18,531 research outputs found

    Anomalous transport in the crowded world of biological cells

    Full text link
    A ubiquitous observation in cell biology is that diffusion of macromolecules and organelles is anomalous, and a description simply based on the conventional diffusion equation with diffusion constants measured in dilute solution fails. This is commonly attributed to macromolecular crowding in the interior of cells and in cellular membranes, summarising their densely packed and heterogeneous structures. The most familiar phenomenon is a power-law increase of the MSD, but there are other manifestations like strongly reduced and time-dependent diffusion coefficients, persistent correlations, non-gaussian distributions of the displacements, heterogeneous diffusion, and immobile particles. After a general introduction to the statistical description of slow, anomalous transport, we summarise some widely used theoretical models: gaussian models like FBM and Langevin equations for visco-elastic media, the CTRW model, and the Lorentz model describing obstructed transport in a heterogeneous environment. Emphasis is put on the spatio-temporal properties of the transport in terms of 2-point correlation functions, dynamic scaling behaviour, and how the models are distinguished by their propagators even for identical MSDs. Then, we review the theory underlying common experimental techniques in the presence of anomalous transport: single-particle tracking, FCS, and FRAP. We report on the large body of recent experimental evidence for anomalous transport in crowded biological media: in cyto- and nucleoplasm as well as in cellular membranes, complemented by in vitro experiments where model systems mimic physiological crowding conditions. Finally, computer simulations play an important role in testing the theoretical models and corroborating the experimental findings. The review is completed by a synthesis of the theoretical and experimental progress identifying open questions for future investigation.Comment: review article, to appear in Rep. Prog. Phy

    Slow and fast single photons from a quantum dot interacting with the excited state hyperfine structure of the Cesium D1-line

    Get PDF
    Hybrid interfaces between distinct quantum systems play a major role in the implementation of quantum networks. Quantum states have to be stored in memories to synchronize the photon arrival times for entanglement swapping by projective measurements in quantum repeaters or for entanglement purification. Here, we analyze the distortion of a single-photon wave packet propagating through a dispersive and absorptive medium with high spectral resolution. Single photons are generated from a single In(Ga)As quantum dot with its excitonic transition precisely set relative to the Cesium D1 transition. The delay of spectral components of the single-photon wave packet with almost Fourier-limited width is investigated in detail with a 200 MHz narrow-band monolithic Fabry-Pérot resonator. Reflecting the excited state hyperfine structure of Cesium, “slow light” and “fast light” behavior is observed. As a step towards room-temperature alkali vapor memories, quantum dot photons are delayed for 5 ns by strong dispersion between the two 1.17 GHz hyperfine-split excited state transitions. Based on optical pumping on the hyperfine-split ground states, we propose a simple, all-optically controllable delay for synchronization of heralded narrow-band photons in a quantum network.DFG, 43659573, SFB 787: Halbleiter - Nanophotonik: Materialien, Modelle, BauelementeEC/H2020/679183/EU/Entanglement distribution via Semiconductor-Piezoelectric Quantum-Dot Relays/SPQRe

    Big Data in Critical Infrastructures Security Monitoring: Challenges and Opportunities

    Full text link
    Critical Infrastructures (CIs), such as smart power grids, transport systems, and financial infrastructures, are more and more vulnerable to cyber threats, due to the adoption of commodity computing facilities. Despite the use of several monitoring tools, recent attacks have proven that current defensive mechanisms for CIs are not effective enough against most advanced threats. In this paper we explore the idea of a framework leveraging multiple data sources to improve protection capabilities of CIs. Challenges and opportunities are discussed along three main research directions: i) use of distinct and heterogeneous data sources, ii) monitoring with adaptive granularity, and iii) attack modeling and runtime combination of multiple data analysis techniques.Comment: EDCC-2014, BIG4CIP-201

    Gravitational Radiation from Newborn Magnetars

    Get PDF
    There is growing evidence that two classes of high-energy sources, the Soft Gamma Repeaters and the Anomalous X-ray Pulsars contain slowly spinning ``magnetars'', i.e. neutron stars whose emission is powered by the release of energy from their extremely strong magnetic fields (>10^15 G. We show here that the enormous energy liberated in the 2004 December 27 giant flare from SGR1806-20 (~5 10^46 erg), together with the likely recurrence time of such events, requires an internal field strength of > 10^16 G. Toroidal magnetic fields of this strength are within an order of magnitude of the maximum fields that can be generated in the core of differentially-rotating neutron stars immediately after their formation, if their initial spin period is of a few milliseconds. A substantial deformation of the neutron star is induced by these magnetic fields and, provided the deformation axis is offset from the spin axis, a newborn fast-spinning magnetar would radiate for a few weeks a strong gravitational wave signal the frequency of which (0.5-2 kHz range) decreases in time. The signal from a newborn magnetar with internal field > 10^16.5 G could be detected with Advanced LIGO-class detectors up to the distance of the Virgo cluster (characteristic amplitude h_c about 10^-21). Magnetars are expected to form in Virgo at a rate approx. 1/yr. If a fraction of these have sufficiently high internal magnetic field, then newborn magnetars constitute a promising new class of gravitational wave emitters.Comment: Accepted for publication on ApJ Letter
    • …
    corecore