waviness measurement methods, the waviness index method, and the 

proposed method is made. The results showed that the proposed methodology delivers 

accurate results that enable the localization of surface undulations of various characteristic 
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periods. This methodology will help quality control inspectors perform waviness 

assessment over large surface areas with minimal time and high accuracy.  

 

Chapter 6 presented a comparative analysis of floor waviness measurement results obtained 

using UAV-based (mounted with a 3D laser scanning sensor) and TLS-based technologies. 

One of the major drawbacks in using point cloud data for as-built documentation is related 

to storing and processing large volumes of point cloud data. The main research question 

for this study is ‘How does the resolution of point clouds affect the localization of surface 

defects?’ 

 

The TLS data from two projects are used to investigate how the quality of surface waviness 

results are affected by the scanning resolution. The point cloud data were analyzed at 

scanning resolutions of 0.02°, 0.04°, 0.06°, 0.08° and 0.1°, which are typical resolution 

settings for most commercially available TLS systems. The finding showed that for the 

Magruder Hall Expansion Project, using only one scan (in our case Scan 2) ensured that 

the CWT results matched the ground truth results for scanning resolutions ranging from 

0.02° through 0.08°. If scans are collected from two scanning locations, scanning 

resolutions ranging from 0.02° through 0.1° can be used. Each of the scanning locations 

for the two scans may be as far as 12.46 m from the furthest point in the slab. Table 6.3 

shows that this distance could have been 18.5 m but a conservative distance was chosen to 

generate accurate results. Note that the scanner is setup within the boundaries of the slab 

surface. The results from the Vista Logistic Park Project show using four scans (in our case 

Scan 1, Scan 2, Scan 3 and Scan 4) ensured that the CWT results matched the ground truth 

results for scanning resolutions ranging from 0.02° through 0.08°. Each of the scanning 

locations for the four scans may be as far as 22.69 m from the furthest point in the slab. 

Note that the scanner is setup within the boundaries of the slab surface. Furthermore, the 

results obtained from analyzing UAV-based point cloud data and TLS point cloud data for 

measuring floor flatness shows that comparable results are obtained for the scales of 30, 

60 and 75. However, acceptable results for scales of 15 and 30 were not obtained. Thus, it 
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was concluded that UAV-based point cloud data on its own does not ensure localization of 

all kinds of surface undulations and TLS should be the preferred choice.  
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A.1: CWT results from Chapter 6 

 

 

Figure A.1- 1 The coefficients obtained from the wavelet transformation corresponding to 

scales 15 (a), 30 (b), 45 (c), 60 (d) and 75 (e) are plotted on the map for Scan 1 of the 

Magruder Hall slab. The areas in the slabs where undulations corresponding to these scales 

are present are shown. The peaks are marked in red. The scan is at scanning resolution 

0.02°. 
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Table A.1- 1 Peak detection results for Scan 1 (Magruder Hall Expansion Project)  at 

scanning resolution 0.02° 

Scales 
Number of peaks 

correctly identified 

Number of peaks 

incorrectly identified 

or failed to identify 

Actual number of peaks 

(based on 0.01° scanning 

resolution) 

15 2 1 3 

30 1 1 1 

45 1 2 1 

60 1 0 1 

75 1 0 1 

 

 

Figure A.1- 2 The coefficients obtained from the wavelet transformation corresponding to 

scales 15 (a), 30 (b), 45 (c), 60 (d) and 75 (e) are plotted on the map for Scan 1 of the 

Magruder Hall slab. The areas in the slabs where undulations corresponding to these scales 

are present are shown. The peaks are marked in red. The scan is at scanning resolution 

0.04°. 
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Table A.1- 2 Peak detection results for Scan 1 (Magruder Hall Expansion Project)  at 

scanning resolution 0.04° 

Scales 
Number of peaks 

correctly identified 

Number of peaks 

incorrectly identified 

or failed to identify 

Actual number of peaks 

(based on 0.01° scanning 

resolution) 

15 0 3 3 

30 1 1 1 

45 1 2 1 

60 1 0 1 

75 1 0 1 

 

 

Figure A.1- 3 The coefficients obtained from the wavelet transformation corresponding to 

scales 15 (a), 30 (b), 45 (c), 60 (d) and 75 (e) are plotted on the map for Scan 1 the Magruder 

Hall slab. The areas in the slabs where undulations corresponding to these scales are present 

are shown. The peaks are marked in red. The scan is at scanning resolution 0.06°.  

 



137 

 

 

Table A.1- 3 Peak detection results for Scan 1 (Magruder Hall Expansion Project)  at 

scanning resolution 0.06° 

Scales 
Number of peaks 

correctly identified 

Number of peaks 

incorrectly identified 

or failed to identify 

Actual number of peaks 

(based on 0.01° scanning 

resolution) 

15 1 3 3 

30 1 1 1 

45 1 0 1 

60 1 0 1 

75 1 0 1 

 

 

 

Figure A.1- 4 The coefficients obtained from the wavelet transformation corresponding to 

scales 15 (a), 30 (b), 45 (c), 60 (d) and 75 (e) are plotted on the map for Scan 1 of the 

Magruder Hall slab. The areas in the slabs where undulations corresponding to these scales 

are present are shown. The peaks are marked in red. The scan is at scanning resolution 

0.08°. 
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Table A.1- 4 Peak detection results for Scan 1 (Magruder Hall Expansion Project)  at 

scanning resolution 0.08° 

Scales 
Number of peaks 

correctly identified 

Number of peaks 

incorrectly identified 

or failed to identify 

Actual number of peaks 

(based on 0.01° scanning 

resolution) 

15 1 3 3 

30 1 1 1 

45 1 1 1 

60 1 0 1 

75 1 0 1 

 

 

Figure A.1- 5 The coefficients obtained from the wavelet transformation corresponding to scales 

15 (a), 30 (b), 45 (c), 60 (d) and 75 (e) are plotted on the map for the Magruder Hall slab. 

The areas in the slabs where undulations corresponding to these scales are present are 

shown. The peaks are marked in red.  The scan is at scanning resolution 0.1°. 
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Table A.1- 5 Peak detection results for Scan 1 (Magruder Hall Expansion Project)  at 

scanning resolution 0.10° 

Scales 
Number of peaks 

correctly identified 

Number of peaks 

incorrectly identified 

or failed to identify 

Actual number of peaks 

(based on 0.01° scanning 

resolution) 

15 2 1 3 

30 1 0 1 

45 1 1 1 

60 1 0 1 

75 1 0 1 

 

 

 

Figure A.1- 6 The coefficients obtained from the wavelet transformation corresponding to 

scales 15 (a), 30 (b), 45 (c), 60 (d) and 75 (e) are plotted on the map for the Magruder 

Hall slab. The areas in the slabs where undulations corresponding to these scales are 

present are shown. The peaks are marked in red.  The scan is at scanning resolution 0.1°.  
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A.2: Magruder Hall Expansion Project: 

 

Table A.2- 1  Peak detection results for Scan 2 (Magruder Hall Expansion Project) at 

scanning resolution 0.02° 

Scales 
Number of peaks 

correctly identified 

Number of peaks 

incorrectly identified 

or failed to identify 

Actual number of peaks 

(based on 0.01° scanning 

resolution) 

15 3 0 3 

30 1 0 1 

45 1 0 1 

60 1 0 1 

75 1 0 1 

 

Table A.2- 2 Peak detection results for Scan 2 (Magruder Hall Expansion Project) at 

scanning resolution 0.04° 

Scales 
Number of peaks 

correctly identified 

Number of peaks 

incorrectly identified 

or failed to identify 

Actual number of peaks 

(based on 0.01° scanning 

resolution) 

15 3 0 3 

30 1 0 1 

45 1 0 1 

60 1 0 1 

75 1 0 1 

 

Table A.2- 3 Peak detection results for Scan 2 (Magruder Hall Expansion Project) at 

scanning resolution 0.06° 

Scales 
Number of peaks 

correctly identified 

Number of peaks 

incorrectly identified 

or failed to identify 

Actual number of peaks 

(based on 0.01° scanning 

resolution) 

15 3 0 3 

30 1 0 1 

45 1 0 1 

60 1 0 1 

75 1 0 1 
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Table A.2- 4 Peak detection results for Scan 2 (Magruder Hall Expansion Project) at 

scanning resolution 0.08° 

Scales 
Number of peaks 

correctly identified 

Number of peaks 

incorrectly identified 

or failed to identify 

Actual number of peaks 

(based on 0.01° scanning 

resolution) 

15 3 0 3 

30 1 0 1 

45 1 0 1 

60 1 0 1 

75 1 0 1 

 

Table A.2- 5 Peak detection results for Scan 2 (Magruder Hall Expansion Project) at 

scanning resolution 0.10° 

Scales 
Number of peaks 

correctly identified 

Number of peaks 

incorrectly identified 

or failed to identify 

Actual number of peaks 

(based on 0.01° scanning 

resolution) 

15 3 0 3 

30 1 1 1 

45 1 0 1 

60 1 0 1 

75 1 0 1 

 

Table A.2- 6 Peak detection results for Scan 1 and Scan 2 (Magruder Hall Expansion 

Project), each at scanning resolution 0.02° 

Scales 
Number of peaks 

correctly identified 

Number of peaks 

incorrectly identified 

or failed to identify 

Actual number of peaks 

(based on 0.01° scanning 

resolution) 

15 3 0 3 

30 1 0 1 

45 1 0 1 

60 1 0 1 

75 1 0 1 
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Table A.2- 7 Peak detection results for Scan 1 and Scan 2 (Magruder Hall Expansion 

Project), each at scanning resolution 0.04° 

Scales 
Number of peaks 

correctly identified 

Number of peaks 

incorrectly identified 

or failed to identify 

Actual number of peaks 

(based on 0.01° scanning 

resolution) 

15 3 0 3 

30 1 0 1 

45 1 0 1 

60 1 0 1 

75 1 0 1 

 

Table A.2- 8 Peak detection results for Scan 1 and Scan 2 (Magruder Hall Expansion 

Project), each at scanning resolution 0.06° 

Scales 
Number of peaks 

correctly identified 

Number of peaks 

incorrectly identified 

or failed to identify 

Actual number of peaks 

(based on 0.01° scanning 

resolution) 

15 3 0 3 

30 1 0 1 

45 1 0 1 

60 1 0 1 

75 1 0 1 

 

Table A.2- 9 Peak detection results for Scan 1 and Scan 2 (Magruder Hall Expansion 

Project), each at scanning resolution 0.08° 

Scales 
Number of peaks 

correctly identified 

Number of peaks 

incorrectly identified 

or failed to identify 

Actual number of peaks 

(based on 0.01° scanning 

resolution) 

15 3 0 3 

30 1 0 1 

45 1 0 1 

60 1 0 1 

75 1 0 1 
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Table A.2- 10 Peak detection results for Scan 1 and Scan 2 (Magruder Hall Expansion 

Project), each at scanning resolution 0.10° 

Scales 
Number of peaks 

correctly identified 

Number of peaks 

incorrectly identified 

or failed to identify 

Actual number of peaks 

(based on 0.01° scanning 

resolution) 

15 3 0 3 

30 1 0 1 

45 1 0 1 

60 1 0 1 

75 1 0 1 
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A.3: Vista Logistics park project: 

 

Table A.3- 1 Peak detection results for Scan 1 + Scan 2 (Vista Logistics Park Project) at 

scanning resolution 0.02° 

Scales 
Number of peaks 

correctly identified 

Number of peaks 

incorrectly identified 

or failed to identify 

Actual number of peaks 

(based on 0.01° scanning 

resolution) 

15 2 3 3 

30 1 0 1 

45 1 0 1 

60 1 0 1 

75 1 0 1 

 

Table A.3- 2 Peak detection results for Scan 1 + Scan 2 (Vista Logistics Park Project) at 

scanning resolution 0.04° 

Scales 
Number of peaks 

correctly identified 

Number of peaks 

incorrectly identified 

or failed to identify 

Actual number of peaks 

(based on 0.01° scanning 

resolution) 

15 1 3 3 

30 1 0 1 

45 1 0 1 

60 1 0 1 

75 1 0 1 

 

Table A.3- 3  Peak detection results for Scan 1 + Scan 2 (Vista Logistics Park Project) at 

scanning resolution 0.06° 

Scales 
Number of peaks 

correctly identified 

Number of peaks 

incorrectly identified 

or failed to identify 

Actual number of peaks 

(based on 0.01° scanning 

resolution) 

15 0 4 3 

30 1 0 1 

45 1 0 1 

60 1 0 1 

75 1 0 1 
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Table A.3- 4 Peak detection results for Scan 1 + Scan 2 (Vista Logistics Park Project) at 

scanning resolution 0.08° 

Scales 
Number of peaks 

correctly identified 

Number of peaks 

incorrectly identified 

or failed to identify 

Actual number of peaks 

(based on 0.01° scanning 

resolution) 

15 0 4 3 

30 1 0 1 

45 1 0 1 

60 1 0 1 

75 1 0 1 

 

Table A.3- 5 Peak detection results for Scan 1 + Scan 2 (Vista Logistics Park Project) at 

scanning resolution 0.10° 

Scales 
Number of peaks 

correctly identified 

Number of peaks 

incorrectly identified 

or failed to identify 

Actual number of peaks 

(based on 0.01° scanning 

resolution) 

15 0 4 3 

30 1 1 1 

45 1 0 1 

60 1 0 1 

75 1 1 1 

 

Table A.3- 6 Peak detection results for Scan 1 + Scan 2 + Scan 4 (Vista Logistics Park 

Project) at scanning resolution 0.02° 

Scales 
Number of peaks 

correctly identified 

Number of peaks 

incorrectly identified 

or failed to identify 

Actual number of peaks 

(based on 0.01° scanning 

resolution) 

15 1 3 3 

30 1 0 1 

45 1 0 1 

60 1 0 1 

75 1 0 1 
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Table A.3- 7 Peak detection results for Scan 1 + Scan 2 + Scan 4 (Vista Logistics Park 

Project) at scanning resolution 0.04° 

Scales 
Number of peaks 

correctly identified 

Number of peaks 

incorrectly identified 

or failed to identify 

Actual number of peaks 

(based on 0.01° scanning 

resolution) 

15 2 1 3 

30 1 0 1 

45 1 0 1 

60 1 0 1 

75 1 0 1 

 

Table A.3- 8 Peak detection results for Scan 1 + Scan 2 + Scan 4 (Vista Logistics Park 

Project) at scanning resolution 0.06° 

Scales 
Number of peaks 

correctly identified 

Number of peaks 

incorrectly identified 

or failed to identify 

Actual number of peaks 

(based on 0.01° scanning 

resolution) 

15 3 2 3 

30 1 0 1 

45 1 0 1 

60 1 0 1 

75 1 0 1 

 

Table A.3- 9 Peak detection results for Scan 1 + Scan 2 + Scan 4 (Vista Logistics Park 

Project) at scanning resolution 0.08° 

Scales 
Number of peaks 

correctly identified 

Number of peaks 

incorrectly identified 

or failed to identify 

Actual number of peaks 

(based on 0.01° scanning 

resolution) 

15 1 3 3 

30 1 0 1 

45 1 0 1 

60 1 0 1 

75 1 0 1 
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Table A.3- 10 Peak detection results for Scan 1 + Scan 2 + Scan 4 (Vista Logistics Park 

Project) at scanning resolution 0.10° 

Scales 
Number of peaks 

correctly identified 

Number of peaks 

incorrectly identified 

or failed to identify 

Actual number of peaks 

(based on 0.01° scanning 

resolution) 

15 0 3 3 

30 1 0 1 

45 1 0 1 

60 1 0 1 

75 1 1 1 

 

Table A.3- 11 Peak detection results for Scan 1 + Scan 2 + Scan 3 + Scan 4 (Vista 

Logistics Park Project) at scanning resolution 0.02° 

Scales 
Number of peaks 

correctly identified 

Number of peaks 

incorrectly identified 

or failed to identify 

Actual number of peaks 

(based on 0.01° scanning 

resolution) 

15 3 0 3 

30 1 0 1 

45 1 0 1 

60 1 0 1 

75 1 0 1 

 

Table A.3- 12 Peak detection results for Scan 1 + Scan 2 + Scan 3 + Scan 4 (Vista 

Logistics Park Project) at scanning resolution 0.04° 

Scales 
Number of peaks 

correctly identified 

Number of peaks 

incorrectly identified 

or failed to identify 

Actual number of peaks 

(based on 0.01° scanning 

resolution) 

15 2 2 3 

30 1 0 1 

45 1 0 1 

60 1 0 1 

75 1 0 1 
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Table A.3- 13  Peak detection results for Scan 1 + Scan 2 + Scan 3 + Scan 4 (Vista 

Logistics Park Project) at scanning resolution 0.06° 

Scales 
Number of peaks 

correctly identified 

Number of peaks 

incorrectly identified 

or failed to identify 

Actual number of peaks 

(based on 0.01° scanning 

resolution) 

15 3 2 3 

30 1 0 1 

45 1 0 1 

60 1 0 1 

75 1 0 1 

 

Table A.3- 14 Peak detection results for Scan 1 + Scan 2 + Scan 3 + Scan 4 (Vista 

Logistics Park Project) at scanning resolution 0.08° 

Scales 
Number of peaks 

correctly identified 

Number of peaks 

incorrectly identified 

or failed to identify 

Actual number of peaks 

(based on 0.01° scanning 

resolution) 

15 1 3 3 

30 1 0 1 

45 1 0 1 

60 1 0 1 

75 1 0 1 

 

Table A.3- 15  Peak detection results for Scan 1 + Scan 2 + Scan 3 + Scan 4 (Vista 

Logistics Park Project) at scanning resolution 0.10° 

Scales 
Number of peaks 

correctly identified 

Number of peaks 

incorrectly identified 

or failed to identify 

Actual number of peaks 

(based on 0.01° scanning 

resolution) 

15 0 4 3 

30 1 1 1 

45 1 0 1 

60 1 0 1 

75 1 1 1 

 

 


