1,118 research outputs found

    Bibliometric Mapping of the Computational Intelligence Field

    Get PDF
    In this paper, a bibliometric study of the computational intelligence field is presented. Bibliometric maps showing the associations between the main concepts in the field are provided for the periods 1996–2000 and 2001–2005. Both the current structure of the field and the evolution of the field over the last decade are analyzed. In addition, a number of emerging areas in the field are identified. It turns out that computational intelligence can best be seen as a field that is structured around four important types of problems, namely control problems, classification problems, regression problems, and optimization problems. Within the computational intelligence field, the neural networks and fuzzy systems subfields are fairly intertwined, whereas the evolutionary computation subfield has a relatively independent position.neural networks;bibliometric mapping;fuzzy systems;bibliometrics;computational intelligence;evolutionary computation

    Multimodal estimation of distribution algorithms

    Get PDF
    Taking the advantage of estimation of distribution algorithms (EDAs) in preserving high diversity, this paper proposes a multimodal EDA. Integrated with clustering strategies for crowding and speciation, two versions of this algorithm are developed, which operate at the niche level. Then these two algorithms are equipped with three distinctive techniques: 1) a dynamic cluster sizing strategy; 2) an alternative utilization of Gaussian and Cauchy distributions to generate offspring; and 3) an adaptive local search. The dynamic cluster sizing affords a potential balance between exploration and exploitation and reduces the sensitivity to the cluster size in the niching methods. Taking advantages of Gaussian and Cauchy distributions, we generate the offspring at the niche level through alternatively using these two distributions. Such utilization can also potentially offer a balance between exploration and exploitation. Further, solution accuracy is enhanced through a new local search scheme probabilistically conducted around seeds of niches with probabilities determined self-adaptively according to fitness values of these seeds. Extensive experiments conducted on 20 benchmark multimodal problems confirm that both algorithms can achieve competitive performance compared with several state-of-the-art multimodal algorithms, which is supported by nonparametric tests. Especially, the proposed algorithms are very promising for complex problems with many local optima

    Facing-up Challenges of Multiobjective Clustering Based on Evolutionary Algorithms: Representations, Scalability and Retrieval Solutions

    Get PDF
    Aquesta tesi es centra en algorismes de clustering multiobjectiu, que estan basats en optimitzar varis objectius simultàniament obtenint una col•lecció de solucions potencials amb diferents compromisos entre objectius. El propòsit d'aquesta tesi consisteix en dissenyar i implementar un nou algorisme de clustering multiobjectiu basat en algorismes evolutius per afrontar tres reptes actuals relacionats amb aquest tipus de tècniques. El primer repte es centra en definir adequadament l'àrea de possibles solucions que s'explora per obtenir la millor solució i que depèn de la representació del coneixement. El segon repte consisteix en escalar el sistema dividint el conjunt de dades original en varis subconjunts per treballar amb menys dades en el procés de clustering. El tercer repte es basa en recuperar la solució més adequada tenint en compte la qualitat i la forma dels clusters a partir de la regió més interessant de la col•lecció de solucions ofertes per l’algorisme.Esta tesis se centra en los algoritmos de clustering multiobjetivo, que están basados en optimizar varios objetivos simultáneamente obteniendo una colección de soluciones potenciales con diferentes compromisos entre objetivos. El propósito de esta tesis consiste en diseñar e implementar un nuevo algoritmo de clustering multiobjetivo basado en algoritmos evolutivos para afrontar tres retos actuales relacionados con este tipo de técnicas. El primer reto se centra en definir adecuadamente el área de posibles soluciones explorada para obtener la mejor solución y que depende de la representación del conocimiento. El segundo reto consiste en escalar el sistema dividiendo el conjunto de datos original en varios subconjuntos para trabajar con menos datos en el proceso de clustering El tercer reto se basa en recuperar la solución más adecuada según la calidad y la forma de los clusters a partir de la región más interesante de la colección de soluciones ofrecidas por el algoritmo.This thesis is focused on multiobjective clustering algorithms, which are based on optimizing several objectives simultaneously obtaining a collection of potential solutions with different trade¬offs among objectives. The goal of the thesis is to design and implement a new multiobjective clustering technique based on evolutionary algorithms for facing up three current challenges related to these techniques. The first challenge is focused on successfully defining the area of possible solutions that is explored in order to find the best solution, and this depends on the knowledge representation. The second challenge tries to scale-up the system splitting the original data set into several data subsets in order to work with less data in the clustering process. The third challenge is addressed to the retrieval of the most suitable solution according to the quality and shape of the clusters from the most interesting region of the collection of solutions returned by the algorithm

    Louvain-like Methods for Community Detection in Multi-Layer Networks

    Full text link
    In many complex systems, entities interact with each other through complicated patterns that embed different relationships, thus generating networks with multiple levels and/or multiple types of edges. When trying to improve our understanding of those complex networks, it is of paramount importance to explicitly take the multiple layers of connectivity into account in the analysis. In this paper, we focus on detecting community structures in multi-layer networks, i.e., detecting groups of well-connected nodes shared among the layers, a very popular task that poses a lot of interesting questions and challenges. Most of the available algorithms in this context either reduce multi-layer networks to a single-layer network or try to extend algorithms for single-layer networks by using consensus clustering. Those approaches have anyway been criticized lately. They indeed ignore the connections among the different layers, hence giving low accuracy. To overcome these issues, we propose new community detection methods based on tailored Louvain-like strategies that simultaneously handle the multiple layers. We consider the informative case, where all layers show a community structure, and the noisy case, where some layers only add noise to the system. We report experiments on both artificial and real-world networks showing the effectiveness of the proposed strategies.Comment: 16 pages, 4 figure

    Search based software engineering: Trends, techniques and applications

    Get PDF
    © ACM, 2012. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version is available from the link below.In the past five years there has been a dramatic increase in work on Search-Based Software Engineering (SBSE), an approach to Software Engineering (SE) in which Search-Based Optimization (SBO) algorithms are used to address problems in SE. SBSE has been applied to problems throughout the SE lifecycle, from requirements and project planning to maintenance and reengineering. The approach is attractive because it offers a suite of adaptive automated and semiautomated solutions in situations typified by large complex problem spaces with multiple competing and conflicting objectives. This article provides a review and classification of literature on SBSE. The work identifies research trends and relationships between the techniques applied and the applications to which they have been applied and highlights gaps in the literature and avenues for further research.EPSRC and E

    Adaptive multimodal continuous ant colony optimization

    Get PDF
    Seeking multiple optima simultaneously, which multimodal optimization aims at, has attracted increasing attention but remains challenging. Taking advantage of ant colony optimization algorithms in preserving high diversity, this paper intends to extend ant colony optimization algorithms to deal with multimodal optimization. First, combined with current niching methods, an adaptive multimodal continuous ant colony optimization algorithm is introduced. In this algorithm, an adaptive parameter adjustment is developed, which takes the difference among niches into consideration. Second, to accelerate convergence, a differential evolution mutation operator is alternatively utilized to build base vectors for ants to construct new solutions. Then, to enhance the exploitation, a local search scheme based on Gaussian distribution is self-adaptively performed around the seeds of niches. Together, the proposed algorithm affords a good balance between exploration and exploitation. Extensive experiments on 20 widely used benchmark multimodal functions are conducted to investigate the influence of each algorithmic component and results are compared with several state-of-the-art multimodal algorithms and winners of competitions on multimodal optimization. These comparisons demonstrate the competitive efficiency and effectiveness of the proposed algorithm, especially in dealing with complex problems with high numbers of local optima

    Efficient Learning Machines

    Get PDF
    Computer scienc

    A similarity-based cooperative co-evolutionary algorithm for dynamic interval multi-objective optimization problems

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Dynamic interval multi-objective optimization problems (DI-MOPs) are very common in real-world applications. However, there are few evolutionary algorithms that are suitable for tackling DI-MOPs up to date. A framework of dynamic interval multi-objective cooperative co-evolutionary optimization based on the interval similarity is presented in this paper to handle DI-MOPs. In the framework, a strategy for decomposing decision variables is first proposed, through which all the decision variables are divided into two groups according to the interval similarity between each decision variable and interval parameters. Following that, two sub-populations are utilized to cooperatively optimize decision variables in the two groups. Furthermore, two response strategies, rgb0.00,0.00,0.00i.e., a strategy based on the change intensity and a random mutation strategy, are employed to rapidly track the changing Pareto front of the optimization problem. The proposed algorithm is applied to eight benchmark optimization instances rgb0.00,0.00,0.00as well as a multi-period portfolio selection problem and compared with five state-of-the-art evolutionary algorithms. The experimental results reveal that the proposed algorithm is very competitive on most optimization instances

    Disease diagnosis in smart healthcare: Innovation, technologies and applications

    Get PDF
    To promote sustainable development, the smart city implies a global vision that merges artificial intelligence, big data, decision making, information and communication technology (ICT), and the internet-of-things (IoT). The ageing issue is an aspect that researchers, companies and government should devote efforts in developing smart healthcare innovative technology and applications. In this paper, the topic of disease diagnosis in smart healthcare is reviewed. Typical emerging optimization algorithms and machine learning algorithms are summarized. Evolutionary optimization, stochastic optimization and combinatorial optimization are covered. Owning to the fact that there are plenty of applications in healthcare, four applications in the field of diseases diagnosis (which also list in the top 10 causes of global death in 2015), namely cardiovascular diseases, diabetes mellitus, Alzheimer’s disease and other forms of dementia, and tuberculosis, are considered. In addition, challenges in the deployment of disease diagnosis in healthcare have been discussed
    corecore