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Summary

The era in which we live can be considered the Information Age because it is characterized by
a technological revolution centered on digital technologies of information and communication.
Large amount of information is collected every day, being the cornerstone of modern society.
However, information is not useful if it is not properly managed to be transformed into wisdom
through the extraction of understandable knowledge. Data Mining is the process of automatically
extracting and discovering new, useful and understandable knowledge from huge volumes of data.
It allows experts to accost the problems better in a specific domain and to obtain wisdom, such as
the melanoma detection and managing the demand of energy more efficiently.

Data Mining involves four kind of techniques, and one of them is the clustering approach.
It is based on grouping data according to a set of criteria, summarized in a single objective, ob-
taining groups where the elements are similar among them and different from the elements of the
other clusters. These groupings provide a possible classification or categorization of the elements.
Experts can obtain wisdom if they properly understand this categorization, for this reason it is nec-
essary to obtain understandable patterns. Thus, experts may need to define several criteria to be
optimized in the clustering process that cannot be summarized in a single objective due to their
characteristics. Nevertheless, conventional clustering algorithms are not useful when more than
one objective has to be optimized and it is necessary to apply other kind of methods.

This thesis is focused on multiobjective clustering algorithms, which are based on optimiz-
ing several objectives simultaneously obtaining a collection of potential solutions with different
trade-offs among objectives. Specifically, the goal of the thesis is to design and implement a new
multiobjective clustering technique based on evolutionary algorithms for facing up three current
challenges related to this kind of techniques. The first challenge is focused on successfully defin-
ing the area of possible solutions that is explored in order to find the best solution, and this depends
on the knowledge representation. The second challenge tries to scale-up the system splitting the
original data set into several data subsets in order to work with less data in the clustering process.
The third challenge is addressed to the retrieval of the most suitable solution according to the qual-
ity and shape of the clusters from the most interesting region of the collection of solutions returned
by the multiobjective clustering algorithm. All the contributions related to these challenges are
integrated in a framework called CAOS and successfully tested in a wide range of artificial and

real-world data sets.






Resum

L’¢época a la que vivim pot ser considerada com 1’Era de la Informacié perque es caracteritza per
una revoluci6 tecnologica centrada en les tecnologies de la informacié i la comunicacié. Cada dia
es recullen grans quantitats d’informacid, sent aquesta la pedra angular de la societat moderna. Perod
la informacié no és 1til si no es gestiona adequadament per transformar-la en saviesa mitjancant
I’extraccié de coneixement comprensible. La mineria de dades (Data Mining) és un procés que
consisteix en extreure i descobrir automaticament coneixement nou, dtil i comprensible a partir de
grans volums de dades. Aixo permet als experts afrontar de manera més adequada els problemes
en un domini especific i obtenir saviesa, com la deteccié de melanomes o la gestié eficient de la
demanda energetica, entre d’altres.

La mineria de dades comprén quatre tipus de técniques, entre elles el clustering. Aquesta
tecnica es basa en agrupar dades segons un conjunt de criteris sintetitzats en un Unic objectiu,
obtenint grups de clusters on els elements sén similars entre ells i diferents als elements dels
altres clusters. Aquests grups ofereixen una possible classificacié o categoritzacié dels elements.
Els experts poden ser capacos d’obtenir saviesa si entenen adequadament aquesta categoritzacio,
per aquesta rad és necessari obtenir patrons facilment comprensibles. Per tant, els experts poden
necessitar definir varis criteris a optimitzar en el procés de clustering que no poden ser sintetitzats
en un Unic objectiu degut a les seves caracteristiques. No obstant aixo, els algorismes de clustering
convencionals no sén ttils quan s ha d’optimitzar més d’un objectiu i, en aquests casos, és necessari
aplicar altre tipus de metodes.

Aquesta tesi es centra en algorismes de clustering multiobjectiu, que estan basats en optimitzar
varis objectius simultaniament obtenint una col-leccié de solucions potencials amb diferents com-
promisos entre els objectius. Concretament, el proposit d’aquesta tesi consisteix en dissenyar i im-
plementar un nou algorisme de clustering multiobjectiu basat en algorismes evolutius per afrontar
tres reptes actuals relacionats amb aquest tipus de tecniques. El primer repte es centra en definir
adequadament I’area, on resideixen les possibles solucions, que s’explora per obtenir la millor
solucié i que depen de la representacié del coneixement. El segon repte consisteix en escalar el
sistema dividint el conjunt de dades original en varis subconjunts per treballar amb menys dades
en el procés de clustering. El tercer repte es basa en recuperar la solucié més adequada tenint en
compte la qualitat i la forma dels clusters a partir de la regié més interessant de la col-leccié de
solucions ofertes per 1’algorisme de clustering multiobjectiu. Totes les contribucions relacionades
amb aquests reptes s’han integrat dins d’un marc anomenat CAOS i comprovades en un ampli rang

de conjunts de dades artificials i del moén real.






Resumen

La época en la que vivimos puede considerarse la Era de la Informacién porque se caracteriza por
una revolucién tecnoldgica centrada en las tecnologias de la informacién y la comunicacion. Cada
dia se recogen grandes cantidades de informacién, siendo ésta la piedra angular de la sociedad
moderna. Sin embargo, la informacién no es titil si no se gestiona adecuadamente para transfor-
marla en sabiduria mediante la extraccién de conocimiento comprensible. La mineria de datos
(Data Mining) es un proceso que consiste en extraer y descubrir automdticamente conocimiento
nuevo, ttil y comprensible a partir de grandes volimenes de datos. Esto permite a los expertos
afrontar de manera mds adecuada los problemas en un dominio especifico y obtener sabiduria,
como la deteccién de melanomas o la gestién eficiente de la demanda energética, entre otros.

La mineria de datos comprende cuatro tipos de técnicas, entre ellas el clustering. Esta técnica
se basa en agrupar datos segin un conjunto de criterios sintetizados en un Unico objetivo, obte-
niendo grupos (clusters) donde los elementos son similares entre ellos y diferentes a los elementos
de los otros clusters. Estos grupos ofrecen una posible clasificacién o categorizacion de los ele-
mentos. Los expertos pueden ser capaces de obtener sabiduria si entienden adecuadamente esta
categorizacion, por esta razon es necesario obtener patrones facilmente comprensibles. Por tanto,
los expertos pueden necesitar definir varios criterios a optimizar en el proceso de clustering que no
pueden ser sintetizados en un Unico objetivo debido a sus caracteristicas. No obstante, los algorit-
mos de clustering convencionales no son ttiles cuando se ha de optimizar mas de un objetivo y, en
estos casos, es necesario aplicar otro tipo de métodos.

Esta tesis se centra en los algoritmos de clustering multiobjetivo, que estan basados en opti-
mizar varios objetivos simultineamente obteniendo una coleccion de soluciones potenciales con
diferentes compromisos entre los objetivos. Concretamente, el propdsito de esta tesis consiste en
disefar e implementar un nuevo algoritmo de clustering multiobjetivo basado en algoritmos evo-
lutivos para afrontar tres retos actuales relacionados con este tipo de técnicas. El primer reto se
centra en definir adecuadamente el 4drea, donde residen las posibles soluciones, que se explora para
obtener la mejor solucién y que depende de la representacion del conocimiento. El segundo reto
consiste en escalar el sistema dividiendo el conjunto de datos original en varios subconjuntos para
trabajar con menos datos en el proceso de clustering. El tercer reto se basa en recuperar la solucién
mads adecuada teniendo en cuenta la calidad y la forma de los clusters a partir de la regiéon mas
interesante de la coleccién de soluciones ofrecidas por el algoritmo de clustering multiobjetivo.
Todas las contribuciones relacionadas con estos retos se han integrado en un marco llamado CAOS

y comprobadas en un amplio rango de conjuntos de datos artificiales y del mundo real.
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Chapter 1

Introduction

Data Mining is the process of automatically extracting and discovering new, useful and un-
derstandable knowledge from huge volumes of data. It involves four kind of techniques,
and one of them is the clustering approach. This technique is based on grouping data
according to a set of criteria, summarized in a single objective, obtaining groups where
the elements are similar among them and different from the elements of the other clusters.
These groupings can help to the experts to acquire wisdom. Nevertheless, conventional
clustering algorithms may not be useful when the criteria to be optimized cannot be sum-
marized in a single objective, and therefore it is necessary to optimize independently each
one. This thesis is focused on multiobjective clustering algorithms, which are based on
optimizing several objectives simultaneously. In this chapter we present the framework,
the dissertation scope, the objectives and contributions, and the roadmap of the thesis in

order to set the reader in the context of it.
1.1 Framework

The research done in this PhD thesis is framed on the graduate program in Information Technology
and Management from La Salle at Ramon Llull University. It has been developed in the Research
Group in Intelligent Systems' (GRSI), which is a research group created in 1994 and recognized as
a consolidated group by the Government of Catalonia since 2002 (2002-SGR-00155, 2005-SGR-
00302 and 2009-SGR-183). The research field of the group is focused on Artificial Intelligence,
specifically, on Data Mining and Machine Learning under the paradigms of Case Based Reason-
ing, Evolutionary Algorithms and Soft-Computing with the aim of solving classification, diagnosis
and prediction problems in different fields, like health, networks security, energy and education
domains. During the development of my PhD thesis I have had the opportunity of relating my
research to three projects founded by the Spanish Government: (1) MID-CBR (TIN2006-15140-
C03-03) was based on developing a unified framework for the development of Case-Based Rea-
soning systems, in it my research was focused on improving the steps of the Case-based Reasoning
using Soft Computing techniques; (2) GAD (CEN200710126) was focused on the active manage-

Vhttp:fwww.salleurl.edu/GRSI
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ment of the electrical demand and my task was to conduct research on the module related to the
efficient management of the power demand through the identification of consumer behavior using
Clustering techniques; and (3) KEEL-III (TIN2008-06681-C06-05) is focused on the current trends
and new challenges in Knowledge Discovery based on Evolutionary Learning and my task there
was related to the knowledge extraction from data using Evolutionary Algorithms. Also I have
taken part in a project founded by the Generalitat de Catalunya called Guidelines for Competence
Assessment in Engineering and Architecture (IUE/3013/2007), which consisted in the evaluation
of competences in engineering and architecture to help the experts to adapt the university graduates
to the European Higher Education Area. My PhD research has been cosupervised by Dr. Albert
Fornells Herrera and Dr. Elisabet Golobardes i Ribé, and it has been supported by the Generalitat
de Catalunya, the Commission for Universities and Research of the DIUE and European Social
Fund (2010FI_B01084, 2011FI_B100022, 2010BE_01026).

1.2 Dissertation Scope

Nowadays, the era in which we live is considered the Information Age, a term coined by the so-
ciologist Manuel Castells for post-1990 era (Castells and Martinez, 2001). Castells describes the
Information Age as a historical period characterized by a technological revolution centered on dig-
ital technologies of information and communication. Information is the cornerstone of modern
society because it is considered that it leads to power and success, so large amount of information
is collected each day. But information alone does not mean anything, it is necessary to properly
manage it to turn it into wisdom. The American organizational theorist Russell Ackoff describes
the content of the human mind in five categories: (1) Data, (2) Information, (3) Knowledge, (4)
Understanding and (5) Wisdom (Ackoff, 1989). The relationship between these categories is de-
scribed through a hierarchy called DIKW (see Figure 1.1), and it can be summarized as: (1) data
are symbols that do not have meaning by themselves, they are usually the results of measurements
or observations; (2) information is data that are preprocessed, it can be useful or not, and it pro-
vides “who”, “what”, “where”, and “when” questions; (3) knowledge is the appropriate collection
of information, such that its intent is to be useful, it answers “how” questions; (4) understanding
is the process by which knowledge can be taken and subsequently synthesized in new knowledge
from the previously held knowledge, and it answers “why” question; and (5) wisdom is the evalu-
ated understanding, unlike the previous four levels, it asks questions to which do not have an easy
answer, and in some cases, to which there can be no humanly-known answer period. According
to this hierarchy, information only provides wisdom when it contains previously unknown, useful
and understandable knowledge. As Clifford Stoll said, “Data is not information, information is
not knowledge, knowledge is not understanding, understanding is not wisdom”. The aim of data
management in Information Technology is to obtain wisdom from data. Concretely, according to
the DIKW hierarchy, the objective is to obtain new, useful and understandable knowledge from

data that can become in wisdom. In the last decades, the amount and heterogeneity of data have
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Doing the right things, what is best
(to propose a solution)

/ Understanding \ Why
/ Knowledge \ How
/ \ Who, what, where, when
Data \ Symbols

Figure 1.1: Pyramid of the DIKW hierarchy proposed by Russell Ackoff.

Wisdom

shown the limits of the conventional data management methods opening the door to a new kind
of techniques focused on obtaining patterns and relationships between data in order to obtain new
knowledge. Moreover, the spread of these techniques has been possible thanks to the technology
improvements of the computers in terms of processing speed and storage capacity.

Data Mining and Knowledge Discovery in Databases (KDD) (Fayyad et al., 1996) are the
processes of automatically extracting and discovering new, useful and understandable knowledge
from huge volumes of data. That is, automatically or semi-automatically obtaining groups or re-
lationships between the objects of a collection of data according to their features, with the aim of
allowing experts to confront better the problems of the domain (Hernandez et al., 2004) or, in other
words, to obtain wisdom. The reality is plenty of examples such as the detection of melanoma can-
cer in a patient using the knowledge obtained from the analysis and diagnosis of previous patients,
and managing more efficiently the demand of energy by the identification of groups of consumers
with similar behavior using recorded readings of electrical consumption. Even if the Data Mining
term as it is known nowadays is quite recent and it dates from the nineties, the idea is older. In
the seventies, the statisticians managed terms like data fishing, data mining or data archaeology
with the idea of finding correlations without any previous hypothesis in noisy data bases to ob-
tain knowledge that helps to better understand a concrete problem. In the early eighties, Rakesh
Agrawal, Gio Wiederhold, Robert Blum and Gregory Piatetsky-Shapiro, among others, began to
consolidate the Data Mining and Knowledge Discovery in Databases (KDD) terms (Fayyad et al.,
1996), involving four typologies of techniques: (1) association rule learning, (2) classification, (3)
regression and (4) clustering. The first one searches for relationships between variables. The sec-
ond one can obtain a model generalizing from a known structure to apply to new data. The third
one tries to find a function which models the data with the least error. Finally, in the last one is
where this thesis is framed. Clustering approach (Duda et al., 2000) is based on grouping data
according to a set of criteria, being the result a set of groups (also called clusters) where each one
contains a set of similar elements. Thus, the elements in a cluster are similar among them and dif-

ferent from the elements of the other clusters and it provides to the experts a possible classification
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or categorization of the elements. This issue is particularly useful in unsupervised domains, where
the categorization of the elements is unknown, and these techniques turn into mechanisms to iden-
tify patterns and discover relationships. Nowadays, there are numerous clustering algorithms that
are applied in a wide range of domains such as the analysis of gene expressions to identify living
beings from data that contains DNA analysis (Eisen et al., 1998; Yeung et al., 2003); the identifi-
cation of groups of patients to apply common medical treatments (Hodges and Wotring, 2000); the
definition of market segments related to a product of service in order to recommend them to the
suitable consumers (Hofstede et al., 1999); or the image segmentations based on the identification
of objects and edges in images according to the features of each pixel (position, color, neighbors...)
(Comaniciu and Meer, 2002).

Clustering algorithms can be classified according to many different points of view (Duda et al.,
2000; Witten and E. Frank, 2011) such as: the relation between the clusters (partitional or hier-
archical), how they are structured (for instance, center-based, search-based and model-based), the
degree of membership to the cluster (for example, hard clustering and fuzzy clustering), or the
criteria used to build the clusters (conventional clustering, Ensemble Clustering, or Multiobjective
Clustering). This last point is key because criteria determine the final shape and size of groups.
Conventional clustering algorithms (Gan et al., 2000) are based on grouping elements using only
one objective based on one or more criteria expressed in a single function. Nevertheless, this kind
of clustering may fail if criteria cannot be combined in only one objective and, consequently, sev-
eral objectives have to be defined to tackle the problem. On the other hand, Ensemble Clustering
(EC) (Strehl and Ghosh, 2002) and Multiobjective Clustering (MC) (Ferligoj and Batagelj, 1992)
optimize several objectives at the same time. The main difference between both approaches lies in
the strategy to optimize the criteria. EC divides the procedure into two phases: (1) application of
many clustering algorithms following different single objectives; and (2) combination of the last
results to create the final clustering. This last step is quite complex to achieve and it is usually in-
efficient because the objectives can be partially contradictory, thus it is not trivial to define how to
combine or weight the relevance of objectives. In contrast, MC creates solutions based on multiple
criteria taking into account all the objectives at the same time. Concretely, each clustering solution
is evaluated for each objective, and the final result is a collection of clustering solutions with differ-
ent trade-offs . Therefore, EC does not fully exploit the potential of using several objectives due to
the fact that they are limited to the combination of the solutions returned by the conventional clus-
tering algorithms, and they cannot explore trade-off solutions during the clustering process (Handl
and Knowles, 2007). In contrast, MC are more flexible to tackle the clustering problem as a truly
multiobjective optimization that has been previously pointed out (Dale and Dale, 1992; Ferligoj
and Batagelj, 1992).

There are different techniques for multiobjective optimization such as Simulated Annealing
(Saha and Bandyopadhyay, 2010) and Ant Colony Optimization (Iredi et al., 2000), but Multiob-
jective Evolutionary Algorithms (MOEAs) (Coello, 1999) have become one of the most capable

techniques to solve these kinds of problems (Fonseca and Fleming, 1995; Zitzler et al., 2000) since



1.2. DISSERTATION SCOPE 33

dominated solution

objective 1

objective 2

Figure 1.2: Example of a Pareto front of solutions. The green solutions are non-dominated and the red one is dominated.

they (1) work with a collection of solutions with different trade-offs among objectives, which are
improving until obtaining a collection with optimal trade-offs, (2) can be easily adapted to the type
of data of our domain, due to the flexible knowledge representation used, and (3) are able to op-
timize different objectives without assuming any underlying structure of the objective functions.
MOEAs are a subfield of Evolutionary Algorithms (EAs) (Holland, 1992), which are a paradigm
that simulates the way nature acts (Cordén et al., 2001; Freitas, 2002): reproduction, recombina-
tion of the best individuals, mutation and selection. To solve a problem it is necessary to choose the
best solution from the space of all feasible solutions, which is called search space. A search space
is a huge area with a big amount of potential solutions, where there are regions with solutions of
low quality and other regions with high quality solutions. EAs make it possible the exploration of
the regions of the search space where the best solutions are placed. This kind of algorithms begin
with a set of initial solutions called individuals that are improved through an iterative cycle based
on the recombination and mutation of the individuals using special operators called crossover and
mutation. In the case of clustering, each individual is considered a possible grouping of data. Con-
cretely, MOEAs return a Pareto set (Corne et al., 2001) of solutions according to all the evaluated
objectives and experts have to select the best one for their purpose. This Pareto set is a collection of
non-dominated solutions with different trade-offs between objectives (see Figure 1.2). A solution
S is non-dominated when there is no solution better than S for all the objectives, otherwise, the
solution is dominated. EAs are one of the most powerful techniques for finding good solutions
in a huge solution space where other approaches fail. However, the performance of these algo-
rithms can be compromised in large databases due to their high computational and memory usage
requirements.

This thesis is focused on proposing a new MC based on a MOEA that faces up three challenges
identified from the literature related to MOEAs. These challenges are related to the definition and
exploration of the search space where the EA is going to search the solutions, to the scalability
of the algorithm with large data, and to the obtaining of the best clustering solution from the
collection of potential solutions returned in the Pareto set. These issues applied to MC have not
been studied in detail in the literature, in spite of some studies which tackle independently some
of these challenges (Bacardit, 2004; Handl and Knowles, 2007; Hruschka et al., 2009). The next

section presents the goals and contributions of this thesis.



34 CHAPTER 1. INTRODUCTION

1.3 Objectives and Contributions

The goal of this thesis is the definition and implementation of a new MC algorithm based on a
MOEA that (1) optimizes the exploration of the search space, (2) allows to work with large data
sets with reasonable computational time and memory usage, and (3) improves the selection of the
best solution from the Pareto set of potential solutions. The proposed algorithm is called Clustering
Algorithm based on multiObjective Strategies (CAOS) and it has been designed to successfully
tackle the three aforementioned challenges. CAOS is graphically summarized in Figure 1.3. Next,

the three MOEA challenges are explained more in detail:

Definition and exploration of the search space. The search space is an area of possible solutions
that is explored in order to find the best solution. The definition of the search space is an
important key to explore regions with solutions with high quality, that is regions where the
best solutions are placed. To successfully define the search space where a MOEA is going
to search the solutions, it is important to choose a suitable individual representation and
the genetic operators related to it, according to the domain characteristics. In the related
contribution, this stage consists in analyzing the best individual representation according to

the specific problem to solve and the features of the data set that is going to be clustered.

Scalability with large data sets. MOEAs are computationally expensive and they may not obtain
the results in a reasonable time and memory usage when they are applied to large data sets.
This contribution proposes to scale-up the system splitting the original data set into several
data subsets that are alternatively used in the system, in order to work with less data in each

step of the evolutionary cycle while the performance is maintained.

Selection of the final clustering result. When the evolutionary cycle of a MOEA ends, it returns
a collection of clustering solutions with different trade-offs among objectives. Thus, it is nec-
essary to choose the most suitable solution because there is no solution better than the other
ones according to the optimized objectives. In the related contribution, this stage is focused
on selecting a final clustering result from the most interesting region of the collection of
solutions according to some clustering validation techniques, which evaluate the clustering

solutions according to features like the compactness, separation or shape of the clusters.

Finally, CAOS will be tested using artificial and real-world data sets. The first kind of data
sets are used to test the behavior of CAOS in problems of different complexities. We understand as
complex problems the domains where the suitable clusters meet some of these conditions: (1) they
are not well separated, because they are overlapped or there is a small boundary between them,
(2) they have arbitrary shapes, and (3) if an individual attribute has a low power to discriminate
between them. On the other hand, the second kind of data sets are used to analyze the performance
of CAOS in real-world problems of different domains, such as medicine, biology or image segmen-
tation, among others. The real-world problems are extracted from the UCI repository (Asuncion

and Newman, 2010) and from local repositories with data from network security and education.
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Figure 1.3: Overview of CAOS process. The input data is given to the CAOS system that faces up three MC challenges:
(1) to manage large data sets dividing them in several data subsets; (2) to define the search space through the selection
of the most suitable objectives, individual representation, genetic operators and MOEA parameters; and (3) to obtain the
output of the system by selecting the final clustering result from the Pareto set of solutions.

All the results are analyzed using the recommendations pointed out by DemsSar (DemSar, 2006) to
perform the statistical analysis of the accuracy results, which is based on the use of nonparametric

tests. The next section describes the roadmap followed along this dissertation.

1.4 Roadmap

This thesis has been organized in four parts: the first part contains an overview of the theoretical
background needed to place the context of the dissertation, the second part describes the new
multiobjective clustering algorithm proposed, the third part presents a practical application of the
proposed algorithm in real-world problems, and the last part contains the conclusions and further
work. Moreover, an appendix is annexed at the end of the dissertation.

The first part is divided into two chapters. Chapter 2 is focused on clustering techniques,
presenting some clustering algorithms and the methods to validate them. Chapter 3 is centered on
evolutionary algorithms, introducing this kind of techniques to optimize one or several objectives.

The second part is structured in four chapters. Chapter 4 is focused on the experimental frame-
work of the thesis presenting the design of CAOS. The next three chapters describe the three
contributions made in this thesis to face up the three aforementioned challenges. Chapter 5 ana-
lyzes three of the most used individual representations in evolutionary clustering applying them
to CAOS in order to identify the situations where a representation is more suitable than the other
ones. Chapter 6 is focused on scaling-up CAOS using techniques based on data subsets, presenting
several methods to split up the complete data set and analyzing their performance in terms of ac-
curacy and computational time. Chapter 7 presents an analysis of the strategies based on selecting
the best solution from the collection of solutions returned by CAOS.

The third part is structured in three chapters. Chapter 8 presents the application of CAOS in the
analysis of vulnerability assessments and compares it with previous strategies applied to the same
problem. Chapter 9 is focused on the application of CAOS in the analysis of university degrees
competences in order to help the educational experts to identify some improvements that should be

made in the university degrees. Chapter 10 is centered on the knowledge organization in case-based
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reasoning systems for organizing the case memory of these systems to improve their performance.

The last part contains one chapter that recapitulates the contributions of this thesis by sum-
marizing, providing key conclusions, reviewing the main lessons extracted from this research, and
presenting a proposal of future work lines.

The material presented in the eleven chapters is complemented with five appendices. Ap-
pendix A describes the conventional clustering algorithms used in some of the experimentations.
Appendix B to Appendix E show the detailed results of the experiments done with large collection
of data sets in Chapter 5, Chapter 6, Chapter 7 and Chapter 10, respectively.

Finally, it is important to highlight that the real-world applications of CAOS have been carried
out in parallel to the development of the challenges that face up CAOS. Thus, the contributions
of Chapter 8 to Chapter 10 do not include all the improvements presented in the contributions of
Chapter 5 to Chapter 7.

1.5 Summary

This PhD thesis is framed on the graduate program in Information Technology and Management
from La Salle at Ramon Llull University. It has been developed in the Research Group in Intelligent
Systems and it has been supported by the Generalitat de Catalunya, the Commission for Univer-
sities and Research of the DIUE and European Social Fund (2010FI_B01084, 2011FI_B100022,
2010BE_01026).

Data Mining is the process of automatically extracting and discovering new, useful and un-
derstandable knowledge from huge volumes of data, with the aim of allowing experts to confront
better the problems of the domain and to obtain wisdom. Clustering techniques are a way of ex-
tracting knowledge and they are based on grouping data according to a set of criteria, being the
result a set of groups where each one contains a set of similar elements. Conventional clustering
algorithms are based on grouping elements using only one objective, but they are not useful when
several objectives have to be optimized. On the other hand, multiobjective clustering algorithms
are based on grouping data according to a set of criteria evaluated simultaneously. This kind of
algorithms are usually based in evolutionary algorithms due to their capabilities to solve this kind
of problems.

This thesis is focused on the definition of a new multiobjective evolutionary clustering algo-
rithm in order to face up three of the most important challenges related to this kind of algorithms:
(1) definition and exploration of the search space, (2) scalability with large data sets, and (3) se-
lection of the final clustering result. The performance of the proposed algorithm is tested in real
and artificial problems with different clusters complexities and with arbitrary shapes in different
domains, such as medicine, biology or image segmentation. All the results are analyzed using the
recommendations pointed out by Demsar to perform the statistical analysis of the accuracy results,

which is based on the use of nonparametric tests.
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Chapter 2

Clustering

Clustering algorithms (Herrera et al., 2010) are based on grouping data according to a set
of criteria, obtaining a set of groups (clusters) where each one contains similar elements.
Thus, the elements in a cluster are similar among them and different from the elements of
the other clusters and it provides to the experts a possible classification or categorization of
the elements. These techniques are mechanisms to identify patterns and discover relation-
ships to help experts to understand a specific domain. Clustering algorithms can be classi-
fied into different ways according to many points of view such as: the relation between the
clusters (partitional or hierarchical), how they are structured (center-based, search-based
and graph-based, among others), the relation of the class with the cluster (hard clustering
and fuzzy clustering, among others), or the criteria used to build the clusters (conventional
clustering, ensemble clustering, or multiobjective clustering). If we address the last crite-
ria, conventional clustering is based on optimizing an objective function for assessing the
quality of groups of elements. On the other hand, ensemble clustering and multiobjective
clustering use a set of objectives to promote the definition of clusters. The main difference
between both approaches is the procedure used to build the clusters. Ensemble cluster-
ing divides the procedure into two phases: (1) application of many clustering algorithms
following different single objectives; and (2) combination of the last results to create the
final clustering. This last step is quite complex to achieve and it is usually inefficient be-
cause the objectives can be partially contradicting. In contrast, multiobjective clustering
techniques create solutions based on multiple criteria simultaneously. Concretely, each
clustering solution is evaluated for each objective, and the final result is a collection of

these solutions with different trade-offs among objectives represented in a Pareto set.

2.1 Taxonomy

Clustering algorithms are able to group data from different points of view, and their suitability
mainly depends on the application domain. For this reason, it is important to select the algorithm
according to the data typology and the features of the application domain. There is not a single
criterion to classify the clustering algorithms, so they can be classified according to many criteria
(Gan et al., 2000; Witten and E. Frank, 2011; Duda et al., 2000): (1) the search strategy to find the
clusters, (2) the relationships between the clusters, (3) the instances distribution into the clusters,

and (4) the optimization of the clusters. Next, each one of these points of view is described:
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o The search strategy is related to how the clusters are found. The most used strategies are:

— Center-based. These algorithms define each cluster using a prototype, which is an
instance of the data or an artificial instance created using the data. They assign the in-
stances of the data set to the closest prototype, trying to improve the clustering solution
in each iteration until a convergence is achieved. This algorithms had some limitations
like they are often sensible to the initialization, they may fall in a local optimal solu-
tion, and they can only find clusters with convex shapes, thus they cannot find clusters

with arbitrary shapes.

— Graph-based. This kind of algorithms are based on graph theory. For example, a
graph or hypergraph is built and then some heuristics are applied to partition it. These
algorithms are iterative and try to improve the clustering solution in each iteration until
convergence is achieved. The number of clusters is not required and they can have
arbitrary shapes. These algorithms are sensible to the initialization and they may fall

in a local optimal solution.

— Model-based. These algorithms assume that the data are generated by a mixture of
probability distributions in which each one represents a different cluster. The distribu-
tions are estimated from the data and each data instance is assigned to each one. They
usually are iterative and try to improve the clustering solution in each iteration until a
convergence is achieved. This approach is sensible to the initialization and they may
fall in a local optimal solution. For example, if normal distributions are assumed, the

instances are assigned according to the mean and deviation of each distribution.

— Search-based. This technique is a complement of the previous strategies. The previ-
ous strategies may not be able to find the globally optimal clustering that fits the data
set because they are Greedy algorithms (Cormen et al., 2001), thus they choose the
best optimal in each iteration being possible to find a local optimum at the end of the
process. This strategy tries to search in the overall solution space and find a globally
optimal clustering that fits the data set, using global optimization techniques like ge-
netic algorithms, ant colony optimization or simulated annealing. The main drawback

of these techniques is that are very time consuming.

— Density-based. These algorithms define clusters as dense regions separated by low-
density regions. They are not iterative algorithms, thus they need only to manage the
data once, and they are able to handle noise. The number of clusters is not required and

they can find arbitrarily shaped clusters.

— Subspace clustering. This strategy consists in finding clusters in each dimension iden-
tifying dense units. The final clusters are found overlapping the clusters found in each

dimension.

o The relationship that exists between the clusters (see Figure 2.1) is classified as:
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— Partitional. It divides the data splitting the space in independent clusters.

— Hierachical. It creates a hierarchical relationship between clusters by obtaining clus-
ters that contain other clusters inside. A hierarchical clustering is often represented as
a dendrogram (Manning and Schuetze, 2000) (see Figure 2.2). There are two types of
hierarchical clustering:

* Divisive. This technique considers that all the instances are in one cluster, and
tries to divide it until each instance is in a single cluster.

* Agglomerative. This one considers that each instance is a different cluster and

tries to merge the clusters until all the instances are in a cluster.

e There are two types of instance distribution into the clusters (see Figure 2.3):

— Hard. Each instance of the data set belongs to only one cluster.

— Fuzzy. The instances can belong to more than one cluster. In this case, the instances
have assigned a membership grade which indicates the degree to which the objects

belong to each cluster.
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(a) Partitional clustering (b) Hierarchical clustering

Figure 2.1: Example of partitional and hierarchical clustering results from the same elements. Each color corresponds
to a different level of hierarchy.
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(a) Dendrogram (b) Dendrogram interpretation

Figure 2.2: Example of a dendrogram to represent hierarchical clustering and its interpretation. Each color corresponds
to a different level of hierarchy.
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Figure 2.3: Example of hard and fuzzy clustering results from the same elements.

o The last feature takes into account the criteria optimization of the clusters. Some of the
search strategies explained, need to evaluate the convergence of the algorithms at the end of

each iteration according to:

— Single objective. It optimizes only one objective represented as a single criterion or a

single equation of several criteria.

— Several objectives. It consists in optimizing several criteria expressed in different

objectives. There are two kind of optimization approaches:

+x Ensemble clustering. Each objective is optimized using a single-objective tech-
nique that creates a clustering solution for each one. Then, all the clustering so-
lutions obtained are combined in a single solution that tries to achieve a trade-off
among all the solutions. However, a good trade-off among objectives may not be
achieved combining the solution obtained for each objective (Strehl and Ghosh,
2002; Law et al., 2004).

+* Multiobjective clustering. It evaluates each objective simultaneously for each
clustering solution (Ferligoj and Batagelj, 1992; Handl and Knowles, 2007). The
clustering solutions are stored in a collection of solutions where each one has a
different trade-off among objectives. Thus, it obtains several clustering solutions

with different adjustments of the objectives.

These approaches are important in order to select the most suitable clustering algorithm ac-
cording to the expected results. Figure 2.4 describes a possible taxonomy based on the previous
division, where a set of the most representative algorithms from each search strategy are mapped

and described in the next section.
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Figure 2.4: Taxonomy proposed for classifying clustering algorithms.

2.2 Algorithms

There are many different clustering algorithms with different features, and the suitable algorithm
to solve a problem depends on the characteristics of the domain and the kind of expected clustering
solution. Next, some of the most well-known and used algorithms are briefly explained to have a

wide view about how clustering algorithms can work taking into account their different properties:

e k-means (MacQueen, 1967). It consists in grouping the instances into & circular clusters ac-
cording to the distance between them and the center of the cluster represented by an instance
(centroid). There are many variants like x-means (Pelleg and Moore, 2000) which sets au-
tomatically the number of clusters, or k-modes (Huang, 1997) which works with categorical
attributes.

e Fuzzy k-means (Bezdek, 1974). It works like k-means but each instance has a cluster mem-
bership degree assigned. Thus, each instance can belong to several clusters. Some variants of
this algorithm are c-means (Bezdek, 1981), which sets automatically the number of clusters;
or Fuzzy k-modes (Huang and Ng, 1999) that can work with categorial attributes.

o Genetic k-means (GKA) (Krishna and Narasimha, 1999). It follows the philosophy of k-
means but doing a global search, being able to avoid local minimum solutions obtaining
better quality solutions. The global search is done with a genetic algorithm. Some vari-
ants of this algorithms are Genetic k-modes and Genetic Fuzzy k-means, which follow the
philosophy of the k-modes and Fuzzy k-means algorithms.

o Expectation-Maximization (EM) (Dempster et al., 1977). It assumes that the data can be

modeled by a mixture of probability distributions, being each cluster a different distribution.
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First, the algorithm creates an initial model 6y estimating it from the instances of the data set.
Second, it computes the membership probability of the instances to each cluster according
to the model 8; through the step called Expectation step (E-step). After this, it uses the
membership probability to obtain another model 6; + 1 called Maximization step (M-step).
The two last steps are repeated until reaching a local maximum of the log-likelihood of the
data.

SLINK (Sibson, 1973). It is based on the single-link concept (Johnson, 1967). Initially,
each instance is considered an independent cluster and the process consists in merging all the
instances until they are assigned to a single cluster. The merge step combines the two clusters
whose two closest members have the smallest distance. The algorithm is based on graph
theory due to the fact that the instances can be represented as nodes and the distances between
the instances can be the links of the nodes, applying a strategy similar to the Minimum
Spanning Tree (MST) algorithm (Prim, 1957) to obtain the clustering solution. Other similar
approaches are Complete-link (Johnson, 1967), based on merge the two clusters whose two
farthest members have the smallest distance; and the Average-link (Johnson, 1967), which

merge the two clusters whose centers have the smallest distance.

Subtractive Clustering (Chiu, 1994). It is an efficient method for estimating cluster centers
in a greedy fashion. The idea is to identify the instance from the data that can be considered
as a potential center of a new cluster considering that an instance with many neighboring
data points will have a high potential value. After this, the nearest instances are assigned to

the new cluster. These two steps are repeated until each instance is assigned to one cluster.

Divisive Analysis (DIANA) (Kaufman and Rousseeuw, 1990). It is a hierarchical divisive
clustering algorithm. Initially, all the instances are assigned to the same cluster. Next, each
cluster is split until it has only one instance, creating a top-down relation between them. The
split step consists in dividing the cluster with the largest diameter, which is defined to be the

largest distance between two instances in it.

Self Organizing Map (SOM) (Kohonen, 1990). It is inspired on neuronal networks. It
projects the original N-dimensional space to another more reduced to identify hidden re-
lationships among data. A variant of this algorithm is the Growing Self-Organizing Map
(GSOM) (Alahakoon et al., 1998) which identifies the most suitable map size.

CLIQUE (Agrawal et al., 1998). It was the first subspace clustering algorithm. It is able to
identify dense clusters in subspaces of maximum dimensionality using two parameters. The
first one specifies the number of intervals in each dimension and the second one specifies
the density threshold. The clusters are represented by a minimal description in the form of
a disjunct normal form (DNF) expression. One disadvantage of this algorithm is that it can

only find clusters embedded in the same subspace.
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e Multiobjective Clustering with Automatic k-Determination (MOCK) (Handl and Knowles,
2004b). It can be considered the first multiobjective clustering algorithm using a multiob-
jective evolutionary algorithm to obtain a trade-off between all the objectives evaluated. The
results is a collection of solutions with different trade-offs between two objectives, where

there is no solution better than the others for all the objectives.

Even the majority of the clustering algorithms are focused on optimizing only an objective,
the capability of using more than one criterion to identify groups of element offers more flexibility
to successfully tackle domains with arbitrary geometric shapes. The next section introduces the
techniques that optimize several objectives to improve the results of the conventional clustering

techniques in complex domains.

2.3 When One Criterion Is Not Enough

Figure 2.5(a) shows some elements characterized by two attributes (x and y) that have to be clus-
tered. There is more than one solution because it is possible to group them using different points
of view such as the shape of elements or minimizing the number of clusters, among others. How-
ever, they could be summarized in one single objective due to the fact that they do not affect to
each other. This objective can be expressed in a conjunction of the following criteria: (1) to obtain
clusters where each cluster contains elements of the same shape and (2) the number of clusters
has to be minimized. In this scenario, Figure 2.5(d) shows one possible solution optimizing this
composed objective using a conventional clustering algorithm.

Now let’s imagine a situation where the desired optimization is based on the shape and size
of the clusters. A clustering solution is considered good when the instances of each cluster are
very similar among them (low intra-cluster variance) and very different to the elements of the
other clusters (high inter-cluster variance). Figure 2.6(a) shows another scenario where elements

have to be clustered according x and y using the two aforementioned criteria. Each criterion can be
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Figure 2.5: Example 1 of clustering problem. (a) Elements to be clustered. (b) Elements clustered optimizing one
criterion: the same shape of the elements in each cluster. (c) Elements clustered optimizing one criterion: to minimize
the number of clusters. (d) Elements clustered optimizing two criteria: the same shape of the elements in each cluster
and to minimize the number of clusters.
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Figure 2.6: Example 2 of clustering problem. (a) Elements to be clustered. (b) Elements clustered optimizing the
intra-cluster variance. (c) Elements clustered optimizing the inter-cluster variance.

independently optimized (see Figure 2.6(b) and 2.6(c)) but it is impossible to optimize both criteria
at the same time because when one criterion is optimized, the other one gets worse and vice versa.
For this reason, each criterion should become an independent objective to be optimized. It is
in this kind of problems where conventional clustering algorithms are not suitable due to their
impossibility of optimizing several objectives at the same time and other approaches need to be
considered.

Ensemble Clustering (Strehl and Ghosh, 2002; Topchy et al., 2004) obtains a clustering so-
Iution from the combination of several conventional clustering obtained through different ways,
such as for example different optimization objectives, different clustering algorithms, or different
samples of a large data set. In the case of objectives optimization, some clustering algorithms can
be independently applied to optimize different objectives to subsequently obtain a result with the
consensus of all the clustering solutions found. The combination of the solutions is not trivial,
and the main drawback is that a good trade-off among objectives may be is not achieved with the
combination of the solutions found independently optimizing each objective. Figure 2.7(a) shows
a possible application of Ensemble Clustering to the example of Figure 2.6(a), where each objec-
tive is independently optimized and the two resulting clusterings are merged in a single clustering
solution.

On the other hand, the Multiobjective Clustering technique (Ferligoj and Batagelj, 1992; Handl
and Knowles, 2007) is focused on optimizing all the objectives simultaneously. The final solution
is a collection of clustering solutions with different trade-offs between objectives represented in a
Pareto set based in a Pareto dominance strategy. For example, Figure 2.7(b) shows the Pareto set
obtained applying Multiobjective Clustering to the example of Figure 2.6(a) and optimizing the
inter-cluster and intra-cluster variances. In a Pareto set all the solutions are non-dominated, this
means that there is no solution in it worse than the other ones for all the objectives. In Figure 2.7(b)
it can be observed that there is no solution better than the other for the two objectives, and each one
offers a different trade-off between the objectives. When a Pareto is graphically represented, each
one of the axes represents an objective to optimize. In the aforementioned figure, the axes of the

Pareto set represent the two objectives to optimize, in this case they have to be minimized. Due to
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Figure 2.7: Ensemble Clustering and Multiobjective Clustering process for the clustering problem described in Example
2. (a) Process to obtain an Ensemble Clustering solution. (b) Multiobjective Clustering Pareto set of solutions.

the range of the inter-cluster variance is between 0 and 1 and should be maximized, the objective

represented is 1— inter-cluster variance.

2.4 When Many Ceriteria is Too Much

The multiobjective algorithms based on Pareto dominance are useful to optimize problems with
few objectives because the Pareto dominance is less effective when the number of objectives is
increased and the convergence of the approaches decreases (Farina and Amato, 2002). The reason
is because an increment of the number of objectives increases the proportion of non-dominated
individuals due to the fact that the majority of the individuals are not worse for all the objectives
than the other solutions of the Pareto set (see Figure 2.8). When the search progresses, the Pareto
set is rapidly saturated with non-dominated solutions, which cannot be discriminated because there

is no solution better than the other ones for all the objectives. Thus, the Pareto set has a big amount
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of non-dominated solutions of low quality and the search process is randomly performed.

Multiobjective problems where more than three objectives are simultaneously optimized are
called Many-objective Optimization Problems (MOP) (Ishibuchi et al., 2008) in the literature. The
main idea of the techniques that solve these problems is to relax the concept of Pareto dominance
used in multiobjective techniques in order to obtain a more restrictive Pareto set. There are several
strategies to do this (Fabre et al., 2010):

o Ranking Composition Methods defines a list of fitness values for each objective and for
each solution. These lists are individually sorted, obtaining different ranking positions of
each solution for each objective. Finally, the different ranking positions of each solution are
composed into a single ranking which reflects its quality. The final ranking can be obtained
combining the rankings for each objective in different ways. For example, it can be obtained
with the average rank of each solution according to the rankings of all the objectives, called
Average Ranking (Bentley and Wakefield, 1998); or taking into account the best ranking
position of all the objectives, called Maximum Ranking (Bentley and Wakefield, 1998).

¢ Relaxed Forms of Dominance allows a solution to dominate another one without being bet-
ter in all the objectives. Generally, these methods can accept a detriment in some objectives
if the solution presents a considerable improvement in the other objectives. It exists several
strategies to do this such as the @-domination (Kokolo et al., 2001), the L-dominance (Zou
et al., 2008), or the Value dominance (Le and Silva, 2007), among others. The a-domination
strategy sets upper/lower bounds of trade-off rates among objectives in order to allow a solu-
tion S to dominate a solution S’ if S is slightly inferior in an objective but largely superior in

some other objectives. The L-dominance strategy counts the number of objectives in which

objective 1
objective 1

A

Cé,

: | -
objective 2 objective 20

(@) (b)

Figure 2.8: Schematic view of Pareto-dominance (Farina and Amato, 2002) based on partial order in problems with (a)
2 objectives and (b) 3 objectives when a candidate solution (e) is considered. Considering that the objectives have to be
minimized, the green areas dominate the candidate solution, the red areas are dominated by the candidate solution, and
the white areas contain equivalent solutions to the candidate one.
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a solution S is respectively better (n;), equal and worse (n,,) than another solution S’. A
solution S L-dominates S’ if ny, is higher than n,, and it is not worse than S’ considering all
the objectives at the same time (average, p-norm, etc.). The Volume dominance strategy is
based on the volume of the objective space that a solution dominates. The dominated volume

of a solution is defined as the region for which all its feasible solutions are dominated by it.

2.5 Validation Techniques

Although clustering techniques are usually applied to unsupervised problems where the ideal clus-
ters are not known, it is necessary to define mechanisms to evaluate the quality of the solution. For
this reason, clustering validation methods are used in order to obtain a quantitative evaluation of
the results. However, it must be emphasized that these methods are only a tool at the disposal of the
expert in order to evaluate the resulting clustering. The validation methods analyzed in this section
are focused on partitional and hard clustering, because hierarchical and fuzzy clustering algorithms
are out of the scope of this thesis. The reader is referred to (Theodoridis and Koutroumbas, 2008).

There are three possible clustering validation approaches (Halkidi et al., 2001; Halkidi et al.,
2002a; Legany et al., 2006). The first one is called external criteria and the idea is to evaluate
a clustering result comparing it with a structure of the data set obtained without applying any
clustering algorithm. The second approach is called internal criteria and the objective is to evaluate
a clustering result comparing it with only quantities and features inherent to the data set. The third
approach is called relative criteria and it is based on comparing a clustering result with other results
obtained from the application of the same clustering algorithm with different parameter values, or
of other clustering algorithms.

The cluster validation methods based on external or internal criteria are based on statistical
hypothesis testing, and their major drawback is their high computational cost. Moreover, these two
approaches measure the degree to which a data set confirms an a-priori specified scheme that can
be inherent to the data set or an intuitive structure of the data. On the other hand, relative criteria
methods find the hypothetical best clustering scheme from several clustering results obtained with
different parameters or clustering algorithms without using statistical tests, so they are less compu-
tationally expensive. Next sections briefly introduce the statistical testing process followed by the

three clustering validation approaches and their description.

2.5.1 Statistical Testing in Clustering Validation

The aim of the statistical testing in Clustering Validation is to test the Null Hypothesis (Hy) that the
data set is randomly structured. There are several methods to accept or reject Hp using simulations
(Theodoridis and Koutroumbas, 2008), and we follow the process based on Monte Carlo techniques
(Shreider, 1964; Sobo, 1984). Monte Carlo techniques rely on execute the simulation process at
hand using a sufficiently large number of computer-generated data. Thus, the procedure has two

steps:
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1. To generate r reference data sets under the random hypothesis, that is, a collection of data
sets that models a random structure. There are different ways to build the reference data sets
under Hy that are summarized in (Theodoridis and Koutroumbas, 2008). In our explanation
we can assume that the reference data sets are generated selecting randomly the instances of

the original data set (Random Position Hypothesis).

2. To compare the value that results from the original data set (¢) with the values (g;) obtained
from the r reference data sets using an appropriate statistic (statistical index), whose values

are indicative of the structure of a data set.

The rejection of Hy is done according to Equation 2.1 (right-tailed statistical test), Equation
2.2 (left-tailed statistical test) or Equation 2.3 (two-tailed statistical test) using p as the significance
level, which usually has the value 0.05. If the condition corresponding to ¢ is not achieved, Hy
is accepted. If Hj is rejected, it can be declared that the data set cannot be considered randomly

structured.

Reject Hy if g is greater than (1 — p) - r of the g; values (2.1)
Reject Hy if g is smaller than p - r of the g; values (2.2)
Reject Hy if g is greater than g - r of the g; values and (2.3)

smaller than (1 — g) - r of the g; values

2.5.2 External Criteria

The external criteria approach can be used for two purposes: (1) to compare a clustering result (C)
obtained with a clustering algorithm with a predetermined partition (P) of the data set without using
any clustering algorithm; and (2) for measuring the degree of agreement between a predetermined
partition (P) and the proximity (similarity) matrix (S') of the data set, which stores the distances
between each one of the instances. To make these comparisons it is necessary to define appropriate

statistical indexes to be used for the hypothesis test.

Comparison of Clustering C with Partition P

The degree to which C matches P is obtained comparing the assignation of pairs of elements in
both structures. Given the pair of elements (x,, x,), we refer to it as SS if both elements belong to
the same cluster in C and to the same group in P, DD if both elements belong to different clusters

in C and to different groups in P, S D if the elements belong to the same cluster in C and to different
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groups in P, and DS if the elements belong to different clusters in C and to the same group in P.

Some statistical indexes that carry out this process are the following:

Rand index. (Rand, 1971)

R = 2.4
i (2.4)
e Jaccard Coefficient. (Jaccard, 1901)
a
J=—" 2.5
a+b+c 2-5)
e Fowlkes and Mallows index. (Fowlkes and Mallows, 1983)
a a
FM = . 2.6
a+b a+c (2.6)
e Adjusted Rand index. (Yeung and Ruzzo, 2001)
Iy (s n; & (n n
ij| _ i) J
>3- 120) 2 0)10)
i=1 j=1 i=1 j=1
AR = . - 2.7

In Equations 2.4 to 2.6, a, b, ¢ and d are the number of pairs of elements considered as .S,
S D, DS and DD respectively; N is the number of elements in the data set; and M is the number of
possible pairs (a + b + ¢+ d). In Equation 2.7, ¢, is the number of clusters of the evaluated solution
C, c¢p, is the number of groups in P, n is the number of elements in the data set, n;; is the number of
data items that have been assigned to group i in P and cluster j in C, n; is the number of instances
assigned to class i and n ; is the number of instances assigned to cluster j. The value range of these
indexes is between 0.0 and 1.0, indicating larger values a higher agreement between C and P, that

is, all the corresponding statistical tests are right-tailed.

Furthermore, the degree to which C matches P can be also measured using indexes based on
the correlation between two matrices. Depending on the indexes used, the two matrices can be
calculated in a different way. For example, Equation 2.10 and 2.11 show how they are calculated

in the following two indexes:

e Hubert’s I statistic. (Hubert and Schultz, 1976)

1 N-1 N
r=- >0 X6 DY G, ) (2.8)

i=1 j=i+1
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o Normalized I statistic. (Hubert and Schultz, 1976)

1 N-1

N
77 20 2 KG) = (Y ) = py)
o i=1 j=i+l (2.9)

OOy

Where N is the number of elements in the data set; M = N(N — 1)/2; and uyx, uy, ox, Oy
are the means and deviations of both matrices. The Hubert’s I statistic has a value range between
0.0 and 1.0 and the Normalized I statistic has a value range between -1.0 and 1.0. Larger values
of both indexes indicates a higher agreement between C and P, so there are right-tailed statistical

tests.

I, if elements x; and x; belong to different cluster in C

X(@, j) (2.10)

0, otherwise.

Y. ) 1, if elements x; and x; belong to different group in P
i,

(2.11)
0, otherwise.

After applying any of the aforementioned indexes, called /, it is necessary to test the null
hypothesis Hy to declare that clustering C is not a random structure of the data. As discussed
above, Algorithm 2.1 details the procedure based on Monte Carlo methodology (Theodoridis and
Koutroumbas, 2008) to test Hy. Considering g the value of the corresponding statistical index / for
P and C, if Hy is rejected, it cannot be considered that clustering C is a random structure of the
data, and it has the similarity degree g with P. If Hy is accepted, it is considered that clustering
C is a random structure of the data and has to be considered a bad data grouping. It is important
to highlight that depending on the statistical index used, the Hy testing and the similarity degree

between C and P can change, obtaining different conclusions for them.

1 fori=1- rdo

2 Generate a data set D; of N elements in the area of interest of the original data set D, so that the vectors are
uniformly distributed in it

3 Assign each vector y;/ € D; to the group where the x; belongs, according to the structure imposed by P

4 Run the same clustering algorithm, used for obtaining C, on D; and let C; be the resulting clustering

5 Compute the value g; of the corresponding statistical index [ for P and C;

6 Accept or reject Hy according to Equation 2.1, 2.2 or 2.3, depending on the type of statistical index / used

Algorithm 2.1: Statistical test based on Monte Carlo techniques to test the null hypothesis that clustering C is

randomly structured according to a prespecified partition P.

Assessing the Agreement Between Partition P and Proximity Matrix S

This analysis is done in order to measure the degree to which the proximity matrix S of a data set

matches a prespecified partition P of the same data set. The statistical indexes used to do this have
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to be based on the correlation between two matrices, so we can use the two indexes Hubert’s I

statistic and Normalized I statistic, but replacing X with the proximity matrix S.

After select an statistical index I and apply it to P and S to obtain g, it is necessary to test the
null hypothesis Hy to declare that partition P cannot be considered a random structure of the data.
In this case, the procedure used to test Hy is summarized in Algorithm 2.2. If Hj is rejected, it can

be declared that, using the statistical index /, P has the similarity degree g with S.

1 fori=1-rdo

2 Generate a data set D; of N elements in the area of interest of the original data set D, so that the vectors are
uniformly distributed in it

3 Calculate the proximity matrix S; of the new data set D;

4 Assign each vector y;/ € D; to the group where the x; belongs, according to the structure imposed by P

5 Compute the value g; of the corresponding statistical index / for P and S,

6 Accept or reject Hy according to Equation 2.1, 2.2 or 2.3, depending on the type of statistical index / used

Algorithm 2.2: Statistical test based on Monte Carlo techniques to test the null hypothesis that the prespecified

partition P is randomly structured according to the similarity matrix S .

2.5.3 Internal Criteria

This kind of methods try to verify if a clustering structure C obtained by a clustering algorithm
fits the data set using only information inherent in the data such as the proximity matrix S. Due
to the fact that the comparison is made with the matrix §, the statistical indexes used are based
on the correlation between two matrices such as the indexes Hubert’s I statistic and Normalized I
statistic. In these indexes, the matrix X is the same indicated in Equation 2.10 and Y is replaced

with the proximity matrix S'.

One statistical index / is selected from the aforementioned indexes and it is applied to C and
S obtaining ¢g. Finally, it is necessary to test the null hypothesis Hy to declare that partition C
cannot be considered a random structure of the data. In this case, the procedure used to test Hy is
summarized in Algorithm 2.3. If Hj is rejected, it can be declared that, using the statistical index
I, C has the similarity degree g with S'.

1 fori=1-rdo

2 Generate a data set D; of N elements in the area of interest of the original data set D, so that the vectors are
uniformly distributed in it

3 Calculate the proximity matrix S; of the new data set D;

4 Assign each vector y;/ € D; to the cluster where the x; belongs, according to clustering C

5 Compute the value g; of the corresponding statistical index / for C; and S;

6 Accept or reject Hy according to Equation 2.1, 2.2 or 2.3, depending on the type of statistical index / used

Algorithm 2.3: Statistical test based on Monte Carlo techniques to test the null hypothesis that clustering C is
randomly structured according to the similarity matrix .
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2.5.4 Relative Criteria

The main drawback of the last two approaches is that they are computationally expensive due to
the fact that they required the use of statistical tests. Relative criteria methods do not need the use
of statistical tests to select the best solution from a collection of clustering results obtained with
different parameters or clustering algorithms. Nevertheless, they do not identify if a clustering
result is not a random structure and if it is good. They can only identify if a solution is better than
others. To carry out this identification, the so called validation indexes are used. These validation
indexes are usually based on quantities and features inherent to the data set. Some of these indexes

are:

¢ Modified Hubert I statistic. (Gan et al., 2000)

1 N-1 N
F=— > >, PG (2.12)

i=1 j=i+1

e Davies-Bouldin index. (Davies and Bouldin, 1979)

& S.(CH+ S,(C;
DB = l max M , Where (2.13)
n& =l d(vi,v;)
i=1 J#l
1
Si(C) = 1o zcj d(x,v;)
(2.14)
e Dunn index. (Dunn, 1974)
n n d(C;,C))
Dn = min{ min { ——— ¢+ , where (2.15)
i=1 | j=i+l Iil_alX{dlam(Ck)}
diam(Cy) = max {d(x,y)}, and
x,y€Cy
d(C;,Cj) = min {d(x,y)}
xeC,-,y j
(2.16)
e Silhouette index. (Rousseew, 1987)
1|1 ( b(C, i, x) = a(C;, x) )
Sil = - — - , where .17
n Z‘ [|c,-| ZC: max{a(C;, x), b(C, )]
1
Ci,x) = d(x,y), and
a(Ci, x) IC,-I—IZ_ (x,y) , an
yeCi
1
b(C,i,x) = min — Z d(x,y)
1G]
JEi yeC;
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¢ Calinski-Harabasz index. (Caliniski and Harabasz, 1974)

B-(m—n)
CH = ——  wh 2.18
W= where ( )
n
B= Z Z d(x,y) , and
i=1 )CECI',)’ECI'
n
W= Z Z d(x,v;)
i=1 xeC;

In Equation 2.12, N is the number of elements in the data set; M = N(N — 1)/2; P is the
proximity matrix S of the data set; and Q is matrix whose (i, j) element, Q(, j), is equal to the
Euclidean distance d(v.;, v.;) between the representatives of the clusters where elements i and j
belong. The value range of this index is between 0.0 and 1.0, indicating larger values a higher
quality of the clustering. In the other four equations m is the number of examples in the training
data set; n is the number of clusters; C; is the set of instances belonging to cluster i; |C;| is the
number of elements in C;; v; is the centroid of C;; d(x,y) is the Euclidean distance between x and
y elements; nn(x, i) returns the ith nearest element of x according to d(x,y); and ¢ is the amount
of nearest elements taken into account. In Calinski-Harabasz index, B and W correspond to the
between cluster sum of squares and to within cluster sum of squares respectively. They can be

calculated in different ways and we have propose a possible calculation of them.

The value range of the Davies-Bouldin, Dunn and Calinski-Harabasz indexes (Equations 2.13,
2.15 and 2.18) is [0, +oo] and the Silhouette index (Equation 2.17) has a value range of [-1, 1].
Silhouette, Dunn and Calinski-Harabasz indexes have to be maximized, and Davies-Bouldin index
has to be minimized. The main difference among these four indexes lies in the calculation of
the quality and the shape of each cluster, so they evaluate each clustering solution from different
points of view (Halkidi et al., 2002b). Davies-Bouldin index evaluates the clusters taking into
account if they are scattered by calculating the distance among the instances of each cluster and
their respective centroid. Dunn index evaluates the clusters calculating if they are compact by
penalizing the clusters with a long diameter, but they are sensitive to the presence of noisy vectors.
Silhouette index calculates the tightness of the clusters by taking into account the distance between
the instances of each cluster. Calinski-Harabasz index evaluates the clusters according to their

within-cluster variance, i.e. the variance between all the elements of the same cluster.

Other validation indexes are proposed in the literature (Theodoridis and Koutroumbas, 2008)
and they can be useful depending on the features of the data set and the characteristics of the
clustering algorithm. Moreover, the indexes proposed in Section 2.5.2 can be used to obtain a
clustering solution, from a collection of them, that is more similar to a prespecified structure of the

data set.



56 CHAPTER 2. CLUSTERING

2.6 Summary

Clustering algorithms are useful to group data according to a set of criteria, obtaining a set of
groups where each one contains similar elements. There are several clustering algorithms that can
be classified in several ways according to their characteristics. One of these ways is the criteria
used to build the clusters, which can be categorized in two kinds of clustering: (1) the first one
is considered as conventional clustering and it is based on optimizing an objective function for
assessing the quality of groups of element, and (2) the second one is focused on using a set of
objectives to promote the definition of clusters, being ensemble and multiobjective clustering two
of the main approaches. Final ensemble clustering solution results from the combination of the
solutions obtained with many clustering algorithms following different single objectives, but the
combination of the results is a complex and deceptive task. On the other hand, the final multiob-
jective clustering solution is a Pareto set of non-dominated clustering results evaluated for each
objective simultaneously, where each one has a different trade-off among objectives.

Multiobjective clustering algorithms are useful when several objectives are needed to group
the data. However, when there are more than three objectives, these kind of techniques may not
properly obtain a trade-off between them due to the concept of non-dominance is not restrictive
enough. The solution to this is to reinforce the restriction of the non-dominance concept allowing
to discard solutions even when these are not worse.

When a clustering solution is obtained it is indispensable to know if it is accurate, representative
and coherent in order to evaluate the quality of its clusters. This is the aim of the clustering
validation methods, which offer a quantitative evaluation of the results. These methods can validate
a clustering solution using a previous categorization of the data or using internal information of
the data. Also, these methods can be used in order to choose the most suitable solution from a
collection of clustering results through the use of validation indexes. Finally, it must be emphasized
that these methods are only a tool at the disposal of the expert in order to evaluate the resulting
clustering but they cannot replace the point of view of an expert very experienced in a specific
domain.

Several papers have been published related to the application of single-objective clustering
and clustering validation methods to the educational domain of the Guidelines for Competence
Assessment in Engineering and Architecture project (Garcia-Piquer et al., 2010a; Vernet et al.,
2010; Garcia-Piquer et al., 2009a; Garcia-Piquer et al., 2009b; Golobardes and Madrazo, 2009a;
Golobardes and Madrazo, 2009b).



Chapter 3

Evolutionary Algorithms

Evolutionary Algorithms are a search and optimization paradigm that simulates the way
nature acts with living entities. This process is roughly based on selection, reproduc-
tion and mutation. This paradigm makes possible the exploration of the regions of the
search space, which is a huge area with a big amount of potential solutions, where the
best solutions are placed. This kind of algorithms begin with a set of initial solutions that
are improved through an iterative cycle based on evaluating, selecting, recombining and
mutating them. The key aspect for finding high quality solutions lies in individual rep-
resentation and genetic operators. The algorithms based on this kind of techniques that
evaluate the solutions according to several objectives are called Multiobjective Evolution-
ary Algorithms and they return a Pareto set of solutions with different trade-off among
objectives, being necessary to retrieve the most suitable solution from it. The main lack
of the techniques based on evolutionary algorithms is that they are expensive in terms
of computational time and memory usage, and this is clearly noticeable when they are

applied to a huge amount of data.

3.1 Natural Principles

Evolutionary Algorithms (EAs) are a paradigm that includes the learning algorithms which is based
on the way nature solves the problem of living entities (Cordén et al., 2001; Freitas, 2002) by
means of natural selection and evolution. The first one was introduced by Charles Darwin in
1859 (Darwin, 1859) and it tries to explain how living beings evolve from small changes and from
the selection of the fittest individuals. The second one was proposed by Gregor Mendel in 1865
(Mendel, 1865) and it explains how the offspring are the results of the combination of the features
of the parents creating an individual that should be hypothetically better. The genetic encoding
of a living being (or individual) is contained within their chromosomes. Each chromosome is
a large number of genes that are composed of several alleles, which are discrete values. The
genes of an individual are usually referred to as a genotype, and the physical expression of the

genotype is called phenotype. In the EAs, the individuals follow the aforementioned structure
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Figure 3.1: Example of an individual representation in a EA. The genotype of N genes represents the genetic information
of a fly.

with the expansion that the alleles can be also continuous or nominal values and the genotype is
usually represented using a single vector as Figure 3.1 shows. These algorithms reproduce natural
selection principle using a fitness function to evaluate the best individuals of a population, being
the fittest ones the individuals with more probabilities to survive. Evolution is reproduced crossing
the genetic material of the parents to generate new individuals. These new individuals can undergo
some random changes, by means of the mutation of some gene.

The natural selection and evolution have found species (solutions) with high degree of adap-
tation that solve the survival problem in the environment. Conceptually, it can be considered that
the natural evolution paradigm is powerful taking into account some actual species. The natural
evolution concepts are introduced in the EAs to do a guided search of the solution in huge solu-
tion spaces where an exhaustive or random search cannot be sufficiently accurate. This search can
be considered directed because the population is guided towards the desired solution through the

fitness landscape.

3.2 Taxonomy

There are different EAs approaches and the main differences among them are the individual repre-
sentation, the definition and the usage of genetic operators, and how the goal has to be achieved.

The most representative families are (Freitas, 2002):

o Genetic Algorithms (GAs). They were proposed in 1975 by John Holland (Holland, 1992)
and his team of the Michigan University. The goal of this approach is to find candidate solu-
tions to an optimization problem. They are theoretically and empirically proven to provide
a robust search in complex spaces, thereby offering a valid approach to problems requiring
efficient and effective searches (Corddn et al., 2001; Goldberg, 1989).

¢ Evolution Strategies (ESs). They were proposed in the 1960s and developed further in the
1970s and later by Rechenberg and Schwefel (Rechenberg, 1973; Schwefel, 1977) indepen-
dently from the work of Holland on GAs at the same time. The major difference between
ESs and GAs exists in the genetic representation of candidate solutions. The individuals in
an ES consists of a vector of real numbers, whereas GAs usually process a population of

binary strings (Cordén et al., 2001).

o Genetic Programming (GP). It was proposed by Koza in 1992 (Koza, 1992) and they are a
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refinement of the GA. It has the the same objective than GA but it is focused on optimizing

the parameters of computer programs, which are represented by each individual.

e Evolutionary Programming (EP). It was introduced by Fogel in 1960 (Fogel et al., 1966).
The goal is focused on the optimization of the combinatorial functions of real values where

the optimization surface is abrupt and thus it presents local optimal solutions.

Figure 3.2 shows the cycle of an EA, and their main steps are detailed as follows (Bacardit,
2004):

e Generation of the initial population. The individuals used in the first generation of the EA

are created according to the individual representation chosen. Each individual is a candidate

solution to the problem to solve.

o Evaluation of the fitness function. Each individual of the population is evaluated according

to the defined fitness function. That is, how good is the individual at solving the problem.

e Selection of the parents. Some individuals of the population are selected as parents to
produce offsprings. There are many selection approaches (Freitas, 2002), some of them
choose individuals based on their proportion of fitness value over the whole population, other
methods are rank based, and only take into account if an individual is better than another and

not how much better it is.

Generation of the initial
population

Evaluation of the fitness
function

Selection of the parents

Application of crossover
and mutation operators

Evaluation of the fitness
function

[optimization criterion
not achieved]

Replacement of the

population
.......... The final population
is returned

Figure 3.2: Cycle of the steps of an Evolutionary Algorithm.

[optimization criterion
achieved]
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e Crossover and mutation. The individuals selected as parents are combined between them

with the crossover operator and the new individuals (offsprings) generated are slightly mod-
ified with the mutation operator (Freitas, 2002). Figure 3.3 shows an example of crossover

and mutation operators.

Replacement of the population. Given the original population and some new individuals
(i.e., the offsprings), the replacement operator is responsible for margin these, obtaining a
new set of solutions for subsequent iterations. There are many replacement approaches,
being the more extreme ones the next strategies: (1) to erase the previous population and
to build a new one with the new generated individuals, and (2) to add the new generated
individuals to the population without erasing the previous ones, thus the offspring and the

parents being in the same population.

Achievement of the optimization criteria. It defines when the algorithm ends, for example
when the evaluated individuals reached a defined likelihood or when the number of gen-
erations done by the EA exceeds the maximum number of generations configured. Then,
the clustering algorithm returns the best individual of the population according to the fitness

function.
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Figure 3.3: Example of crossover and mutation operators used to generate a new individual from two existing individ-
uals. The new individual is generated crossing individual 1 and individual 2 using the crossover operator, which mixes
the first half of the genotype of individual 1 with the second half of the genotype of individual 2. Finally, the gener-
ated individual is mutated with the mutation operator, which changes the allele of one gene, obtaining the final genetic
information of the new individual.



3.3. OPTIMIZING SEVERAL OBJECTIVES 61

On the other hand, there are two mainly approaches related to the interpretation of the indi-
viduals in the EAs (Freitas, 2002): Pittsburgh and Michigan. Simplifying the explanation of the
differences between them, on one hand, in the Pittsburgh approach each individual is a candidate
solution to the problem, thus the individuals are independent between them. On the other hand, in
the Michigan approach each individual is a part of the solution to the problem, so all the individu-
als make up the complete solution. This approach is useful due to the fact that the individuals can
be simpler in comparison with the Pittsburgh approach. Nevertheless, in the Pittsburgh approach
the fitness function will measure the performance of an individual without taking into account the
other individuals. In the clustering problem, if each individual represents a single cluster, the fit-
ness function only evaluates its quality, but it cannot evaluate the quality of the overall clustering
solution. Because of this, Pittsburgh approach is more suitable to solve clustering problems, due
to the fact that when the fitness function evaluates an individual it is evaluating the quality of the
overall clustering solution.

Next section describes how to adapt the general process of EAs for optimizing several objec-

tives simultaneously.

3.3 Optimizing Several Objectives

The Multiobjective Optimization Problem (MOP) can be defined as the problem of finding (Osy-
czka, 1985) a vector of decision variables which satisfies constraints and optimizes a vector func-
tion whose elements represent the objective functions. These functions form a mathematical de-
scription of performance criteria which are usually in conflict with each other. Hence, the term
“optimize” means finding such a solution which would give the values of all the objective func-
tions acceptable to the decision maker (Coello, 1999). It is rarely the case that there is a single point
that simultaneously optimizes all the objective functions of a MOP. Therefore, in these problems it
is necessary to look for trade-offs, rather than single solutions. The concept of Pareto Optimality
(Pareto, 1896) defines that we can consider a Pareto optimal when there exists no feasible vector of
decision variable which would decrease some criterion without causing a simultaneous increase in
at least one other criterion. Thus, this concept almost always gives not a single solutions, but rather
a set of solutions called the Pareto optimal set. All the solutions included in the Pareto optimal set
are non-dominated. The plot of the objective functions whose non-dominated vectors are in the
Pareto optimal set is called the Pareto front (Coello, 2001). The reader is referred to (Coello, 1999)
for the details.

Multiobjective Evolutionary Algorithms (MOEAs) are EAs focused on optimizing several ob-
jectives simultaneously obtaining a trade-off among them. They were proposed by Rosenberg in
1967 (Rosenberg, 1967), but the first algorithm (VEGA) was created by Schaffer in 1984 (Schat-
fer, 1985). There are two different kinds of MOEA which are described in what follows (Coello,
2003):

e Non-Pareto based. These approaches do not incorporate directly the concept of Pareto opti-
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mum, so they are incapable of producing certain portions of the Pareto front (Coello, 2001).
They are efficient and easy to implement, but appropriate to handle only a few objectives.
There are several types of non-Pareto based techniques, such as aggregation functions or
population based approaches (Coello, 2005). The first ones consist on combine all the ob-
jectives into a single one, and they are the oldest mathematical programming methods for
multiobjective optimization (Kuhn and Tucker, 1951) but nowadays the evolutionary mul-
tiobjective optimization community shows little interest in them. On the other hand, in
population based approaches the population of an EA is used to diversify the search by us-
ing a different subpopulation for each objective to optimize. The classical example of these
approaches is the aforementioned algorithm VEGA, which can deal with a large number of
objectives. However, it has several problems such as its selection scheme is opposed to the

concept of Pareto dominance (Coello, 2005).

Pareto based. The major step towards this kind of algorithms was given by Goldberg in 1989
(Goldberg, 1989) to solve the problems with VEGA, and they consist of a selection scheme
based on the concept of Pareto optimality. The most representative algorithms are NSGA,
NPGA and MOGA (Coello et al., 2007; Zitzler et al., 2000), but nowadays they felt into
disuse due to some issues which were solved in the following generation of MOEAs. This
second generation can be characterized by an emphasis on efficiency and by the use of elitism
for retaining all (or some of) the non-dominated solutions found during the evolutionary
process, so parents compete with their children and those which are non-dominated (and
possibly comply some additional criterion) are selected for the following generation (Coello,
2005). Doing this, all the good individuals can survive until the end of the algorithm and the
quality of the population is improved or maintained in each generation in respect of the
previous one. The main reason for using elitism in multiobjective optimization is that it has
been mathematically proved that it is required in order to guarantee convergence of a MOEA.
The most representative algorithms are SPEA, SPEA2, NSGA-II, MOMGA, MOMGA-II,
PAES, PESA and PESA-II (Coello et al., 2007; Zitzler et al., 2000).

This thesis is focused on the use of pareto-based MOEAs of second generation in order to

obtain a Pareto set of non-dominated solutions with different trade-offs among objectives. The

cycle of EAs can be reformulated to obtain the cycle of these kind of algorithms that is shown in

Figure 3.4. The new steps or the modified ones are:

e Evaluation of the objective functions. Several objective functions, that obtain a single

fitness value, are used to evaluate an individual.

o Selection of the parents. Some changes in the selection criteria of the parents to produce

offsprings are introduced. It is important to highlight that in the population they can be
dominated and non-dominated solutions. For this reason, the most common approach is to

discard dominated solutions and to choose non-dominated individuals from different regions
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Figure 3.4: Cycle of the steps of a Multiobjective Evolutionary Algorithm.

[optimization criteria
achieved]

(niches) of the population, and that is because the individuals of different regions have dif-
ferent trade-offs among objectives. Thus, the selection of the individuals is representative of

the overall population.

Updating of the Pareto set of solutions. The Pareto set of solutions is updated adding the
non-dominated individuals and erasing the dominated ones. At the end of this step, in the

Pareto set of solutions there are only non-dominated individuals.

Replacement of the population. This step is based on the EAs replacement step using
some strategy, but in this case the dominated individuals are not introduced in the current
population.

Achievement of the optimization criteria. The Pareto set of solutions is returned when the

algorithm ends. Usually, in these algorithms is after a certain amount of iterations.

Each one of the above defined phases of an EA and a MOEA have to be adapted according to
the family of them used and to the kind of the problem where the algorithm is going to be applied.
Chapter 4 explains the clustering algorithm based on MOEAs that is proposed in this thesis, and it
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details the aforementioned steps according to it. The next section deals with one of the main lacks
of MOEAs, that is, their scalability.

3.4 Scalability

The main lack of EAs is their high computational time and memory usage, being this effect worse
when they are applied to large data sets (Freitas, 2002). Two main approaches for speeding up
EAs are commonly used. The first one is based on parallelizing some steps of the EA (Cantu-Paz,
2000), and the second one consists in using only a subset of the available data to evaluate the in-
dividuals (Bacardit, 2004). There are other strategies less widespread that are based on optimizing
the individual evaluation like fitness surrogate, fitness inheritance and exploiting regularities. The
first one is based on using a cheaper but less accurate fitness function to evaluate some individuals
in order to reduce the computational time of the evaluation (Orriols-Puig et al., 2007). The second
one is focused on predicting the fitness of an individual from the fitness of previous evaluated indi-
viduals (Llora et al., 2007). The last one consists in evaluating the individuals taking into account

only some relevant attributes (Butz et al., 2008).

3.4.1 Parallelism

One of the main bottlenecks in the EA cycle is the individual evaluation. Due to the fact that EAs
can work with a population of independent individuals, it is possible to distribute the computa-
tional load among several processors. Therefore, this point is focused on how to parallelize fitness
evaluation following the parallel EA taxonomy proposed in (Freitas, 2002) (see Figure 3.5).

There are three kinds of parallel EAs approaches: the control-parallel, the data-parallel and
the hybrid control/data-parallel (Cantu-Paz, 2000; Freitas, 2002). The first one distributes the
set of individuals of the EA across all the processors and each one evaluates a different subset
of individuals. The second one, distributes the data set across all the processors, and each one

evaluates each individual of the population with a subset of the data. The last one combines the

Parallel EAs
Hybrid
Control-parallel Data-parallel
approaches approaches control/data-parallel
approaches
Single population Distributed population
Coarse-grained Fine-grained

Figure 3.5: Parallel EA taxonomy.
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both previous approaches. It is important to highlight that in the three approaches all the processors

are working in parallel.

The control-parallel approach can be subdivided into single population EAs and distributed
population EAs. The first one applies the selection and genetic operators considering a single pop-
ulation of individuals, and evaluates each subset of the population in different processors. This
approach is usually implemented using a master-slave architecture where one master node exe-
cutes the EA (selection, crossover and mutation) and the evaluation of the individuals is distributed
among several slave processors. After the evaluation of each individual, the slaves returns the
fitness result to the master that continues with the evolutionary cycle. If the master waits to the
evaluation results of all the individuals it is considered a synchronous master-slave EA and if the
master waits only for a specific number of individual evaluations it is considered asynchronous.
The results of the algorithm are the same than in a conventional EA in the first case and they are
not the same in the second case due to the fact that it ignores some individuals in each evaluation
process. The control-parallel EAs with distributed populations (also called multiple-population or
multiple-deme EAs) consists in distributing several subpopulations (called demes) among multiple
processors. Moreover, the coarse-grained algorithms consider a small number of subpopulations,
and each one is associated with a single processor. Selection and genetic operators are applied in-
dependently at each subpopulation, but the subpopulations can exchange individuals occasionally
(migration). The fine-grained algorithms divides the population into a large number of overlapping
subpopulations, assigning to each processor a single individual, evaluating all the individuals in
parallel, at the same time. Selection and genetic operators are applied in parallel to small neigh-
borhoods around each individual. The neighborhoods overlap, so that the genetic material of good
individuals can be spread across the entire spatial structure. Coarse-grained parallel EAs are usu-
ally implemented in parallel computers with a relatively small number of processors; however,
fine-grained parallel EAs are usually implemented in massively-parallel computers with a large

number of processors.

The data-parallel approach distributes the data set across all the processors. The evaluation
of each individual is done partially in each processor. Thus, the flow control of the algorithm is
sequential due to the fact that an individual cannot be evaluated until all the partial evaluations
of the previous individuals were done. In the context of very large data sets, the most important
advantage is that it is considerably more scalable than the control-parallel approaches in terms of

data. Nevertheless, the number of individuals cannot be scaled-up.

The suitability of each method depends on the cost of the fitness function, the relationship be-
tween the reduction of the instances and the reduction of the fitness time. However, it is important
to take into account that these approaches require to adapt the algorithms and to introduce commu-
nication for coordinating the task executions. The communication cost is related to the quantity of
data exchanged between nodes and how the memory is organized (shared-memory or distributed-
memory). In shared-memory systems there is a memory that may be simultaneously accessed by

multiple processes and the communication costs are related to the access to the global memory



66 CHAPTER 3. EVOLUTIONARY ALGORITHMS

but all the data is available for all the processors. On the other hand, in distributed-memory sys-
tems each processor has its own private memory and the communication costs are related to the
exchange of data between the processors. Summarizing, these parallel approaches are not useful
if the communication costs are higher than the reduction of the evaluation costs regarding to a se-
quential EA, and this depends on the organization of the memory, the number of processors and the
data. The costs of the aforementioned parallel approaches are detailed in Equation 3.1 to Equation

Equation 3.4.

Ty = g-IPI-Ty (3.1

T = 1P T T 3.2
cp-sp = g'm' f+(S' ) (3.2)
Tep-ap = g-|IDI-Tp+(r=1)-T.] (3.3)
Tagp = g-|\P"Tpp+Te-s (3.4)
Typ = time (fitness(s’_q:l)) 3.5)

The computational time of a sequential EA (7) is shown in Equation 3.1, where g is the num-
ber of iterations (generations) of the evolutionary cycle, |P| is the number of individuals of the
population and 7' is the time needed to evaluate the fitness of a single individual. The computa-
tional time of the control-parallel approach with a single population (7)) is shown in Equation
3.2, where s is the number of slave processors and 7T, is the communication time needed to send
the data to a processor. The computational time of the control-parallel approach with a distributed
populations (T¢,—4p) is shown in Equation 3.3, where |D| is the number of individuals in each deme
and r is the number of demes. Finally, the computational time of the data-parallel approach (7))
is shown in Equation 3.4, where time is a function that calculates the time of a process, fitness is
the fitness function that evaluates an individual and m is the number of instances of the entire data

set.

3.4.2 Data Subsets Sampling

The individual evaluation is one of the most costly steps in EAs and it is related to the number
of instances in the data set. This approach is based on using subsets of data instances from the

complete data set to evaluate the individuals instead of using the complete data set. Thus, the
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fitness evaluation of the individuals is speeded up but the accuracy could be decreased if subsets
are not enough representative. There are several strategies to create data subsets (Bacardit, 2004):

the wrapper methods, the prototype selection and the modified learning algorithms.

Wrapper methods run several times a classifier algorithm to correctly select the subset of in-
stances before apply the EA (Olvera et al., 2010; Pudil et al., 1994). The subset of data varies
each time the classifier is executed until a stop criterion is achieved, being the last used subset the
most suitable one. The stop criterion is based on the properly classified instances using the current
subset. After the selection of the suitable data subset, the EA is executed evaluating the individuals

according to the selected data subset.

Prototype selection (Aguilar-ruiz et al., 2000; John and Langley, 1996; Salamé and Golobardes,
2002) methods also build the data subset before executing the EA and they do not use a classifier
to select the suitable data subset. There are several strategies to select the prototype instances, the
most common ones randomly select the data instances with or without replacement. They consists
in randomly selecting a predefined number of instances from the entire data set to build the data
subset. If there is not replacement, an instance can only be selected once in the data subset. If there
is replacement, an instance can be selected more than once in the data subset. Usually, statistical
tests are used to determine if the obtained subset is sufficiently similar to the whole training set.
In this methods the performance of the EA is strongly related to the behavior of the prototype
selection process.

Modified learning algorithms are methods that modify the EA to include the incremental
learning inside their algorithm or methods that include or discard instances based on knowledge-
representation specific information. The main idea of these methods is to dynamically select a
training subset for fitness evaluation. There are several strategies to perform this, and the two most
used are explained in what follows. The first one (Fiirnkranz, 1998; Gathercole and Ross, 1994;
John and Langley, 1996) assumes that EA is used for classification tasks. The idea is to run the EA
using a different subset of data in each iteration according to the properly classified instances by
the individuals of the current iteration. The second one consists in stratifying the complete data set
and alternate between the strata in each generation or individual evaluation. Stratification consists
in dividing a data set into homogenous subsets called stratum. The strata has to be disjoint, thus
every instance must be assigned to only one stratum. Also, the strata has to be collectively exhaus-
tive, thus no instance can be excluded. The strata can be build randomly or using any strategy to
improve the representativeness of each stratum according to the whole data set. Usually, when the
data set has a class assigned to each instance, the strata are build with equal class distribution of

the instances than in the original data set.

In (Freitas, 2002) these methods are classified in three types according to the frequency of re-
sampling. Run-wise is based on selecting a static subset of instances for the whole evolutionary
process. Generation-wise is focused on changing the data subset at each generation of the evolu-
tionary process. Individual-wise consists in changing the subset of the data used for each fitness

computation. The modified learning algorithms can be considered generation-wise or individual-
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wise due to the fact that they change the data subset during the evolutionary process. The prototype
selection and wrapper methods are considered run-wise.

The most widely used methods are based on prototype selection and modified learning algo-
rithms. Finally, it is important to highlight that wrapper methods are not useful in unsupervised
problems due to the fact that they need to classify the original data set to obtain the data subsets.
Nevertheless, the selection of the suitable technique to speed up an EA depends largely on the

representation of the individuals and the kind of problem to solve.

3.5 Summary

EAs are a paradigm that includes the learning algorithms which simulates the survival and adapta-
tion to the environment by means of natural selection and evolution. These algorithms reproduce
natural selection principle using a fitness function to evaluate the best individuals of a population,
being the best ones the individuals with more probabilities to survive. Evolution is reproduced
crossing the genetic material of the parents to generate new individuals. These new individuals
can undergo some random changes, by means of the mutation of some gene. It is worth noticing
that the key aspect for finding high quality solutions lies in individual representation and genetic
operators.

There are different evolutionary algorithm approaches such as Genetic Algorithms, Evolution
Strategies, Genetic Programming and Evolutionary Programming. The main differences between
them are the individual representation, the definition and the usage of genetic operators, and how
the goal has to be achieved. Moreover, there are two approaches related to the interpretation of the
individuals in the evolutionary algorithms: Pittsburgh and Michigan. In the first approach, each
individual is a candidate solution to the problem; and in the second one, each individual is a part of
the solution to the problem. The adaptation of the evolutionary algorithms for optimizing several
objectives are the MOEAs. They are focused on optimizing several objectives simultaneously by
obtaining a Pareto set of solutions with different trade-off among objectives. To obtain a final
solution it is necessary to retrieve the most suitable solution from the Pareto set according to the
problem to be solved.

The main lack of the approaches based on evolutionary algorithms is their high computational
time and memory usage, being this effect worse when they are applied to large data sets. Usually,
the evaluation of the individuals is the most expensive step in terms of computational time. Thus,
the two main approaches for speeding up these kind of algorithms are: (1) to parallelize the evalu-
ation of each individual, and (2) to use only a subset of the available data to evaluate them. Finally,
it must be emphasized that the memory usage of these algorithms is related to the amount of data

to manage but it mainly depends on the individual representation used.
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Chapter 4

Foundations

This thesis proposes a new MC algorithm to group data according to several objectives.
The proposed algorithm is based on MOEAs and it offers the capabilities and the com-
petitiveness with respect to the state-of-the-art of the clustering methods. The algorithm
has been designed sufficiently flexible to be subsequently improved to face up the three
challenges identified from the literature related to this kind of algorithms, which are the
following: (1) definition and exploration of the search space, (2) scalability with large data

sets, and (3) selection of the final clustering result.

4.1 Motivation

The objective of this thesis is to propose a new Clustering Algorithm based on multiObjective
Strategies (CAOS) for tackling three of the most relevant challenges in MC. CAOS is based on
the PESA-II algorithm (Corne et al., 2001) which is a MOEA that reduces the computational cost
associated with Pareto ranking (Coello et al., 2007). Concretely, it adapts PESA-II for returning
a collection of clustering solutions with optimal trade-offs among objectives evaluated simultane-
ously, where the best solution is selected using one of the different ways integrated in it such as the
Adjusted Rand index (Yeung and Ruzzo, 2001), Davies-Bouldin index (Davies and Bouldin, 1979),
the Dunn index (Dunn, 1974), the Silhouette index (Rousseeuw, 1987), or the Calinski-Harabasz
index (Califiski and Harabasz, 1974). Moreover, it automatically selects the optimal number of
clusters and it allows an easy way to introduce new objective functions and set the individual rep-
resentations with their associated genetic operators according to the problem. Therefore, the user is
able to configure the system using the most specific objective functions, the best selection method

of solution and the most suitable individual representation according to the domain requirements.

The next sections present several previous work in MC, and describe in detail the CAOS pro-
cess, the basic objectives to optimize, the method used to retrieve the best solution and the addi-

tional features added.
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4.2 Related Work

The Multiobjective Clustering concept was firstly introduced in the year 1992 (Ferligoj and Batagelj,
1992). In 2004, Handl and Knowles proposed a multiobjective clustering algorithm called VI-

ENNA (Handl and Knowles, 2004a), improving it later to obtain the MOCK algorithm (Handl and

Knowles, 2004b; Handl and Knowles, 2007) that is one of the most well-known MC algorithms.

The multiobjective optimization technique most used is based on evolutionary algorithms since

they (1) employ a population based-search evolving a set of optimal trade-offs among objectives,

(2) can be easily adapted to the domain typology due to their flexible individual representation,

and (3) are able to optimize different objectives without assuming any underlying structure of the

objective functions.

The class of evolutionary algorithms that are based on the optimization of several objec-
tives functions that guide the search are called Multiobjective Evolutionary Algorithms (MOEAS)
(Coello et al., 2007; Schafter, 1985). MOCK (Handl and Knowles, 2007) performs partitional hard
clustering and it is based on the MOEA algorithm called PESA-II (Corne et al., 2001). In contrast,
there are other approaches based on the MOEA algorithm called NSGA-II (Deb et al., 2002) fo-
cused on obtaining partitional fuzzy clusters (Bandyopadhyay et al., 2007; Mukhopadhyay et al.,
2007). Moreover Faceli et al. (Faceli et al., 2009) proposed MOCLE, a clustering ensemble al-
gorithm which combines several partitions of the data obtained from some conventional clustering
algorithms using NSGA-IL In the latter case, the MOEA algorithm is only used for combining
some previously found clustering solutions optimizing several objectives.

From the aforementioned algorithms, the most suitable algorithm according our starting point
is MOCK due to the fact that it uses the MOEA to obtain the potential clusters and it uses a hard
clustering scheme. Nevertheless, it was not conceived for tackling the three challenges suggested in
this thesis. This is due to the fact that its internal structure does not allow it to properly explore the
search space of several kinds of problems. Moreover, it does not face up scalability and it retrieves
the most suitable solution from the Pareto set using only criteria based on the objectives to be
optimized or on the quality of the clusters, obtaining solutions that do not have a balance between

these two. For this reason CAOS is devised in order to obtain a MC algorithm that overcomes these

gaps.

4.3 Process and Design

CAOS inherits its process from PESA-II technique as Algorithm 4.1 describes. We chose this
kind of algorithm due to it has similar accuracy performance (Konak et al., 2006) than NSGA-
II (Deb et al., 2002) or SPEA2 (Zitzler et al., 2001), two well-tested MOEAs, but it has better
computational performance because it is not based on ranking the individuals and does not have
the costs associated to this action (Coello, 2005). Moreover, it is very simple to implement (Corne
et al., 2001). Concretely, PESA-II works evolving a population of individuals where each one

represents a complete clustering solution. This population is recognized as the external population
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(EP) and it has a fixed maximum size of Ngp individuals. In addition to the external population,
the system maintains an internal population (IP) of fixed size N;p. The purpose of maintaining
two detach populations is to separate the exploration from the storage of the best solutions. /P
is used to explore new promising solutions by means of applying a typical genetic cycle, i.e.,
selection, crossover and mutation. On the other hand, EP is employed to store a large and diverse
set of non-dominated solutions found so far. A solution S is dominated by S’ when S’ wins S
in all the objectives. Otherwise, the solution is non-dominated. In addition, EP is organized in
Nyicnes different niches. That is, a hyper-grid is placed in the objective space, splitting this space in
hyper-rectangles where each one is considered a separate niche. Therefore, solutions with similar
evaluation of the objectives will be placed in the same niche. This is used by the replacement
process, which will make pressure toward balancing the allocation of solutions in different niches

thus encouraging solutions to cover all the objective space.

1 Let EP be a external population which can store a maximum of Ngp individuals
2 Let IP be an internal population which stores N,p individuals where N;p < Ngp
3 Initialize /P with N;p individuals stochastically created

4 Initialize the EP individuals with non-dominated clustering results from /P

5 Evaluate all the individuals from EP according to the objectives

¢ foreach Generation do

7 Select N,p individuals from EP to generate a new /P

8 while (|/P|/=0) do

9 Select and remove two individuals from /P

10 Cross and mutate them to obtain 2 new individuals: Iy, and Iy,

11 foreach Iy,,, do

12 Evaluate the Iy.,, fitness according to the objectives

13 if Iy, dominates any individual from EP then

14 Remove the dominated individuals by Iy.,, from EP

15 Add Iy,,, into EP;

16 else if Iy,,, is not-dominated and Iy.., not-dominates any individual then
17 if EP is full then

18 L Remove an individual from the most crowded niche

19 Add Iy, into EP
20 Select a individual from EP as a solution

Algorithm 4.1: Life cycle of CAOS.

At the beginning, /P is stochastically initialized with N;p individuals and all the non-dominated
solutions are copied to EP. Populations are evolved iteratively evolved applying a genetic algo-
rithm for a certain number of generations through the steps of evaluation, selection, crossover and
mutation. First, a new population /P, is created by selecting N;p individuals from EP. More
specifically, the EP objective space is divided into Ny;.n.s hypercubes of equal size, creating an
uniform hyper-grid where each individual is mapped to one of these hypercubes according to its
objective values. For selecting one individual it chooses a non-empty niche from EP and randomly
selects one of the individuals mapped to the chosen niche. This process is repeated N;p times until
filling /P,,. Then, pairs of individuals are selected from /P,,; without replacement, and they un-

dergo crossover with probability P., generating two new offspring. If crossover is not applied, the
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offspring are exact copies of the parents. Then, each offspring undergoes mutation with probability
Py, and the resulting individuals are evaluated. Next, the population EP; is copied into EP;, and

each offspring of; is introduced into EP,, if one of the following two conditions is satisfied:

1. of; dominates one or several solution/s in EP;,;. In this case, the dominated solutions are

removed from EP;,1.

2. of; does not dominate any solution in EP,;; and none of the solutions in EP,,; dominates
ofi. In this case, of; is inserted into E P, if there is room for it. Otherwise, of; replaces a
solution from the most crowded niche in EP;,1, if this niche is more crowded than the niche

where of; is placed.

The working cycle of CAOS does not depend on the individual representation, the genetic
operators and the objectives used to evaluate the individuals. But the suitable selection of them can
allow to obtain better results depending on the domain of the problem. These topics are analyzed
in the next chapters of this thesis.

Finally, some additional features are added to the main process of CAOS in order to obtain a

better performance of the algorithm. This additions are introduced in the section 4.6.

4.4 Objective Functions

One of the main keys to obtain good clustering results is the definition of the criteria to optimize
in each group of data. One of the strongest points of MC is the possibility of optimize several
objectives at the same time trying to obtain compact and separated clusters, this means clusters
with elements similar among them and different to the elements of other clusters. This degree of
similarity between clusters can be calculated according to general purpose objectives or to specific
objectives. The first ones use criteria that are not based on the domain of the problem ant the other
ones are specifically based on the domain of the problem, improving considerably the results due
to the fact that they can adapt better to the problem. Nevertheless, the definition of the specific ob-
jectives is not trivial, because it is necessary to perfectly understand the domain of the problem and
normally it is essential the help of an expert of the domain. This is an important drawback because
in several situations the experts cannot define specific objectives due to the complexity of the do-
main. For this, the general purpose objectives are frequently used in the majority of the problems,
being Deviation and Connectivity (Hruschka et al., 2009) two of the most objectives functions used
in clustering. These objectives measure the compactness and separation of the clusters and they
have been successfully used in several problems and domains (Handl and Knowles, 2007).

The Deviation (Dev) measures the compactness of the clusters. It is computed as the over-
all summed distances between data items and their corresponding cluster center as Equation 4.1
shows, where C is the clustering obtained, C; is the set of instances belonging to cluster i, v; is
the centroid of cluster i, and d(x, v;) is the Euclidean distance between the element x and v;. The

value of the objective has to be minimized because it computes the overall distance between the
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elements of each cluster and we want to obtain compact clusters. The Connectivity (Conn) refers
to the cluster connectedness. It takes into account the degree to which data points that are close
in the feature space have been placed in the same cluster as Equation 4.2 shows, where m is the
number of examples in the training data set, C is the clustering obtained, nn(x, i) returns the ith
nearest element of x using the Euclidean distance and ¢ is the amount of nearest elements taken
into account. Note that, for each instance i, the metric computes a weighted sum of the ¢ nearest
neighbors that belong to a different cluster from that of i (the weight is decreased according to how
far instances i and j are). It computes the overall number of elements that should be considered
in the same cluster due to the proximity to other elements, so the value of the objective has to be

minimized because we want well-separated clusters.

Dev(C) = ZZd(x,v,-) 4.1)
ieC xeC;
m 4
Conn(C) = Z[Z (e, nn(x, i), i)] , where 4.2)
x=1 \i=1

1
) - if—ﬂj:xeCj/\yECj,
x(x,y,0) =41
0 otherwise.

4.5 Selection of the Best Solution

The final step is to select a solution from the Pareto set (composed by all non-dominated solutions)
when the evolutionary process ends. This point is not trivial because there is no single individ-
ual which is the best in all the objectives and for this reason clustering validation techniques are
required. Therefore, the goal of this selection is to obtain the best solution of the Pareto set of
solutions taking into account how good are solutions between them. Thus, CAOS integrates many
relative criteria methods with the most known validation indexes (Adjusted Rand index, Davies-
Bouldin index, Dunn index and Silhouette index).

It is important to highlight that the Adjusted Rand index is based on obtain the best solution
according to a prespecified structure of the data set, in our case, the classes assigned to each in-
stance. This index is used to test is CAOS can obtain a solution in the Pareto set very similar to the
structure defined by the classes, and it can only be used if the classes of the instances are known.
On the other hand, the other four indexes are based on inherent information of the data set in order
to obtain solution with cluster of good quality, that is, if each cluster have elements that are similar
among them and different to the elements of the other clusters. Each one of these indexes makes
different calculations (see Section 2.5.4) and they can return a different clustering solution from the
Pareto set, so the final decision of the best solution depend on the point of view of the experts using

indexes as a way to help them in this selection. It must be emphasized that Section 7 proposes a
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method to improve this process in order to retrieve better solutions from the Pareto set.

4.6 Additional Features

Situations derived from the features of some individual representations could penalize the algo-
rithm performance. For example, a combination of an individual representation and genetic oper-
ators that allow to explore a huge search space could obtain good results but may have an elevated
run-time due to the number of individuals managed or it may be find solutions with too many
clusters. For this reason, two improvements have been included in CAOS to increase the perfor-
mance. The first one is oriented to control the growth of the individual population and the second
one proposes to merge some of the clusters of the final clustering solution. The usage of these

enhancements improve the results depending on the individual representation used.

4.6.1 Bloat Control

The bloat effect (Langdon, 1997) is related to the unlimited growth of the size of the individuals
and it is useful to prevent the effect and to reduce the amount of individuals in each generation
that increase the run-time. Moreover, it can be helpful to introduce generalization pressure into the
system, evolving more accurate but compact solutions that will be potentially better test accuracy
(Bacardit, 2004). The bloat control is introduced in the following steps:

1. The EP objective space is divided into N;p.s hypercubes of equal size where each individual
is mapped to one of these hypercubes according to its objective values. One of the objectives
used is the cluster connectedness, and the growth of the value of this objective is related to
the increase of the number of clusters. When in each generation N;p individuals have to be
selected from EP to generate a new [P, an individual is randomly selected from a chosen
niche. The niches with solutions composed of less clusters (low cluster connectedness) are

chosen with more probability.

2. When a new individual is generated in each generation it has to be added to EP if it is
not dominated, erasing all the individuals of EP that are dominated by this new individual.
Generally, S is dominated by S’ when S’ wins S in all the objectives. In our case, to prevent
the bloat into EP we consider a solution S dominated by S’ in the aforementioned case and
when S’ is similar in all the objectives and has less clusters than S. Two solutions S and
S’ are similar when the difference of each one of the objectives of S and the correspondent
value of the objectives of S’ is into a fixed threshold (Bacardit, 2004).

4.6.2 Cluster Merging

This improvement is a post-processing stage applied to the members of the final Pareto set. Solu-
tions are refined with the aim of promoting the separation of clusters without penalizing the com-

pactness too much. The process is based on merging clusters in order to decrease the connectivity
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Figure 4.1: Overview of the CAOS process with the steps that will be modified to face up the challenges. The steps
related to the challenge that deals with the definition and exploration of the search space are colored in green, the step
affected by facing up the scalability with large data sets is colored in blue, and the step related to the challenge that faces
up the selection of the final clustering result is colored in orange.

objective without increasing the deviation objective more than a max,,e-qc value. Cluster merging

is useful when solutions have many clusters with low density, that is, the number of clusters is very

high. The procedure is as follows:
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1. Two clusters are randomly selected from the clustering solution and they are merged obtain-

ing a new clustering solution.

2. If the new clustering solution does not promote the separation of clusters without penalizing

the compactness too much, this last merge is undone.

3. Step 1 and Step 2 are repeated until the resulting clustering solution has only two clusters or

there are not more possible combinations of pairs of clusters.

The next chapters describe the research done to face up the proposed challenges related to the
definition and exploration of the search space through the most suitable individual representation,
the scalability with large data sets, and the selection of the final clustering results. Figure 4.1
depicts a global vision of the CAOS process in order to show the steps that will be affected by
dealing with the challenges.

4.7 Summary and Conclusions

CAOS is a new Clustering Algorithm based on multiObjective Strategies designed for tackling
three of the most relevant challenges in MC based on EAs. It adapts the MOEA PESA-II that
returns a collection of solutions with optimal trade-offs among objectives evaluated simultaneously.

It can be observed that the CAOS process follows the general PESA-II algorithm without adapt
it to the clustering problem. The individual representation and the genetic operators are the respon-
sible for adapting it. However, it is necessary to select them accurately in order to properly guide
the evolutionary search as it is exposed in the next chapter. This is one of the challenges faced up
in this thesis and it is intensely analyzed in Section 5. The process ends returning a collection of
non-dominated solutions where it is necessary to select the most suitable solution. This is not a
trivial step because the retrieval of the final solution can depend on several features related to the
domain and the quality of the clusters. Thus, in the contributions proposed, the final solution is
retrieved according to the best value obtained with the clustering validation indexes. However, due
to the fact that this is one of the challenges proposed in this thesis, it is deeply tackled in Chapter 7.
Moreover, additional features to enhance the performance of the algorithm are implemented such
as bloat control and cluster merging. The first one is used to discard individuals that can distort the
evolutionary cycle results. On the other hand, the second additional feature is based on merge the
clusters of the individuals with small ones in order to obtain more separated clusters.

The CAOS process is based on evolutionary algorithms and the main lack of these techniques
is that they have a high computational time and they may have a high memory usage. Thus, it is
necessary to adapt the process in order to solve problems with large data sets in a reasonable time
and memory usage. This is another challenge faced up by this thesis and it is deeply analyzed in
chapter 6.

We can consider as further work all the challenges presented, that are related to CAOS. More-

over, it can be interesting the analysis of other multiobjective evolutionary algorithms or other
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multiobjective techniques, instead of the PESA-II algorithm, in order to observe the different ca-
pacities of these techniques to explore the search space, such a priori or interactive methods instead
of the a posteriori method used (Branke et al., 2008; Veldhuizen and Lamont, 2000). Finally, it
will be interesting the analysis of other general-purpose objectives related to the clustering philos-
ophy in order to improve the optimization process of CAOS with the aim of obtaining better built

clusters.
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Chapter 5

Definition and Exploration of the Search
Space

Multiobjective evolutionary clustering algorithms are based on the optimization of sev-
eral objective functions that guide the search following a cycle based on evolutionary
algorithms. Their capabilities allow them to find better solutions than with conventional
clustering algorithms if the suitable individual representation is selected. This chapter an-
alyzes in detail the performance of the three most relevant and useful representations —
prototype-based, label-based, and graph-based — through a wide set of synthetic data sets
and data sets from the UCI Repository. Moreover, their performance are also compared
with respect to relevant conventional clustering algorithms for understanding the situations

where a representation is more suitable than the other ones.

5.1 Motivation

To successfully apply evolutionary multiobjective algorithms to real-world problems is important
to choose a suitable individual representation according to the domain of the problem, due to the
fact that the representation defines the search space. This has motivated many works focused on
the analysis and design of several representations that have demonstrated their competitiveness.
The three most relevant and useful representations are: (1) prototype-based (Bandyopadhyay et al.,
2007; Mukhopadhyay et al., 2007; Ripon et al., 2006) uses genes as clustering prototypes, (2)
label-based (Cowgill et al., 1999; Hruschka et al., 2004; Ma et al., 2006) associates genes be-
tween them using labels, and (3) graph-based (Handl and Knowles, 2007) links genes between
them to represent clusters. The first two are the most used in evolutionary clustering algorithms
(Hruschka et al., 2009; Krishna and Narasimha, 1999; Maulik and Bandyopadhyay, 2000), and the
last one is used by the most relevant multiobjective evolutionary clustering algorithm (Handl and
Knowles, 2007). Nevertheless, a complete discussion and empirical study about the suitability of
these representations has not been reported.

The goal of this contribution is to compare the performance of the last three individual rep-
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resentations and their genetic operators in terms of accuracy, search space and time cost through
CAOS. Moreover, the analysis is extended by comparing the results with respect to the most used
single-objective clustering algorithms: k-means (Hartigan and Wong, 1979), EM (Dempster et al.,
1977), x-means (Pelleg and Moore, 2000) and SOM (Kohonen, 2000). The objective of the com-
parison is to analyze the performance of these representations with different kinds of data sets to
identify the most robust one, to carry out this, the approaches are compared along a wide set of
benchmarking synthetic data sets (Handl and Knowles, 2007), where the domains are controlled,
and real-world problems from the UCI repository (Asuncion and Newman, 2010). The work is
organized as follows. The next sections briefly summarize the related work on individual represen-

tations, describe CAOS with the proposed representations and present the experiments done.

5.2 Related Work

Two of the most used individual representations in evolutionary clustering are based on (1) labels
(Cowgill et al., 1999; Krishna and Narasimha, 1999) and on (2) prototypes (Bandyopadhyay et al.,
2007; Maulik and Bandyopadhyay, 2000). The first representation defines an individual as a list
of all the instances of the data set assigning a number of cluster to each one. Thus, this represen-
tation can identify cluster structures of arbitrary shape due to each instance can be assigned to any
cluster. The second representation defines an individual as a collection of prototypes with the aim
of assigning each instance to a cluster. Concretely, it assigns each instance to the nearest cluster
prototype and, consequently, this representation can only identify clusters of ellipsoidal shapes.
Another representation based on the relationship among the instances in multiobjective clustering
is proposed in (Handl and Knowles, 2007), and it is similar to the idea proposed in the evolutionary
clustering algorithm proposed in (Tseng and Bien, 2000). In this representation an individual is
defined as a graph where all the instances connected among them correspond with a cluster, and it
can represent clusters with arbitrary shapes due that there is not restriction between relationships

of the instances.

The choices of cluster representation within MC were studied by Handl and Knowles (Handl
and Knowles, 2006). They did a theoretical and empirical comparison of some label-based and
graph-based representations applied to MC using a framework called MOCK, showing that the
graph-based representation performs very well but it greatly depends on the initialization scheme
used. Hruschka summarized the main features of the evolutionary clustering algorithms and did a
survey of the most used individual representations and their associated genetic operators (Hruschka
et al., 2009). However, a complete discussion and empirical study about the suitability of the
individual representations in MC has not been reported. The next section describes in detail the

individual representations proposed and their application in CAOS.
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Figure 5.1: Individual representation for a clustering solution using a data set of 7 instances with 2 attributes. The
example shows (a) the example data set, (b) the phenotypic interpretation of the clustering, (c,d,e) the individual repre-
sentation of each approach, and (f) the concept resulting from the graph-based representation.

5.3 Representations

Individual representation and how it is initialized are two important issues in evolutionary algo-
rithms and they selection is directly related to the domain characteristics. The genetic operators
have the goal of exploring new areas in the search space, but an uncontrolled application could
lost the focus on the right search way in some individual representation. The next points detail for
each one of the three approaches the individual representation, the population initialization and the

genetic operators used in CAOS.

5.3.1 Prototype-Based Representation

The prototype-based representation is made up of real numbers which represent the coordinates
(attributes) of the cluster prototype. The prototypes can be defined by medoids (instances existing
on the data set) or by centroids (artificial prototypes). Our implementation uses the concept of
centroid to represent each one of the clusters, so this approach can be considered a centroid-based
representation (Hruschka et al., 2009). More specifically, each individual consists of n - ¢ genes
{X11s eees Xlts ooes Xnls - Xz}, Where n is the number of clusters of the individual, ¢ is the number of the
attributes of the data set, and x;; is the value of the attribute j of the cluster centroid i. The genotypic

representation is transformed into the phenotypic representation by assigning each instance to the
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cluster with the nearest centroid to it. Figure 5.1 shows an example of this genotypic-phenotypic
mapping of a clustering solution.

The population initialization step is responsible for filling the population with individuals that
contain potentially good clusters. This approach uses a initialization based on medoids to define
the initial prototypes, following the same idea than the k-means algorithm (Hartigan and Wong,

1979). The process for each one of the initial individuals is:
1. Randomly select a number k& of clusters between a minimum and maximum value.

2. Generate the individual choosing randomly k elements of the data set, where each one rep-

resent the prototype of a cluster.

The crossover operator mixes the genetic information of the individuals to obtain new individ-
uals. In this case, a one-point crossover operator is used to generate two offspring from pairs of
parents. One point is selected for each parent and the parts are interchanged between them, taking
into account that they have to cut the individuals at the same attribute but not necessarily at the
same cluster. This is an easy crossover strategy according to the size of each individual can be
different.

The mutation operator modifies a piece of the genetic information of an individual to explore
new solutions. The probability P, determines when the operator is applied. To mutate the individu-
als, a cluster-oriented mutation operator (Hruschka et al., 2009) is used to promote the right search.
The operator defines three different types of mutations and all of them have the same probability
to be applied: (1) to merge two clusters, (2) to split a cluster, and (3) to move the centroid of a
cluster. Mutation 1 merges a randomly selected cluster s1 with its nearest cluster s2, adding the
new cluster centroid to the individual and erasing both original clusters. The new centroid is cal-
culated with the weighted average between the original cluster centroids and the elements of each
one as Equation 5.1 shows, where |C;] is the size of the cluster i and v; is the centroid of cluster i.
Mutation 2 splits a randomly selected cluster s in two clusters s1 and s2. s1 is equal to s and s2 is
the most distant element x from s using the Euclidean distance as Equation 5.2 shows. Mutation
3 moves the centroid of a randomly selected cluster s changing the value of a randomly selected
attribute sa. If sa is a numerical attribute it is modified by adding or subtracting a ¢ value to each
attribute as Equation 5.3 shows. The range of the v, is between the minimum and maximum value
of the attribute sa in the data set. If the new vy, value is out of the attribute range, the new value is
fixed to the corresponding maximum or minimum value. If sa is a categorical attribute, the value

is changed by one of its other possible categorical values V.

|Csl| “ Vsl T |C52| *Vs2
Vsls2 = (5.1
e ICs1l + [Csal

Vso = max d(vy, X) (5.2)
xeCy
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Vsa £0 if sa is numerical,
Vsa = )
nv,ny € Vg, otherwise.

After crossover and mutation operators could be inconsistent individuals with empty clusters.
These clusters are eliminated from the individual to obtain a new individual where each cluster has

at least one instance assigned.

5.3.2 Label-Based Representation

The label-based representation uses an integer encoding scheme assigning a cluster to each in-
stance. Each individual consists of m genes {x1, x2, ..., X;,}, Where m is the number of examples of
the training data set and x; ranges in [1, max.;sers]. Thence, each gene x; indicates that instance
x; belongs to cluster i. The value max,j,g.rs 1S the predefined maximum number of clusters of an
individual, and cannot be higher than m. The genotypic representation is directly mapped to the
phenotypic representation (see Figure 5.1).

The population initialization follows the philosophy proposed at (Handl and Knowles, 2007)
using the Minimum Spanning Tree (MST) (Prim, 1957). Thus, the individuals represent the rela-

tions between the closest instances. The method consists in:

1. Generate the MST from the undirected, fully connected labeled graph that represents the

Euclidean distance between each pair of examples.

2. Generate the first individual of the population removing the link with the highest distance

from the original MST.

3. Generate the next individual removing the link with the highest distance from the last indi-

vidual generated.

4. Repeat last step for generate the P; individual until there is space in the initial population or

until there are not more links between the examples.

It uses uniform crossover to generate two new promising offspring from pairs of parents. For
each gene, this operator randomly selects to which offspring the corresponding gene of each parent
will be copied. It is worth noting that, as opposed to other selection schemes such one- and two-
point crossover, uniform crossover is not biased toward the position of the genes in the genotypic
representation, since it is able to shuffle the information of each individual gene.

A neighborhood-biased mutation operator not oriented to clustering is used. If a gene i is
selected for mutation (with probability P,), then some of the neighbors of the selected instance i
are changed to the cluster of it. The numbers of neighbors to change is randomly selected between
the range [1..£].
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5.3.3 Graph-Based Representation

The graph-based representation employs the locus-based adjacency representation proposed in
(Park and Song, 1998). That is, each individual encodes a reflexive directed unlabeled graph
that connects pairs of examples using an integer encoding scheme. More specifically, each indi-
vidual consists of m genes {x1, x2, ..., X;;}, where m is the number of examples of the training data
set and x; ranges in [1, m]. Thence, each gene x; indicates that there exists an arrow connecting
instance i with instance x;. As Figure 5.1 shows, the genotypic representation is transformed into
the phenotypic representation by identifying all the connected components of the graph and as-
signing them to the same cluster. The population initialization follows a MST strategy and uses
uniform crossover as it was explained in the label-based representation. A neighborhood-biased
mutation operator not oriented to clustering is also used, but in this case it works different. If a
gene i is selected for mutation (with probability P,), then its value is changed into one of the £
nearest neighbors of example i. In addition, each of this £ nearest neighbors is given a selection

probability proportional the distance between them and instance i.

5.3.4 Search Space and Computational Performance

The capacity of exploring the search space and the behavior of each representation is directly
related to the combination of the individual representation and the genetic operators used. The
graph-based representation explores a search space of size ¢, due to the fact that each one of the
m instances of the data set can only be linked to one of its £ neighbors instances. The label-based
representation explores a search space of size k" because each instance can be assigned to one
of the k clusters defined; in our case, the maximum number of clusters is m (each instance in one
cluster) being this search space of size m™. The graph-based representation has a huge search space
size, due to the fact that the 7 attributes of each one of the maximum number of clusters defined
(m) can have a value between their minimum (max,;) and maximum value (min,;), that is, |V|™",
where V = {x e R : x > ming; A x < maxgy).

The size of the search space is related to the performance of the representations when the
individuals are randomly initialized. If the search space of the exploration is little, it could be
impossible to obtain good solutions. The graph-based and the label-based solutions lose accuracy
when the individuals are randomly initialized, due to the fact that the search space is quite delim-
ited. However, the prototype-based representation explores a larger search space and the quality of
the solutions are not affected.

In terms of memory usage, to represent an individual the graph-based and the label-based
representations need m integer values, and the prototype-based representation needs 7-f real values,
where m is the number of instances, ¢ is the number of attributes and »n is the number of clusters of
the individual. In terms of memory usage, the selection of one of these representation depends on
the number of instances and attributes of the data set and the available memory.

Table 5.1 summarize the computational cost, in the worst case, of the three representations. The

prototype-based one has long clustering cost than the other two representations. However, the step
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Representation H Clustering cost \ Merge clusters cost
Prototype-based || O(g - |IP|-m-#a-1) -
Label-based O(g-|IP|-m-1) on’ -m-0)
Graph-based O(g-|IP|-m-1) on-m-0)

Table 5.1: Cost of each representation broken down in clustering cost and merge clusters cost. Where g is the number
of generations, |/P| is the internal population size, m and t are the number of instances and attributes of the data set
respectively, 72 is the average of the number of clusters of the individuals, and 7 is the number of clusters of the retrieved
individual.

of merging clusters is done for each one of the retrieved solutions of the graph-based and the label-
based representations, and the prototype-based representation does not need this step. In large data
sets where a huge number of clusters can be identified, the prototype-based representation could
be very costly.

These encoding characteristics have directly implications that have to be taking into account.
From a topological point of view of clusters, the label-based and the graph-based representations
should allow clusters of complex shapes, on the other hand, the prototype-based representation
only allows clusters of ellipsoidal shape. From a computational point of view, the individuals of
the prototype-based representation has variable size in contrast with the others two. This makes
necessary to apply some bloat control to avoid the degradation of the population. Nevertheless,
this representation could be more suitable for large data sets because representation is not directly
related to the number of instances in the data set such as in the label-based and the graph-based
representations. Finally, cluster merge can be useful for the graph-based representation since it can

produce many clusters with low density.

5.4 Experiments, Results and Discussion

The objective of this section is to compare the performance of the three aforementioned individ-
ual representations in terms of quantitative and qualitative clustering results and also in terms of
computational cost to identify which is the most suitable representation according to the problem
typology. Moreover, these results are compared with some of the most used and well-known single
clustering algorithms to study the behavior of CAOS.

First, the experimental methodology is described. Next, the comparison between the individual
representation is presented. Finally, the comparison is extended with respect to some representative

single-objective clustering algorithms. These algorithms are explained in Appendix A.

5.4.1 Experimental Methodology

This section presents the experimental methodology followed to evaluate the CAOS variants and
the conventional clustering algorithms. The analysis enables us to emphasize the benefits and the
drawbacks of each one. In the followings, we provide details about (i) the data sets collection

chosen for the experimentation, (ii) the CAOS configuration, (iii) the conventional single-objective
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Data set nl nA nC Data set nl nA nC
100d-10c 2198 100 10 balance 625 4 3
100d-4¢ 1218 100 4 biopsia 1027 24 2
10d-10c 2122 10 10 bpa 345 6 2
10d-4c 1092 10 4 dermatology 366 35 6
2d-10c 2990 2 10 ecoli 336 8 8
2d-4c 1261 2 4 glass 214 9 6
curves] £9 1000 2 2 heart-statlog 270 13 2
curves2 49 1000 2 2 ionosphere 351 34 2
dartboard1 £ 1000 2 4 iris 150 4 3
dartboard2 3 1000 2 4 liver-disorders 345 6 2
donutl £ 1000 2 2 pendigits 7494 17 10
donut2 £» 1000 2 2 pim 768 8 2
donut3 £» 999 2 3 segment 2310 19 7
donutcurves £3 1000 2 4 segment2cl 2310 19 2
longl 1000 2 2 segment2c2 2310 19 2
long2 1000 2 2 segment2c3 2310 19 2
long3 1000 2 2 segment2c4 2310 19 2
longsquare oa) 900 2 6 segment2c5 2310 19 2
sizes1 1000 2 4 segment2c6 2310 19 2
sizes2 1000 2 4 segment2c7 2310 19 2
sizes3 1000 2 4 sonar 208 60 2
sizes4 1000 2 4 tae 151 5 3
sizesS 1000 2 4 thyroids 215 5 2
smilel & 1000 2 4 transfusion 748 4 2
smile2 & 1000 2 4 vehicle 846 18 4
smile3 & 1000 2 4 vehicle2cl 846 18 2
spiral £2 1000 2 2 vehicle2c2 846 18 2
spiralsquare £2 | 1500 2 6 vehicle2c3 846 18 2
squarel 1000 2 4 vehicle2c4 846 18 2
square2 1000 2 4 wdbc 569 30 2
square3 1000 2 4 wine 178 13 3
square4 1000 2 4 wisconsin 699 9 2
square5 1000 2 4 wpbc 198 33 2
trianglel 1000 2 4 yeast 1484 9 10
triangle2 1000 2 4 700 101 16 7

Table 5.2: Summary of the characteristics of the 35 artificial data sets (left block) and real-world data sets (right block)
used. The symbol &3 indicates the handmade data sets. The columns of each block are referred to the number of
instances (nl), to the number of attributes (nA) and to the number of classes (nC).

clustering, and (iv) the comparison metrics.

Test Bed. A collection of 70 data sets with different characteristics that may challenge different
learning techniques are selected. 35 artificial data sets are extracted from (Handl and Knowles,
2007) and 35 are from the UCI repository (Asuncion and Newman, 2010). From the 35 artificial
data sets we can identify 14 handmade data sets that are used to test the representations in domains

with arbitrary complex shapes.

CAOS Configuration. Each CAOS representation was run 10 times using different seeds with
the following parameters (see Section 4 for notation details): € is 5% of m (the number of data
set instances), the maximum size of the initial population is 100, Ngp is 1000, N;p is 50, Nyiches
is 5, the number of generations is 400, P. = 0.7 and P, is 1/m. The minimum and maximum
number of clusters for the initial individuals at the prototype-based representation is 2 and 20% of

m respectively. The bloat control threshold (sim) value is 0.005 and it is applied after the generation
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30, and the merge clusters threshold (max,e,q.) value is 0.02. With respect to the selection of the
best solution, (1) the Davies-Bouldin index, (2) the Dunn index, (3) the Silhouette index, and
(4) the Adjusted Rand index (Yeung and Ruzzo, 2001) are used to test the solutions as Section
4.5 defines. The first three ones are some of the most well-known unsupervised indexes, which
take into account the shape of the clusters to evaluate a solution. The Adjusted Rand index is a

supervised index that evaluates a clustering solution based on the initial classes of the data set.

Conventional Clustering Configurations. Because the performance of algorithms depend of
some parameters, they have been test with several configurations and the best solution for each
case has been selected. Thus, K-means and EM are executed with different & in the range [2..15]
and SOM is executed with three different maps (3 X3, 4 x4 and 5x5) which correspond to different

number of clusters. Each algorithm configuration was also executed with 10 different seeds.

Comparison Metrics. The objective of clustering is to group elements according to their at-
tributes’ similarity and their evaluation is usually done with clustering validation indexes to mea-
sure the quality of the solution. In order to compare among them the best solutions retrieved from
the Pareto set using the four aforementioned validation indexes and the solutions provided by the
conventional clustering techniques, each solution is quantified using the Adjusted Rand index. This
allows us to get a reference measure to compare all clustering strategies using the initial classes of
the data set.

Finally, the recommendations pointed out by Demsar (Demsar, 2006) are followed to perform
the statistical analysis of the accuracy results, which is based on the use of nonparametric tests.
More specifically, the following methodology is employed. First, the Friedman test (Friedman,
1940) is applied to contrast the null hypothesis that all the learning algorithms obtained the same
results on average. If the Friedman test rejects the null hypothesis, the non-parametric Nemenyi
test (Nemenyi, 1963) is used to compare all results to each other, where the result with lowest rank
is considered as the best. The Nemenyi test defines that two results are significantly different if the
corresponding average rank differs by at least a critical difference called CD. This method based
on the CD is used for showing graphicly the most competitive area. CD is computed as Equation
5.3, where n,.; and ng; are the number of results and of data sets respectively, and g, is the critical

value based on the studentized range statistic (Sheskin, 2007) with greater confidence (P < 0.01).

: I
CD = g | oo T2 6(_",’;3 +D (5.3)
s

5.4.2 Comparison of Individual Representation

As it has been explained in Section 4.3, CAOS includes some additional features to improve its
performance such as the bloat control and the cluster merge. However, the application of both

improvements depend on the individual representation and then, it would be necessary to identify
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when they should be applied before to compare the individual representation between them. In the
followings, the selection of the improvements to apply is performed and next the comparison of
approaches is done in terms of qualitative and quantitative points of view and also in terms of the
search space size and the computational performance. In addition to these analysis, the effect of
the process initialization of the individuals is also analyzed to identify if a random initialization

could overcame an optimal local solution.

5.4.2.1 Choosing the Best Configuration in Each Representation

Four different scenarios are studied, depending on the activation or not of the bloat control and the
clusters merging. The effects of these configurations are analyzed in terms of (1) accuracy using
computed by the Adjusted Rand index (see Figure 5.2), (2) the number of individuals dealt in the
genetic cycle (see Figure 5.3) and, (3) the number of clusters in the retrieved solutions (see Figure
5.4). Figures present the results obtained by the Nemenyi test using the 70 data set applying a ten
fold stratified cross validation with 10 seeds, being the horizontal axis the ranking index. E, B, M
and BM represent CAOS configured with any improvement, with bloat improvement, with cluster
merge improvement and with both improvement respectively. In addition to these abbreviations,
each retrieved solution is represented by rd, dv, dn, sl corresponding to the Adjusted Rand index,
the Davies-Bouldin index, the Dunn index and the Silhouette index respectively. For example,
Bdv represent the solution with the best value of the Davies-Bouldin index from all the solutions

obtained applying bloat control to the standard CAOS cycle.

Impact of Bloat Control. The accuracy rank of the retrieved solutions of each representation is
slightly worse when the bloat control is applied as Figure 5.2 shows. This is due to the fact that
some solutions are removed from the Pareto set because they are similar to others and some good
solutions obtained with the combination of them cannot be created. However, Figure 5.3 shows
that, applying the bloat control, the number of individuals dealt in the genetic cycle is always
inferior for the protype-based representation, the reduction average is 27% respect the standard
cycle individuals. It also shows that for the label-based the number of individuals are significantly
reduced (42% of reduction respect the standard configuration) when the bloat control is applied.
Nevertheless, to apply the bloat control to the graph-based representation does not always reduce
the number of individuals and the average reduction of them are only 8% respect the standard
configuration. This means that the prototype-based and the label-based approaches explore more
search space, as they obtain more similar individuals that are not dominated. A lot of these individ-
uals are situated at the part of the Pareto set with more connectedness, which it means that they have
a lot of clusters. For this reason, in these representations, to eliminate similar solutions it slightly
affects to the accuracy results and a lot of individuals are omitted improving the computational

time of the algorithm.
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Figure 5.2: Accuracy rank with Nemenyi test of each CAOS solution of the (a) prototype-based, (b) label-based, and
(c) graph-based representations. The lower rank is the best one. E, B, M and BM represent CAOS configured with any
improvement, with bloat improvement, with cluster merge improvement and with both improvement respectively. In
addition to these abbreviations, each retrieved solution is represented by rd, dv, dn, sl corresponding to the Adjusted
Rand index, the Davies-Bouldin index, the Dunn index and the Silhouette index respectively. CD indicates the value of
the critical distance, representing with a line the area that is not significantly different respect the best ranked method.
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Figure 5.3: Number of individuals rank with Nemenyi test of each CAOS configuration of the (a) prototype-based, (b)
label-based, and (c) graph-based representations. The lower rank indicates that the configuration deals with less number
of individuals in the genetic cycle. E, B, M and BM represent CAOS configured with any improvement, with bloat
improvement, with cluster merge improvement and with both improvement respectively. CD indicates the value of the
critical distance, representing with a line the area that is not significantly different respect the best ranked method.
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Figure 5.4: Number of clusters rank with Nemenyi test of each CAOS solution of the (a) prototype-based, (b) label-
based, and (c) graph-based representations. The lower rank indicates that the solution has less number of clusters. E, B,
M and BM represent CAOS configured with any improvement, with bloat improvement, with cluster merge improvement
and with both improvement respectively. In addition to these abbreviations, each retrieved solution is represented by rd,
dv, dn, sl corresponding to the Adjusted Rand index, the Davies-Bouldin index, the Dunn index and the Silhouette index
respectively. CD indicates the value of the critical distance, representing with a line the area that is not significantly
different respect the best ranked method.

Impact of Clusters Merging. The accuracy rank of each representation is slightly better when
the clusters of the retrieved solutions are merged as Figure 5.2 shows. In addition, Figure 5.4
shows that the graph-based and the label-based representations obtain solutions with significant
less clusters when the final clusters are merged, and the average reduction of clusters respect the
non-merged solution is 42% and 22% respectively. Nevertheless, the clusters reduction of the
prototype-based is slightly better with the supervised solution, but there is no improvement with
the solutions retrieved with validation index. The solutions of the graph-based and the label-based
representations are very compact because they have a lot of clusters, but the most of them had few
instances. This is due to the fact that the representation tends to isolate the instances that are not

very similar to the other ones. Above all, the Davies-Bouldin and Silhouette indexes solutions are
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very sensitive to very compact clusters, avoiding the separation between them. This can be solved
restricting the maximum number of clusters or the minimum number of instances that a cluster
can contain, as is done in (Handl and Knowles, 2007). However, we consider that this restriction
decreases the flexibility of the solutions because if there is an outlier or data noise, the system is

going to cluster it with other different instances obtaining clusters with a long diameter.

Selection of Best Configuration. The analysis showed that the best configuration for the pro-
totype-based representation is to apply the bloat control to deal with less individuals to improve
the computational time of the algorithm, and it is not necessary to merge the clusters of the final
solution due to the fact that it does not improve the solutions retrieved with the validation indexes.
The best configuration for the graph-based representation is to merge the retrieved solutions be-
cause the accuracy of the validation indexes solutions is improved, being unnecessary the bloat
control as the computational time is not considerably improved and this does not compensate the
lose of accuracy. However, the best configuration of the label-based representation uses the bloat
control and merges the clusters of the retrieved solutions, as both actions in this case improved the

computational time and reduce the number of clusters.

Effect of Random Initialization. At this point, the best configuration of each representation has
been identified. The analysis was done with a heuristical initialization of the initial population
as it is described in Section 5.3. Nevertheless, in more complex problems this heuristical initial-
ization of the population cannot be enough to obtain initial good individuals. For this, a random
initialization of the population has been applied to analyze if the representations are biased. A
representation is considered biased when the search space depends on the individuals initializa-
tion. This bias was analyzed with respect to the accuracy of the algorithm. Figure 5.5 shows the
results of this analysis for the retrieval solution of each representation. The heuristic initialization

is represented by H and the random initialization is represented by R.

The accuracy rank of the random initialization for the graph based representation is worse than
the heuristic one. In the label-based representation, the random initialization is also a little worse
than the heuristic one. Nevertheless in the prototype-based representation this difference is lower,
being practically negligible with the solutions retrieved with validation indexes. This means that
the prototype-based representation is not biased respect to the individual initializations, and is able
to explore longer search spaces. The reason of this is that the prototype-based representation when
modify a centroid of one individual can modify several instances cluster, allowing to explore a huge
search space. However, the tendency of the label-based and the graph-based representations is to
affect few instances when a change is done in the individual, and for this the search space is smaller.
If a heuristic initialization is applied, the individuals are situated in the suitable search space,

avoiding the problem of exploration related to the graph-based and the label-based representations.
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Figure 5.5: Accuracy rank with Nemenyi test of each CAOS solution of the (a) prototype-based, (b) label-based, and
(c) graph-based representations obtained with heuristical and random initialization. The lower rank is the best one. H
represents the heuristical initialization and R represents the random initialization. In addition to these abbreviations,
each retrieved solution is represented by rd, dv, dn, sl corresponding to the Adjusted Rand index, the Davies-Bouldin
index, the Dunn index and the Silhouette index respectively. CD indicates the value of the critical distance, representing
with a line the area that is not significantly different respect the best ranked method.

5.4.2.2 Comparing Representations

Now, the comparison of the best configuration for each representation found in the previous point
is presented. They are compared in quantitative and qualitative terms. The quantitative comparison
is made taking into account the accuracy value of the retrieved solution regarding to the original
classes of the data set. However, the aim of clustering algorithms is to identify patterns in the data
and not to classify it. The accuracy value inform if the instances have been well classified, but
do not indicate the quality of the patterns identified. To complement this quantitative analysis, a
qualitative analysis based on an external-criteria (Legeny et al., 2000) is used. It consists in the
analysis of the clustering results by an expert on the problem domain. In our case, this analysis can

be done with the artificial data sets, since the shape of each cluster is known.



5.4. EXPERIMENTS, RESULTS AND DISCUSSION

95

Pdn

Lsl Psl - pay
Grd  Prd Lrd Gsl Gdv Ldv Ldn Gdn
| | | 1] W |
T T T 1 T T
27 3.05 3.86 699  TAT 763 799 5.42
1 752 776
7.59
CcD=228
(a) All the data sets
Psl
Gdv  Pdv Ldn
Grd Prd Lrd Pdn Gsl Lsl Ldv Gdn
1 1 1 TN 1
T T Tt T
3.06 39 477 6.97 747 74T §.24
773 76
707 743
cD=322
(b) Artificial data sets
Prd Gdv  Ldv
Grd Lrd Gsl Gdn  Ldn Lsl Psl Pdn Pdv
1 1 1 [T | I N | 1
T T T L I | I | T
182 321 539 736 775804 85 914
3.32 743 779 825
CD=510
(c) Handmade artificial data sets
Psl
Grd Lsl Pdn Ldn
Prd Lrd Gsl Ldv  Gdv Pdv Gdn
1| | | I I T
T T T | I I —
22 2.94 6.8 7.66 7.94 8.2 86
2.34 807 836
8.1
CD=3.22

(d) Real data sets

Figure 5.6: Accuracy rank with Nemenyi test of the solutions of the best configuration of each CAOS representation for
(a) all the data sets, (b) the artificial data sets, (c) the handmade artificial data sets, and (d) real data sets. The lower
rank is the best one. P, L and G represent the prototype-based, the label-based and the graph-based representations
respectively. In addition to these abbreviations, each retrieved solution is represented by rd, dv, dn, sl corresponding to
the Adjusted Rand index, the Davies-Bouldin index, the Dunn index and the Silhouette index respectively. CD indicates
the value of the critical distance, representing with a line the area that is not significantly different respect the best ranked

method.
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Figure 5.6 shows the accuracy results obtained with all the data sets. The best configuration of
the prototype-based, the label-based and the graph-based are represented at the figure by P, L and
G, respectively. With all the data sets, each retrieved solution of the graph-based representation is
better than the respective ones of the other representations. If the results are analyzed taking into
account the data sets typology, for the artificial data sets the supervised solution of the graph-based
representation are better than the other ones, but the non supervised solutions of each representa-
tion are very similar. Nevertheless, for the handmade data sets this difference increases, being the
worst results these obtained by the non supervised solutions of the prototype-based representation.
With the real data sets, the rank accuracy of the supervised solutions are very similar, however each
one of the retrieved graph-based solutions are better than the respective ones of the other represen-
tations. It is important to highlight that in the four analysis presented, the solutions retrieved with
the same method are not statistically different.

The accuracy analysis showed that the graph-based representation can obtain slightly better
solutions than the prototype-based and the label-based representations for the artificial data sets.
However, for the handmade data sets, which contains clusters of strange shapes, the graph-based
and the label-based increases their accuracy regarding to the prototype-based representation. This
is due to the fact that the graph-based and the label-based representations are more flexible than
the prototype-based one, because they can allow any relationship between the instances. The
prototype-based representation does not allow this since the clusters are built according to the Eu-
clidean distances between the instances and the identified prototypes, obtaining clusters of spheri-
cal shape, that is a particular case of clusters with ellipsoidal shape. On the other hand, for the real
data sets, the accuracy analysis showed that the prototype-based representation is slightly better
than the other two representations, since it is less sensitive to noise and outliers, common in these
kind of data sets.

Now, the ability of each representation to adapt to different cluster shapes is analyzed. It was
explained that the graph-based and the label-based representations are able to adapt to complex
shapes due to the type of representation used, on the other hand the prototype-based representation
tends to obtain ellipsoidal clusters, being more difficult to it to identify patterns with complex

shapes.
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Figure 5.7: Graphical representation of the original classes of the (a) spiral, and (b) square3 data sets.
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Figure 5.8 and Figure 5.9 show the clusters found by each retrieved solution of each repre-
sentation for two data sets, (1) spiral and (2) square3. The original classes of them are shown
in Figure 5.7. These data sets clearly illustrate the aforementioned behavior. Figure 5.8 shows
that the graph-based representation can properly identify the two complex shapes, retrieving the
optimal solution with each retrieval method. However, even though the label-based can adapt to
complex shapes in this case cannot identify the optimal clusters, dividing the spiral in a half with
the supervised retrieval and dividing it in three pieces in the validation indexes solutions. The
prototype-based representation cannot identify proper solutions, due to the fact that it cannot ob-
tain ellipsoidal clusters with good compactness and separation, returning some solutions with more
than 200 very small clusters. On the other hand there are the results showed at Figure 5.9, where
the prototype-based representation can properly identify four compact and separate spherical clus-
ters. The label-based representation can also identify four clusters but they are not as compact and
separate as the clusters found by the prototype-based. It is important to highlight that the shape of
them is not ellipsoidal. The graph-based representation cannot properly identify the four clusters.
It tends to group the closest instances, for this here it obtains big clusters with the nearest instances
and small clusters with the instances more separated.

This behavior is repeated in the other studied data sets. The graph-based representation can
be useful to obtain clusters of complex shapes but it is not recommended to obtain clusters from
scattered instances. On the other hand, the prototype-based representation can obtain clusters of
good quality from scattered instances, but it only finds ellipsoidal clusters, being useless to identify
clusters with complex shapes. The label-based representation can find clusters of several shapes
but it does not explore the search space as well as the graph-based representation, and it not obtains

as compact and separate clusters as the prototype-based representation.

5.4.3 Performance of CAOS Regarding Single-Objective Clustering Methods

In order to analyze if CAOS is competitive regarding to some single-objective clustering algo-
rithms, they were applied to data sets with diverse features in order to analyze the performance of
each one of the algorithms. It is important to highlight that the aim of MC algorithms is to identify
patterns in complex domains where single objective algorithms may fail, nevertheless in order to
analyze the competitiveness of CAOS it has been also tested with straightforward problems.
Figure 5.10 shows the accuracy rank of the compared algorithms. With all the data sets, the
CAOS solutions retrieved with Adjusted Rand index are better than EM and significantly better
than the other clustering algorithms. However, the solutions retrieved with validation indexes are
worse than EM and k-means, but they are similar than x-means and SOM. With the artificial data
sets, the differences between the CAOS supervised retrieved solutions and the not supervised ones
are lower. The supervised solution of the graph-based and the prototype-based representations are
still better than EM, but the label-based one is slightly worse than it. The solutions retrieved with
validation indexes they are similar to k-means and better than x-means and SOM. In the real data

sets, the supervised retrieved solutions are better than EM and k-means, and they are significantly
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Figure 5.8: Graphical representation of the clusters found in the spiral data set by (a) CAOS prototype-based, (b)
CAOS label-based, (c) CAOS graph-based, and (d) conventional clustering algorithms. The solutions presented at (a),
(b) and (c) were retrieved with Adjusted Rand, Davies-Bouldin, Dunn and Silhouette indexes, from left to right. The
solutions presented at (d) are k-means, x-means, EM and SOM from left to right.
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Figure 5.9: Graphical representation of the clusters found in the square3 data set by (a) CAOS prototype-based, (b)
CAOS label-based, (c) CAOS graph-based, and (d) conventional clustering algorithms. The solutions presented at (a),
(b) and (c) were retrieved with Adjusted Rand, Davies-Bouldin, Dunn and Silhouette indexes, from left to right. The
solutions presented at (d) are k-means, x-means, EM and SOM, from left to right.
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Figure 5.10: Accuracy rank with Nemenyi test of the solutions of the best configuration of each CAOS representation and
the solutions of the single objective algorithms for (a) all the data sets, (b) the artificial data sets and (c) real data sets. The
lower rank is the best one. P, L and G represent the prototype-based, the label-based and the graph-based representations
respectively. In addition to these abbreviations, each retrieved solution is represented by rd, dv, dn, sl corresponding to
the Adjusted Rand index, the Davies-Bouldin index, the Dunn index and the Silhouette index respectively. km, xm, EM
and S OM represent the results of the k-means, x-means, EM and SOM algorithms respectively. CD indicates the value
of the critical distance, representing with a line the area that is not significantly different respect the best ranked method.

different than the solutions obtained with the other algorithms. However, the solutions retrieved
with validation indexes are not very different to the solutions of SOM and x-means.

These results show that the Pareto set of solutions obtained with CAOS has solutions of high
quality in terms of accuracy. The solutions retrieved with the Adjusted Rand index are quite better
than the solutions obtained by the other algorithms, but they take into account the original classes
of the data set. Nevertheless, the solutions retrieved with validation indexes are not the better ones
in accuracy terms, due to the fact that they are retrieved taking into account only the shape of the
clusters. It is important to highlight that CAOS and x-means do not need as a parameter the number
of clusters to find in the data set, and this is a handicap regarding to the other algorithms analyzed.
The difference in accuracy between both algorithms is significantly, due to the fact that CAOS is
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better than x-means for the majority of the configurations.

As it was explained previously, our aim is to identify patterns in a data set and not to classify
instances. For these, a qualitative analysis is required. Figures 5.8 and 5.9 are representative exam-
ples of the performance of the single objective algorithms. K-means, EM, x-means and SOM can
only divide the data set space according to one objective that is the intra-cluster variance; in spite
of each one calculate the cluster prototypes in a different manner. However, CAOS try to optimize
the intra-cluster variance (compactness) and the inter-cluster variance (separation) obtaining more
understandable patterns.

For more details about the results, consult Table B.1 to Table B.4 in Appendix B, where the

accuracy and number of clusters of each algorithm for each data set are shown.

5.4.4 Discussion

The experiments have shown the performance of the analyzed CAOS representation in quantitative
terms according to the Adjusted Rand index and in qualitative terms according to the shape of the
clusters. In accuracy terms the graph-based and the prototype-based representations have a similar
performance, and the label-based is worse than them. Also, they showed that all the CAOS solu-
tions retrieved with the Adjusted Rand index, which takes into account the original classes of the
data set, are better than the solutions obtained by the single-objective clustering algorithms. The
CAOS solutions retrieved with some unsupervised indexes lose some accuracy but they are also
competitive. It is important to highlight that the solutions retrieved with the Adjusted Rand index
are inside the Pareto set and are generated by CAOS, nevertheless they are not recovered with the
unsupervised indexes, which take into account the shape of the clusters.

In terms of clusters shape, the graph-based representation is focused on obtaining clusters of
complex shapes, but could be more sensitive to data noise. The prototype-based representations
is focused on obtaining clusters of ellipsoidal shape, being more robust to data noise but less
flexible to identify clusters with complex shapes. For these, it is considered that the prototype-
based representation can be useful for scattered data sets, and the graph-based one is useful to
identify clusters of complex shape. However, the label-based representation can obtain clusters
with more flexible shape than the prototype-based one, and is more robust to the data noise than
the graph-based representation. The experiments have also shown that the three approaches try
to identify clusters according to the intra-cluster variance and the inter-cluster variance, obtaining
understandable patterns that can help an expert on the data set domain. However, the single-
objective clustering algorithms used tried to identify clusters according only to the intra-cluster
variance, obtaining clusters very difficult to explain.

Moreover, in computational terms, the prototype-based representation and the label-based one
are more sensitive to bloat effect. This is because both representations can slightly modify the indi-
viduals, obtaining very similar and non-dominated individuals in the Pareto set. On the other hand,
the graph-based and the label-based representations need to merge the clusters of the retrieved so-

lutions due to the fact that it could obtain solutions with a very high number of clusters since the



102 CHAPTER 5. DEFINITION AND EXPLORATION OF THE SEARCH SPACE

crossover and the mutation operator used can bias the individuals to the extreme of the Pareto set
with high connectivity.

Finally, it is important to remark that the prototype-based can obtain good results with a random
initialization of the individuals. Nevertheless, the other two representations are penalized when a
heuristical initialization is not used. The prototype-based representation can be useful in large data
sets where could be difficult to delimit the search space with a heuristical initialization, due to the

fact that the exploration search space will be larger than in the other two representations.

5.5 Summary and Conclusions

The goal of this chapter was to identify the most suitable individual representation in MC algo-
rithms using CAOS. To do this, the three most commonly used individual representations in EAs
have been analyzed in MC algorithms, those are listed as follows: (1) prototype-based, (2) label-
based and (3) graph-based. Moreover, the analysis was extended by comparing the results with
respect to the most used single-objective clustering algorithms.

The results showed that, in terms of accuracy, each CAOS representation generates solutions
in the Pareto set better than the solutions generated by the single-objective clustering algorithms
analyzed. Moreover, in terms of clusters shape, CAOS solutions divides the data set space in more
representative and well explained clusters than the single objective algorithms.

Label-based and graph-based representations can identify clusters of arbitrary shapes. How-
ever they have problems to explore properly the search space, their performance depends on the
individual initialization and they are sensible to scattered data sets. Moreover, the size of the indi-
viduals of these representations are related to the size of the data set, therefore they consumes a big
amount of memory when they are applied to large data sets. On the other hand, the prototype-based
representation can only find ellipsoidal clusters. However it explores more search space than the
other two representations, so it is independent to the initialization of the population. Moreover, it
is more robust to scattered data sets and the individuals are not related to the size of the data set,
so the memory usage is lower. As conclusion, it must be emphasized that these observations show
that the selection of the most suitable CAOS representation depends on the domain of the problem
because there is not an individual representation that works properly for all kind of problems.

Finally, it is important to highlight that CAOS is based on evolutionary algorithms, and the
main lack of these techniques is that they are expensive in terms of computational time and mem-
ory usage, therefore it is necessary to scale-up them. As discussed above, the prototype-based
representation does not need to scale-up its memory usage and it only needs to scale-up the com-
putational time of the system. Thus, this representation can be useful to scaling-up multiobjective
evolutionary clustering algorithms, so this analysis set the basis for the research on this kind of
techniques applied to large data sets which is explained in the next chapter. Also, we can consider
as further work the analysis of other representations that can be more flexible according to the

shape of the clusters than the prototype-based representation but with similar capabilities related
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to the memory usage.
A paper related to this contribution has been submitted to a journal under the title ”Large-Scale

Experimental Evaluation of Cluster Representations for Multiobjective Evolutionary Clustering”.
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Chapter 6

Large Data Management

The techniques based on evolutionary algorithms are expensive in terms of computational
time and memory usage, and this lack is increased when they are applied to large data sets.
Multiobjective evolutionary clustering algorithms are not an exception, so specific strate-
gies are required to ensure their successful scalability when facing large data sets. This
chapter proposes the application of data subset techniques for scaling-up this kind of al-
gorithms and analyzes the impact of several stratification methods. The experiments show
that the use of this technique can improve the performance of these kind of algorithms

without considerably penalize the accuracy of the final clustering solution.

6.1 Motivation

One of the present challenges in Data Mining is to allow systems to work with large data sets in a
reasonable computational time and memory usage without considerably penalizing their accuracy
(Obradovic and Vucetic, 2004; Kargupta et al., 2009). This is especially critical in the approaches
based on EAs due to their highly cost in terms of computational time and memory usage when
they are applied to a big amount of data since they do an intensive use of computations (Freitas,
2002). From the whole process, the evaluation step is the most time consuming step because each
individual has to be assessed with respect to all the instances of the data set. Two of the most used
strategies for scaling-up EAs are the usage of a Parallel EA (Cantu-Paz, 2000) and the usage of data
subsets (Bacardit, 2004; Cano et al., 2008; Derrac et al., 2010). The first strategy distributes the
computational cost of the evaluation step by parallelizing the evaluation of the individuals. Thus, it
is necessary to adapt or redefine the algorithm for being able to parallelize it in a environment with
several processors. Moreover, the parallelization may imply an additional communication cost that
could decrease the performance achieved with the compute distribution. On the other hand, the
second strategy use a sample (data subset) from the original data set to evaluate the individuals.
Thus, they are easier to introduce in the systems but the definition of the size of subsets and the
selection of their elements are not trivial and they influence the performance of the algorithm if the

data subsets are not sufficiently representative.
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This chapter proposes the application of data subset techniques for scaling-up MC algorithms
based on EAs for analyzing their impact in terms of computational time and memory usage. The
proposed data subset approach splits the complete data set in several strata and it uses a stratum in
each generation following a Round Robin policy to avoid bias problems. An ideal stratified strategy
is to map the initial data set into disjoin strata of equal size and with equal class distribution and
where the number of strata is defined by the user (Cano et al., 2006). However, clustering problems
are unsupervised and classes cannot be used to split the instances into representative strata because
they are unknown. For this reason, two strategies are studied to solve this lack: (1) the generation
of random strata and (2) the generation of the strata according to clusters distribution using a fast
and approximative clustering algorithm.

Stratification strategies are integrated in CAOS and a comparison between the results obtained
using the aforementioned data subset strategies and the obtained using the complete data set is
presented in order to analyze the performance of the stratification methods with different artificial
and real-world data sets. To carry out this, the approaches are compared along 75 synthetic large
data sets and with 25 real-world problems from the UCI repository (Asuncion and Newman, 2010).
It is important to highlight that each strategy has been applied with data subsets of different size in
each one of the tested data sets.

Next sections briefly summarizes the related work on data subsets applied to clustering, de-

scribe the stratification strategies, present the experimentation and discuss the results.

6.2 Related Work

There are two main ways to work with data subsets: using only one of the built data subsets, or
using alternatively all the data subsets. The algorithm CLARA (Clustering LARge Applications)
(Kaufman and Rousseeuw, 1990), one of the most representative algorithms for clustering large
data sets, works under the first approach idea. This algorithm is based on selecting randomly a
sample from the entire data set and, subsequently, it finds k£ medoids of the sample using only the
built sample. After this, all the instances of the entire data set are assigned to the most similar
medoid. The execution of the entire process is repeated five times, and the solution with less dis-
similarity is returned as solution. Following this idea, other methods consist in extracting randomly
several samples from the entire data set and applying the same clustering algorithm to each one
of the samples obtaining several clustering results. After this, all the obtained results are merged
in a single clustering solution. Hore et al. (Hore et al., 2009) proposed to use k-means or fuzzy
k-means algorithms with large data. The idea is to obtain a set of jointed or disjointed samples and
apply one of the two algorithms to each sample to obtain several clustering results. The last step
consists in doing a consensus between each clustering result to obtain a final clustering solution
as in ensemble clustering. The drawback of using only one sample to obtain the clustering results
is that it is necessary to execute the algorithm several times or apply it to different data subsets

in order to avoid the bias of using only one sample. Moreover, only a part of the entire data set
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is used. For this, it can be useful the approaches based on use all the data subsets to obtain the
clustering results in a single execution.

ILAS (Incremental Learning by Alternating Strata) (Bacardit, 2004) is a technique based on
Evolutionary Algorithms for classification problems based on dividing the training set into several
strata based on using a different stratum in each iteration of the evolutionary algorithm using a
round-robin policy. Thus, the individuals are evaluated with all the strata, avoiding any bias of
the data and increasing the generalization of the individual. The strategy followed in this chapter
is based on the ILAS algorithm but applied to MC problems. The entire data set is divided in
several strata that are alternated in each of the generations of the evolutionary algorithm. In each
generation, the clustering method is evaluated with the corresponding stratum. This approach

seems to be a good start point to scale-up the system.

6.3 Data Subset Strategies

Reducing the amount of data used by an algorithm is a smart approach to reduce the computational
cost of evolutionary-based machine learning techniques and it could also improve the accuracy of
the system (Bacardit, 2004). In this chapter, we want to scaling-up a MC algorithm based on EAs
by dividing a data set in several stratified subsets and using them alternatively during the algorithm
process in order to avoid bias.

Next points detail the analyzed approaches to build the strata and how to use it in MC. Finally,
the impact of the use of these strategies in the CAOS algorithm in terms of computational cost and

memory usage is described.

6.3.1 Creation of Strata

The main idea of data subset strategies based on strata is to map the initial data set into disjoin data
subsets (strata) of equal size and with equal class distribution (Bacardit, 2004; Cano et al., 2006),
where the number of strata is selected by the user (see Algorithm 6.1). However, the strata cannot
be generated according to the classes because in clustering problems the classes are unknown. To

avoid this lack, two approaches to divide the data set can be used:

e Random Strata. It randomly assigns the instances to each one of the strata as Algorithm
6.2 shows.

o Strata based on Clusters. It uses a fast and approximative clustering technique to create
a partition of the original data set. Next, the data set is stratified according to the obtained
clusters, that is, it assigns the instances to each stratum respecting in it the same cluster
distribution of the instances than in the clustered original data set. The process is described
in Algorithm 6.3. The clusters are found with the Subtractive Clustering algorithm (Chiu,
1994) applied to the original data set, which is an efficient and non-iterative method for

estimating cluster centers. It is usually used to determine the number of clusters and their
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initial values for initializing iterative optimization-based clustering algorithms. The lack of
this strategy is the O(m?) computational cost, where m is the number of instances of the
original data set, because with very large data sets can be expensive in computational terms.
Nevertheless, in terms of spatial cost it only needs the data set information and a list with the

prototypes of each cluster.

Finally, both approaches require the definition of the number of strata which will influence in
the algorithm performance. As the number of strata increases the computational time decreases
but pattern extraction becomes more complex due to the lack of information. It is important to
highlight that the idea of these strategies is to obtain data with similar distribution in each stratum,

and this only can be possible if the size of each one is not very small.

6.3.2 Evolution Based on Strata

The process consists in changing the stratum in each iteration of the evolutionary algorithm using
a round-robin strategy. Thus, the evolutionary process avoid the bias produced when only one
stratum is used. If the stratum is changed in each cycle, the final individuals can generalize more
than using only one of the strata.

The introduction of these strategies does not modifies the main process of the algorithm. More
precisely, the generation of strata is done before line 1 of the Algorithm 4.1, and the change of
stratum is done between lines 6 and 7. It is important to highlight that these strategies can be applied
to CAOS with the prototype-based representation due to the fact that it defines the individuals by
the prototypes of the clusters and then (1) the memory usage of the individuals does not depend on
the size of the data set and (2) the individuals are independent of the instances. Thus, the algorithm

can work with different instances of the data set in each iteration.

6.3.3 Computational Performance Models

The objective of the strategies based on data subsets is to reduce the computational time and mem-

ory usage of a system without considerably penalize the accuracy of the solutions. This section

Let numS trata be the number of strata to generate
Let Strata be a vector of size numsS trata where each position is initially an empty list of instances
Let I be a vector of size numClasses where each position stores a list of the instances of the same class
stratum =0
class =0
while (class < numClasses) do
while (|I[class]| /= 0) do
Randomly select an instance i from I[class]
Add i to Strata[ stratum]
Erase i from I[class]
stratum = (stratum + 1) mod numsS trata
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class = class + 1
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return S trata
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Algorithm 6.1: Strata generation based on classes.
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Let numS trata be the number of strata to generate
Let Strata be a vector of size numsS trata where each position is initially an empty list of instances
Let I be a list of all the instances of the data set
stratum = 0
while (|| /=0) do
Randomly select an instance i from /
Add i to S trata stratum)
Erase i from /
stratum = (stratum + 1) mod numsS trata

e X N N AR W N -

return S trata

—
>

Algorithm 6.2: Strata generation based on random instances selection.

1 Obtaining the instances clustered in numClusters clusters by applying the Subtractive Clustering algorithm to
the complete data set

2 Let numS trata be the number of strata to generate
3 Let Strata be a vector of size numsS trata where each position is initially an empty list of instances
4 Let I be a vector of size numClusters where each position stores a list of the instances assigned to the same
cluster
stratum = 0
cluster =0
while (cluster < numClusters) do

while (|I[cluster]| /= 0) do

Randomly select an instance i from I[cluster]

10 Add i to Stratal stratum]
11 Erase i from I[cluster]
12 stratum = (stratum + 1) mod numsS trata

e e N w

13 cluster = cluster + 1

14 return Strata

Algorithm 6.3: Strata generation based on approximative clusters.

theoretically analyze the improvement in the performance of a MC algorithm based on EAs using
the CAOS process as reference. The CAOS process can be divided in two main blocks: the initial-
ization process and the clustering process. The initialization process is focused on precalculating
the distances between the instances and the nearest neighbors to speed up the clustering process
avoiding the repetition of calculations. On the other hand, the clustering process is referred to the
evolutionary cycle that obtains the Pareto set of solutions. CAOS algorithm has the same initializa-
tion and clustering cost independently of the data subset strategy used (based on classes, random or
based on clusters) but it depends on the number of strata used. However, the time of both processes
is extremely lower in comparison with the time spent when the complete data set is used as Table
6.1 describes. It should be emphasized that both times are reduced when the size of the stratum
is decreased, that is, when the number of strata increases. Nevertheless, the use of strata requires
an additional cost for building them. According to this, the strategies based on random instances
selection and based on classes need only one data scan to build the strata and their cost is O(m),
where m is the number of instances of the complete data set. In contrast, the strategy based on ap-
proximative clusters has a higher cost due to the cost related to the subtractive clustering technique
(O(m?)).

As it has been explained above, CAOS precalculate the distances between all the instances of
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Algorithm Initialization cost Clustering cost
CAOS -CD om?* - ) O@g-[IP|-m-ficq - 1)
m 5 m _
CAOS -DS | O(numStrata-(————)"-€) | O(g-|IP|- ———— “figs - 1)
numS trata numsS trata

Table 6.1: Computational cost of CAOS applied to the complete data set and to data subsets (CAOS — CD and
CAOS — DS respectively) broken down in initialization cost and clustering cost. Where g is the number of genera-
tions, |/P| is the internal population size, m and ¢ are the number of instances and attributes of the data set respectively,
ficq 1s the average of the number of clusters of the individuals (the minimum number of clusters is 1 and the maximum
m), iy is the average of the number of clusters of the individuals (the minimum number of clusters is 1 and the max-

imum —F—-), { is the percentage of the nearest elements taken into account, and nums trata is the number of strata
generated.

Algorithm Memory usage to store distances | Memory usage to store nearest neighbors

CAOS -CD m? - sizeo f(float) (€ - m)? - sizeof(integer)

CAOS - DS (——)? - sizeo f(float) numS trata - (~—L2—)2 - sizeo f(integer)

Table 6.2: Memory usage of CAOS applied to the complete data set and to data subsets (CAOS — CD and CAOS - DS
respectively) to store the nearest neighbors. Where m is the number of instances of the data set, £ is the percentage of
instances considered neighbors, numsS trata is the number of strata generated and sizeof(data type) is the size in bytes
of the data type.

the data set and the nearest neighbors of each instance to speed up the clustering process. Thus,
the memory usage would be extremely high if the complete data set is analyzed when a large data
set is used. Applying any of the three strategies of data subset construction, the memory usage is
considerably reduced as Table 6.2 shows. Even the computational time and the memory usage of
the MC algorithm is considerably reduced, the accuracy of the method can be penalized due to the
fact that less data is used to obtain the clustering solutions. In the next section, the accuracy of
CAOS using data subsets and the complete data set is compared in order to analyze when strata

maintains the accuracy.

6.4 Experiments, Results and Discussion

This section evaluates the impact of reducing the volume of data used for training the system on
the quality of the clusters. To carry out this, the CAOS performance using the three different data
subset strategies described in section 6.3 are compared, through a collection of 100 data sets, with
respect to the approach that uses all the instances. The performance is considered taking into
account the accuracy using the Adjusted Rand index value of the solution returned by CAOS and
the computational time required to find it. Next, the data sets, the experiments and the results of

the comparison are presented.
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6.4.1 Experimental Methodology

This section presents the experimental methodology followed to evaluate the data subsets strategies
in CAOS. The analysis enables us to emphasize the benefits and the drawbacks of each one. In the
followings, we provide details about (i) the data sets collection chosen for the experimentation, (ii)

the CAOS configuration, and (iii) the comparison metrics.

Test Bed. The experimentation compares the algorithms performance using different typologies
of artificial and real-world problems. Concretely, 75 artificial data sets were created according to
different number of instances (from 800 to 24000), attributes (from 2 to 100) and classes (from 2 to
30). They were built adapting the tool used in (Handl and Knowles, 2007) where three parameters
are used to create the data sets: the number of attributes, the number of classes related to the
number of instances, and the separation between the classes. Each class has a data distribution for
each attribute, which can only have numerical values. The distribution can be a normal or uniform
distribution, and it is randomly selected to model each attribute. Also, the separation between
classes were modeled, obtaining 25 data sets with well-separated classes, other 25 data sets with
nearer classes, and the last 25 with overlapped classes. On the other hand, other 25 real-world
problems were selected according to different number of instances (from 150 to 58000), attributes
(from 2 to 60) and classes (from 2 to 26) from the UCI repository (Asuncion and Newman, 2010)
and listed in Table 6.3.

CAOS Configuration. The CAOS representation used is prototype-based due to the fact that
the other two representations do not allow to work with different instances of the data set in each
iteration, also it is important to highlight that the prototype-based representation uses individuals
that there are not related to the size of the data to group because they only store the prototype of
each cluster, and this is an important feature when it is applied to large data sets. CAOS with each
one of the data subset strategies was run with 10 different seeds and with the following parameters
(see Section 4 for notation details): € is 5% of the number of instances used, the maximum size of

the initial population is 100, Ngp is 1000, N;p is 50, Nyicpres 1S 5, the number of generations is 400,

Data set nl nA nC Data set nl nA nC
balance 625 4 3 pim 768 8 2
biopsia 1027 24 2 segment 2310 19 7
bpa 345 6 2 shuttle 58000 9 7
dermatology 366 35 6 sonar 208 60 2
ecoli 336 8 8 thyroids 215 5 2
glass 214 9 6 transfusion 748 4 2
heart-statlog 270 13 2 vehicle 846 18 4
ionosphere 351 34 2 waveform 5000 40 3
iris 150 4 3 wdbc 569 30 2
letter-rec 20000 16 26 wisconsin 699 9 2
liver-disorders 345 6 2 wpbc 198 33 2
magic 19020 10 2 yeast 1484 9 10
pendigits 7494 17 10

Table 6.3: Summary of the characteristics of the 25 real-world data sets used. The columns are referred to the number
of instances (nl), to the number of attributes (nA) and to the number of classes (nC).
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P.is 0.7 and Py is 1/m. The minimum and maximum number of clusters for the initial individuals

is 2 and 20% of m respectively.

Comparison Metrics. The performance of the three approaches based on data subsets (CAOSps)
were compared with respect to the approach that uses the complete data set (CAOScp) in terms of
accuracy and computational time. The accuracy is compared using the Adjusted Rand index that is
based on the initial classes of the data set, where 1 is the best accuracy (all the clusters correspond
to the original classes) and O the worst. The computational time represents the sum of the precalcu-
lation time and clustering time. The first one includes the time needed to build the data subsets and
to precalculate the distance and nearest neighbors structures necessaries to the clustering process.
The second one is referred to the time needed to do the evolutionary process that obtains the Pareto
set of solutions. Finally, each CAOSpgs strategy is executed dividing the original data set in 2, 3, 4,
5, 10, 15, 20 and 25 data subsets which means the 50%, 34%, 25%, 20%, 10%, 7%, 5% and 4% of
the instances of the original data sets are considered in each data subset respectively.

On the other hand, the recommendations pointed out by DemSar (Dem§ar, 2006) were followed
to perform the statistical analysis of the accuracy of the algorithms, which was based on the use
of nonparametric tests. More specifically, we followed the process given in (Garcia and Herrera,
2008) to compare them using the software freely provided by the authors'. First, the Friedman’s
test (Friedman, 1940) with @ = 0.001 was applied to contrast the null hypothesis that all the
learning algorithms obtained the same results on average. Then, if the Friedman’s test rejected
the null hypothesis, pair-wise comparisons were performed by means of the Holm’s step-down
procedure (Holm, 1979). Following this procedure, we could distinguish pairs of learners that

performed significantly differently.

6.4.2 Comparison of Results

The performance of CAOScp and the three CAOSpg strategies were empirically tested with artifi-
cial data sets and with real-world data sets separately because we want to analyze the performance
of them in different situations.

Table 6.4 shows the results of the three CAOSpg strategies and CAOScp for artificial data sets
from a statistical point of view using the Holm’s test. According to this analysis, the three CAOSpg
strategies are significantly worse in terms of accuracy regarding CAOScp, independently of the
number of instances considered. Nevertheless, the three CAOSpg are not significantly different in
terms of accuracy between them. From a quantitative point of view, Figure 6.1(a) shows the average
of accuracy difference among the three CAOSpg strategies and CAOScp. Globally, the strategies
based on classes and on clusters follow a similar pattern, and the accuracy is not considerably
decreased until less than the 20% of the instances are used. On the other hand, the strategy based on
the random selection seems to underperform the other two due to the fact that the classes structure

is complex in some data sets and the random strategy is not able to build representative strata.

Uhttp://sci2s.ugr.es/sicidm
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Table 6.4: Comparison of the algorithms in the artificial data sets using Holm’s procedure with @ = 0.05. The algorithms
compared are CAOS using the CAOS¢p and the three CAOSps strategies to generate data subsets: based on classes, ran-
dom and based on clusters; represented by CAOS — DS — Classes, CAOS — DS — Random and CAOS — DS — Clusters
respectively. The results are shown for 50%, 34%, 25%, 20%, 10%, 7%, 5% and 4% of information used from the
complete data set. The symbols @ and © show that the method in the row obtained results that were significantly
higher/lower than those obtained with the method in the column. Similarly, the symbols + and — denote a non-significant
higher/lower results.

Instances used Strategies CAOS - CD CAOS - DS - Classes [ CAOS - DS — Random [ CAOS - DS - Clusters
CAOS - CD The Friedman’s test cannot reject the null hypothe-
50% CAOS - DS - Classes sis that all the learning algorithms obtain the same
CAOS - DS - Random ;"E‘%Llh% on average. l l
CAOS - DS ~ Clusters Suts ge-
CAOS -CD (3] + (7]
349 CAOS - DS - Classes S} - -
i CAOS - DS — Random - + +
CAOS - DS - Clusters [S] — +
CAOS -CD (&3] + ®
25% CAOS - DS — Classes [S) - -
’ CAOS - DS — Random - + +
CAOS — DS — Clusters [S] - +
CAOS -CD (2] 52 52
20% CAOS - DS - Classes [S] + +
’ CAOS - DS — Random o - +
CAOS - DS - Clusters S] - -
CAOS -CD [S2] 52 (2}
10% CAOS - DS - Classes S} - -
: CAOS - DS - Random ) + -
CAOS - DS - Clusters [S] + +
CAOS -CD [S>] b 2}
7% CAOS - DS — Classes [S] + +
8 CAOS - DS - Random ) - +
CAOS - DS — Clusters [S] — —
CAOS -CD (3] 53] &
5% CAOS - DS - Classes [S] + +
o CAOS - DS - Random ) - +
CAOS - DS — Clusters [S) - -
CAOS -CD (2] 5] D
49 CAOS - DS - Classes [S] + +
° CAOS - DS — Random S} - -
CAOS - DS - Clusters S - +

Table 6.5: Comparison of the algorithms in the real-world data sets using Holm’s procedure with o

0.05.

The algorithms compared are CAOS using the CAOS¢p and the three CAOSps strategies to generate data subsets:
based on classes, random and based on clusters; represented by CAOS — DS — Classes, CAOS — DS — Random and
CAOS — DS - Clusters respectively. The results are shown for 50%, 34%, 25%, 20%, 10%, 7%, 5% and 4% of infor-
mation used from the complete data set. The symbols @ and © show that the method in the row obtained results that
were significantly higher/lower than those obtained with the method in the column. Similarly, the symbols + and —
denote a non-significant higher/lower results.
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Figure 6.1: Accuracy difference of the three CAOSpg strategies regarding CAOScp. (a) Artificial data sets and (b)
real-world data sets.
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Figure 6.2: Speedup of the three CAOSps strategies regarding CAOS¢p in artificial (a,c,e) and real-world data sets
(b,d,f). The first two figures (a,b) are referred to the speedup of the precalculation time. To build the data subsets and
to precalculate the distance and nearest neighbors structures. The two following figures (c,d) show the speedup of the
clustering time to do the evolutionary process that obtains the Pareto set of solutions. The last two figures (e,f) are
related to the speedup of the overall time taking into account both times.
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Figure 6.2(e) shows the average speedup of the overall time of the three CAOSpg strategies
regarding the overall time of CAOScp applied to the artificial data sets. This speedup is divided
in two partial speedups regarding the precalculation time needed to build the data subsets and to
precalculate the distance and nearest neighbors structures (see Figure 6.2(a)), and the second one
is referred to the clustering time (see Figure 6.2(c)). The precalculation speedup is the same in the
random strata than in the strata based on classes strategies, and it is lower than the time needed in
the strategy based on clusters because it needs to cluster the data. On the other hand, the speedup
of the clustering time is the same in the three strategies since the strata method does not affect
to the clustering process. Analyzing the overall speedup according to the percentage of instances
used from the complete data set, it can be observed that using a 50% of the instances, which is the
lowest improvement, the speedup is 3, so CAOSpg strategies are three times faster than CAOScp.
Moreover, using a 4% of the instances of the complete data set the speedup is 500 for the strategy
based on clusters and 1200 for the other two strategies. Also it can be observed that there are
not speedup differences between the strategies until more than a 10% of the instances are used.
These analysis showed that CAOSpg strategies applied to the proposed artificial data sets are faster
than CAOScp and do not considerably penalize the accuracy in quantitative terms. Nevertheless,

CAOSps is worse and significantly different, in statistical terms, regarding CAOScp.

Table 6.5 shows the results of the Holm’s test applied to the results obtained with real-world
data sets. According to it, when in each data subset is considered a 50% of the instances (2
data subsets) the Friedman’s test cannot reject the null hypothesis that all the strategies obtain
the same results on average. Thus, the three CAOSpg strategies cannot be considered different
than CAOScp in terms of accuracy. When the 34% and the 25% of the instances are considered,
the CAOSpg strategy based on random strata is not significantly different in terms of accuracy re-
garding CAOScp. Nevertheless, the accuracy of the other two strategies is worse and significantly
different than CAOScp. When it is used less than the 25% of the instances of the complete data
set in each data subset, the three CAOSpg strategies are significantly different in terms of accuracy
regarding CAOScp, but they are not significantly different between them. Figure 6.1(b) shows that
there is virtually no accuracy difference between CAOSpg strategies regarding CAOScp, because

the data sets used do not have shapes as complex than the artificial ones used.

Figure 6.2(f) shows that, in terms of speedup, the behavior in the used real-world data sets is
similar than in artificial data sets. The maximum speedup is lower because some of the real-world
data sets are small and the speedup of using less than a 10% of the instances is not as high than in
larger data sets. Also, it can be observed than in the used real-world data sets if it is used a 50% of

the instances, it is four times faster than CAOScp and it obtains the same clustering results.

For more details about the results, consult Table C.1 to Table C.32 in Appendix C, where the

accuracy and time of each strategy for each data set are shown.
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6.4.3 Discussion

It must be emphasized that the speedup obtained applying this kind of techniques is very high and,
consequently, the computational performance of the system is considerably improved. Moreover,
assuming that the best strata generation is based on the original classes, the results show that the
other two strategies to build the strata are not significantly different in terms of accuracy inde-
pendently of the kind of data sets tested. In terms of accuracy, the random and the cluster based
strategies are as useful as the strategy based on classes but without the requirement of having the
original class of each instance. In terms of computational time, the random and classes based
strategies have similar speedup regarding CAOScp. Nevertheless, the cluster based strategy has a
lower speedup. According to these observations, it seems that the most suitable strategy to build
the data subsets in CAOSpg is the random one, because it does not require the original classes of
the instances, it is not significantly different in terms of accuracy than the other two strategies and

it has a high speedup.

6.5 Summary and Conclusions

The main lack of the techniques based on evolutionary algorithms is their cost in terms of compu-
tational time and memory usage when they are applied to a big amount of data since they do an
intensive use of computations. This has motivated the necessity of proposing new ways of tackling
problems such as stratifying the complete data set in several strata in order to use less data in the al-
gorithm with the aim of reducing the computations while the accuracy is maintained. Thus, the idea
of the stratified strategy is to map the initial data set into disjoin strata of equal size and with equal
class distribution and allow the system to work with one stratum at the same time. This chapter
has analyzed the impact of applying several stratification techniques in a multiobjective evolution-
ary clustering algorithm using CAOS algorithm. The application of these strategies in CAOS can
allow to work with large data sets with a reasonable computational time while the accuracy is not
drastically penalized. The approach is based on dividing the data set in some disjoint data subsets
(strata) and alternate them in each cycle of the genetic algorithm to increase the generalization of
the system and avoiding the bias. Three stratification techniques are analyzed to build the strata
(1) according to the original classes of the data set, (2) selecting random instances from the data
set, and (3) according to the clusters found applying a fast method called subtractive clustering.
The first one is a supervised strategy used to compare the performance of the two unsupervised
strategies. These techniques allow to scale-up the system considerably reducing the computational
time without drastically penalize the accuracy. They are tested using artificial and real-world data
sets in order to analyze their behavior with complex data structures and with some benchmarks
from the UCI repository.

The experimentation showed that the speedup of the three strategies is very high, and this con-
siderably improves the computational performance of the system. Moreover, it can be observed

that the two unsupervised strategies to build the strata are not significantly different from the strat-
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egy based on classes in terms of accuracy. In other words, the random and cluster based strategies
can be considered equivalent to the strategy based on classes in terms of accuracy. Furthermore,
the strategy based on random strata has a higher speedup than the cluster based strategy, due to the
fact that the last one needs to build approximative clusters at the begin of the algorithm and this
has a high cost with very large data sets. Thus, the random stratum strategy is the most suitable
to scaling-up CAOS. On the other hand, there are statistically significant differences among these
three strategies and the approach that use the complete data set, nevertheless the accuracy differ-
ences among them are relatively small and they considerably reduce the computational time of the
algorithm scaling-up it properly. It is important to highlight that the size of each stratum will affect
the performance of the CAOS algorithm. The computational time of CAOS will be decreased as
much smaller is the size of the strata, but as much smaller is the size it will be difficult to obtain
consistent stratum according to the original data set, affecting to the accuracy of the system.

This chapter sets the basis for further conducting research on multiobjective evolutionary clus-
tering applied to large data sets. This future work will aim at three objectives. First, we will include
a validation method to guarantee the consistence of each stratum according to the original data set.
Second, we will analyze the consequence of apply stratification methods for scaling-up CAOS with
other individual representations. Finally, we will investigate the application of other data mining
techniques for large data sets (Bacardit and Llora, 2009) such as Parallel EAs.

A paper related to this contribution has been submitted to a journal under the title ”Scaling-Up

Multiobjective Evolutionary Clustering Algorithms using stratification”.
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Chapter 7

Selection of the Most Suitable Solution

Multiobjective algorithms return a Pareto set of non-dominated solutions where there is
not a best solution according to all the optimizing objectives. However, it can be retrieved
a solution that can be more suitable to solve a particular problem. To manually find this so-
lution can be a complex task, for this reason automatically methods are needed. There are
two main kinds of approaches to automatically retrieve the most suitable solution that are
based (1) on the shape of the Pareto set and (2) on specific characteristics of the problem.
The first approach returns a solution with a good trade-off among objectives but without
taking into account any other characteristic of the solution. The second approach does
not takes into account the trade-off between objectives because it only uses the internal
characteristics of the solutions. In this chapter, we propose to combine both approaches in
order to select the most suitable solution according to the quality of the clusters but obtain-
ing a solution with a good trade-oft among objectives. The proposed approach retrieves
the best solution according to a clustering validation index from the solutions that are in
the region of the Pareto set with better trade-off among objectives. This region is called
sweet spot. These approaches are applied to CAOS and they are compared using a wide

set of artificial and real-world data sets.

7.1 Motivation

The results in multiobjective algorithms based on Pareto sets (Veldhuizen and Lamont, 2000) are
a collection of potential solutions with the characteristic that, for all objectives, a major winner
cannot be found. However, in spite of the fact that there is no best solution for all the objectives, it
can be found a solution which is the most suitable to solve a particular problem. Therefore, one of
the challenges in MC algorithms is the retrieval of the most suitable solution from the Pareto set.
This solution can be manually identified by an expert in the domain of the problem, but it results
in a subjective method and a non trivial task if there are several solutions in the Pareto set. Thus,
automatic methods are needed to help experts and simplify the identification of the most suitable
solution.

In multiobjective clustering there are mainly two methods for retrieving the most suitable solu-

119
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tion from the Pareto set: (1) taking into account the shape of the Pareto set (Matake et al., 2007) or
(2) taking into account the features related to the shape of the clusters (Handl and Knowles, 2007).
The first method tries to identify the knee of the Pareto front for retrieving the solution with best
trade-off between objectives, but it does not take into account the clusters shape of the solution, so
it can return a solution with human-redeable clusters. The second way retrieves the best solution
according to clustering validation indexes (see Section 2.5.4). The main lack of this approach is
that the objectives can be unbalanced returning a solution which only optimizes one of the desired
objectives. In this chapter we propose a hybrid technique that combine both methods in order to
retrieve a solution from the Pareto set with understandable clusters and with a balanced trade-off
between objectives. The idea is to find the sweet spot of the Pareto set in order to select the best
solution from this region according to a clustering validation index. We call sweet spot the region
that includes the solutions that are around the knee of the Pareto front. Thus, the solutions that
are outside the sweet spot are not considered as possible solutions due to the fact that they only
optimize one of the objectives.

In order to test the benefits of this approach we used CAOS as a base algorithm. To analyze
the performance of these strategies we have done a comparison between the results obtained with
CAOS retrieving the most suitable solution according to the aforementioned strategies: (1) the
shape of the Pareto set, (2) the shape of the clusters, and (3) the shape of the Pareto set and the
shape of the clusters simultaneously. To carry out this, the approaches are compared along a set
of synthetic data sets (Handl and Knowles, 2007) and real-world ones from the UCI repository
(Asuncion and Newman, 2010). The next sections briefly summarize the related work on retriev-
ing solutions from a Pareto set, describe the method proposed and the experimentation done and

discuss the results.

7.2 Related Work

One of the most intuitive approaches to identify the most suitable solution is to aggregate all the
objectives into some kind of overall objective, but coming up with exact relative objective weights
is a daunting task with complicated ramifications (Kasprzak and Lewis, 2001; Messac et al., 2000).
Kasprzak proposed a method called collinearity theorem, which goal is to predict the relative ob-
jective weighting required to cause any member of the Pareto set to become the optimal solution on
the basis of the information contained in the shape of the Pareto set (Kasprzak and Lewis, 2001).
Other approaches like ad-hoc methods according to the domain of the problem are used to iden-
tify the desirable solution (Liu et al., 2009). For example, if we want to construct a sustainable
building minimizing the time and cost of the construction, the most suitable solution can be to use
only building materials which respect the environment. Nevertheless, the aforementioned method
is not useful when the domain of the problem is not well-known. It is in this situations when it is
necessary to use other methods based on general features of the solutions or on the shape of the

Pareto set. For example, we can choose a solution from the Pareto set that it is near the knee of
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the Pareto front, because it is the region where there should be the solutions with best trade-off
between objectives. Branke presented a method based on identifying the knee of the Pareto front
by the slopes of the two lines through an individual and its two neighbors. The angle between these
slopes can be regarded as an indication of whether the solution is at a knee or not (Branke et al.,
2004).

In MC, Handl proposed in MOCK the use of the GAP statistic (Tibshirani et al., 2000) to
identify the most suitable solution in the knee of the Pareto front (Handl and Knowles, 2007), this
is a solution with a good trade-off between objectives. The main problem of this technique is that
the multiobjective algorithm has to be executed several times for finding the solution, therefore it
has a high computational cost. Moreover, it does not have into account the shape of the clusters,
which is related to the understandability of the clustering result. Matake proposed in (Matake
et al., 2007) a technique that improves the results and the computational cost of the aforementioned
technique. It is based on the angle between the solutions proposed in (Branke et al., 2004) to find a
solution in the knee of the Pareto front. However, it also does not take into account the shape of the
clusters. Handl also proposed in MOCK the use of some clustering validation indexes that retrieve
the solution according to the shape of the clusters instead of taking into account the shape of the
Pareto set (Handl and Knowles, 2007). The main problem of this technique is that the validation
indexes can return a solution that only properly optimizes one objective, so the solution does not

have a good trade-off between the proposed objectives.

7.3 Sweet Spot Selection Technique

Retrieving the most suitable solution from a Pareto set is a complex task. As discussed above,
in MC algorithms the approaches based on the shape of the Pareto set can obtain a solution from
the knee of it, that is, they are solutions with a good trade-off among objectives, but without any
warranty of obtaining a solution with high quality clusters. On the other hand, the methods based
on validation indexes can obtain the desirable solution according to the quality of the clusters.
Nevertheless, these indexes can be sensitive to outliers and to some specific shape of clusters
that are undesirable as a solution. Figures 7.1 and 7.2 show two examples where the clustering
validation indexes do not select the most desirable solution, according to the shape of the clusters,
due to the existence of outliers. In the first example, the indexes select a solution with a bad
trade-off between objectives and it does not generalize, so the solution given does not add any
useful knowledge to experts. On the other hand, in the second example it is more difficult to select
a solution according to the experts but it can be observed that there is not a consensus between
indexes and some of them select the solution with a poorer trade-off between objectives. The
limitation produced by outliers can be avoided changing the configuration of some of the index
calculations, however they can obtain worse results when there are not outliers. To avoid this
problem, we propose a technique based on retrieving the most suitable solution according to the

shape of the Pareto set and the shape and quality of the clusters, by retrieving it from the sweet
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spot of the Pareto set using clustering validation indexes.

Instance (e,) | Attribute 1 (x) | Attribute 2 (y) Solution 1 Solution 2
e, 0 0 cluster 1 cluster 1
e, 0 0.5 cluster 2 cluster 1
e, 0 1 cluster 3 cluster 1
e, 1 0 cluster 4 cluster 2
e 1 1 cluster 5 cluster 3

(a) Data set

Objective Solution 1 Solution 2 > Solution 1 @ @
— >
Connectivity 0 0.4 g Y @
Deviation 1 0.2272 g X
o
o
Validation Index Solution 1 Solution 2
Calinski-Harabasz 38 Solution 2 @
Davies 0.13 X
Dunn 1
. »
Silhouette 0.83 deviation
(b) Index and objective values (c) Pareto set with both solutions

Figure 7.1: Validation indexes results from two non-dominated clustering solutions. The red color indicates the solutions
selected by an index but not selected by experts.

Instance (e,) | Attribute 1 (x) | Attribute 2 (y) Solution 1 Solution 2
€, 0.1 1 cluster 1 cluster 1
e, 0 0 cluster 2 cluster 1
e, 0.1 0 cluster 2 cluster 1
e, 0 0.1 cluster 3 cluster 1
e 0.05 0.1 cluster 3 cluster 1
€ 0.1 0.1 cluster 3 cluster 1
e, 0.99 0.51 cluster 4 cluster 2
e, 0.98 0.52 cluster 4 cluster 2
€, 1 0.52 cluster 4 cluster 2
€, 0.99 0.53 cluster 4 cluster 2

(a) Data set

A
g A
Objective Solution 1 Solution 2 g
Connectivity 0.0034 0.2482 8
Deviation 0.1 0
Validation Index Solution 1 Solution 2
Calinski-Harabasz 1777 548
Davies 0.21 0.13
Dunn 1 0.94 Y
Silhouette 073 0.85 Solution 1 Solukti/on , deviation”
(b) Index and objective values (c) Pareto set with both solutions

Figure 7.2: Validation indexes results from two non-dominated clustering solutions. The green color indicates the
solutions selected by each index.
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7.3.1 The Sweet Spot Combined with Clustering Validation Techniques

The objective of the proposed technique is to identify the sweet spot of the Pareto set, which is
the region around the knee (see Figure 7.3). This is done by filtering the solutions that are in the
boundaries of it, because the solutions included in this regions extremely optimize an objective
and they do not properly optimize the other one, usually because they are solutions with very big
or small clusters, and they affect to the results of the clustering validation indexes. Taking into
account only the solutions contained in the sweet spot of the Pareto set, the indexes can obtain
better solutions. The difficulty of this approach is to determine the size of the sweet spot which
contains the solutions that will be evaluated through a clustering validation index. This issue is
important because if the sweet spot is very small, some valuable solutions from the point of view
of shape and quality of clusters can be omitted, but if it is very big, the solutions that are not
interesting from the point of view of clustering can be taken into account. For this reason, several
sizes of the sweet spot are tested in the experimentation in order to determine the best size for each
validation index. To test this technique, it has been applied in the selection of the best solution of
CAOS.

7.3.2 Identification of the Sweet Spot in CAOS

Two of the objectives that have been demonstrated more useful to promote the compactness and
separation among clusters are the deviation and connectivity objectives (see Section 4.4). In two-
objective optimization problems, the Pareto set can be represented in a two-dimensional graph
where each axis correspond to each one of the objectives. In this situations, to identify the sweet
spot of the Pareto set, two straight lines are drawn from the origin of the axes with an specific angle
regarding each axis (@) and ay). The region inside the area comprised between the two straight
lines is considered sweet spot (see Figure 7.3). The angle of each line with respect to the axis
determines the size of the sweet spot, reducing it when the angles are decreased. If the angles of

the two lines are 0 degrees, all the Pareto set is considered as the sweet spot. It is important to

sweet spot

objective 1

objective 2

Figure 7.3: Graphical representation of the sweet spot identification. @, and @, are the angles that determine the size of
the sweet spot.
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highlight that the two angles cannot be equal or higher than 45 degrees, due to the fact that the area
between them cannot comprise any solution of the Pareto set. The result of applying this technique
is shown in the following. In other problems where more than two objectives have to be optimized,

this specific method needs to be adapted to the dimensions of the problem.

7.4 Experiments, Results and Discussion

This section compares the performance of using the sweet spot selection technique to retrieve the
most suitable solution with methods that only use the shape of the Pareto set or the shape of the
clusters to retrieve it. Concretely, we compared it with the technique presented by Matake (Matake
et al., 2007), which is based on the shape of the Pareto set, and the technique based on clustering
validation indexes presented in Section 4.5, which is based on the quality of the clusters. As it
has been aforementioned, the technique exposed by Matake is based on the angles of the solutions
to identify one of them in the knee of the Pareto front and it has demonstrated that it can obtain
interesting results. The comparison was done using the CAOS algorithm with 35 artificial data sets
and 35 real-world data sets. The performance is considered in terms of accuracy using the Adjusted
Rand index value of the retrieved solution. Next, the experimental methodology, and the results of

the comparison are presented and discussed.

7.4.1 Experimental Methodology

This section presents the experimental methodology followed to evaluate the retrieval strategies in
CAOS. The analysis enables us to emphasize the benefits and the drawbacks of each one. In the
followings, we provide details about (i) the data sets collection chosen for the experimentation, (ii)

the CAOS configuration, and (iii) the comparison metrics.

Test Bed. The experimentation assess the algorithms performance using different typologies of
artificial and real-world problems (see Table 7.1). Concretely, 35 artificial data sets were selected
according to different number of instances (from 900 to 2990), attributes (from 2 to 100) and classes
(from 2 to 10). They were built using the tool presented in (Handl and Knowles, 2007). On the
other hand, the 35 real-world problems were selected according to different number of instances
(from 7494 to 101), attributes (from 3 to 60) and classes (from 2 to 11). These data sets were
obtained from the UCI repository (Asuncion and Newman, 2010).

CAOS Configuration. The comparison was done with the Pareto set obtained with the prototype-
based representation of CAOS. However, the representation does not considerably affect to the
analysis because the goal of this experimentation is to analyze the performance of the proposed
retrieval strategies to select the most suitable solution from the Pareto set when it is already build.
CAOS was run with 10 different seeds with the following parameters (see Section 4 for notation

details): £ is 5% of m (the number of data set instances), the maximum size of the initial population
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is 100, Ngp is 1000, N;p is 50, Nyiches 18 5, the number of generations is 400, P. = 0.7 and P, is
1/m. The minimum and maximum number of clusters for the initial individuals at the prototype-
based representation is 2 and 20% of m respectively. The bloat control threshold (sim) value is

0.005 and it is applied after the generation 30, and the clusters are not merged.

Comparison Metrics. The retrieval strategies tested are based on clustering validation indexes
(Davies, Dunn, Silhouette and Calinski-Harabasz) and on the strategy based on adjacent angles
(Matake et al., 2007). Both strategies are applied to the overall Pareto set and to the sweet spot.
Thus, we obtained ten possible solutions from the Pareto set, that is, one solution for each index
and for the adjacent angles strategy using the overall Pareto set, and one solution for each index
and for the adjacent angles strategy using the sweet spot. In addition to these ten solutions, we have
also the best solution from the Pareto set according the Adjusted Rand index, which is the best one
according to the classes assigned to each instance. Finally, to identify the suitable sweet spot size
we tested several values to the @) and the a; angles. We used the same values for both angles that

range between 1 and 44 degrees, concretely, the values used are: 1, 2, 5, 10, 15, 20, 25, 30, 35, 40,

Data set nl nA nC Data set nl nA nC
100d-10c 2198 100 10 appendicitis 106 7 2
100d-4c 1218 100 4 balance 625 4 3
10d-10c 2122 10 10 biopsia 1027 24 2
10d-4c 1092 10 4 bpa 345 6 2
2d-10c 2990 2 10 contraceptives 1473 9 3
2d-4c 1261 2 4 crx 690 15 2
curves] 1000 2 2 dermatology 366 35 6
curves2 1000 2 2 echocardiogram 132 12 2
dartboard1 1000 2 4 ecoli 336 8 8
dartboard2 1000 2 4 glass 214 9 6
donutl 1000 2 2 haberman 306 3 2
donut2 1000 2 2 heart-statlog 270 13 2
donut3 999 2 3 hepatitis 155 19 2
donutcurves | 1000 2 4 housevotes 435 16 2
longl 1000 2 2 ionosphere 351 34 2
long2 1000 2 2 iris 150 4 3
long3 1000 2 2 liver-disorders 345 6 2
longsquare 900 2 6 mammographic 961 5 2
sizesl 1000 2 4 pendigits 7494 17 10
sizes2 1000 2 4 pim 768 8 2
sizes3 1000 2 4 segment 2310 19 7
sizes4 1000 2 4 sonar 208 60 2
sizes5 1000 2 4 tae 151 5 3
smilel 1000 2 4 thyroids 215 5 2
smile2 1000 2 4 transfusion 748 4 2
smile3 1000 2 4 vehicle 846 18 4
spiral 1000 2 2 vertebral 310 6 3
spiralsquare | 1500 2 6 vowel 990 13 11
squarel 1000 2 4 waveform 5000 40 3
square2 1000 2 4 wdbc 569 30 2
square3 1000 2 4 wine 178 13 3
square4 1000 2 4 wisconsin 699 9 2
square5 1000 2 4 wpbc 198 33 2
trianglel 1000 2 4 yeast 1484 9 10
triangle2 1000 2 4 700 101 16 7

Table 7.1: Summary of the characteristics of the 35 artificial data sets (left block) and real-world data sets (right block)
used. The columns of each block are referred to the number of instances (nl), to the number of attributes (nA) and to the
number of classes (nC).
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43 and 44.
Finally, the recommendations pointed out by DemSar (Demsar, 2006) and the Nemenyi test

exposed in Section 5.4.1 have been used to statistically compare the results of each approach.

7.4.2 Comparison of Results

The performance of the aforementioned strategies were empirically tested with artificial data sets
and with real-world data sets. Also, each solution is quantified using the Adjusted Rand index in
order to evaluate them according to the original classes of the problems

Before comparing the solutions obtained with the Pareto set and with the sweet spot, it is
necessary to identify the best size of the sweet spot, which can depend on the data set and on
the solutions obtained in the Pareto set. However, we want to identify the size that obtains the best
results. For this, we tested several sizes for each one of the clustering validation indexes and for the
adjacent angles strategy. Next, we statistically compare the strategies based on the overall Pareto
set and on the sweet spot, using the best size for each index and for the adjacent angles strategy.

In order to have a large sample of data sets for selecting the best sweet spot size for each
retrieval strategy with more precision, we used all the aforementioned data sets without dividing
them into artificial and real-world data sets. The idea is to obtain an approximative size of the
sweet spot for each strategy to be used independently of the kind of data set where they are applied.
Figure 7.4(a) to Figure 7.4(d) show the rank of the sweet spot sizes analyzed for each index, and
Figure 7.4(e) shows the same information for the adjacent angles strategy. The rank is analyzed in
terms of accuracy and the best one is the lowest one. It can be observed that the best results for
each index are obtained when the sweet spot angles are between 5 and 10 degrees (represented by
F5 and F10 respectively). On the other hand, it is observed that the adjacent angles strategy needs
a small sweet spot to obtain good results, concretely, sweet spot angles higher than 20 degrees are
necessary (represented by F20, F25, F30, F35, F40, F43 and F44). Finally, it is also observed
that the solution retrieved from the overall Pareto set (represented by A) are far of the best solution
obtained with the suitable sweet spot, but in the majority of the strategies, the solutions using
the sweet spot and using the Pareto set are not statistically different. However, it is important to
highlight that to apply the validation indexes to the sweet spot is faster than to apply it to all the
solutions of the Pareto set and the solutions retrieved from the sweet spot have better trade-off
between objectives, which is the main goal of multiobjective clustering.

In the analysis of the performance among all the strategies using the overall Pareto set and the
sweet spot, we used the artificial data sets and the real-world ones separately because we want
to analyze the performance of them in different situations. Figure 7.5 shows the results for both
kind of data sets, in it the strategy used to retrieve the most suitable solution is indicated by Dv,
Dn, S1, CH and Ag for the Davies, Dunn, Silhouette, Calinski-Harabasz indexes and the adjacent
angles strategy respectively. Also, the symbols of each strategy are preceded by an F when the
sweet spot is used and by an A when the overall Pareto set is used. Also, the supervised solution

retrieved with the Adjusted Rand index, which is only used taking into account the overall data set,



7.4. EXPERIMENTS, RESULTS AND DISCUSSION

127

F20 F35
F5 F10 F15 F2 F1 F25 F30 Fd4 A F43 F40
1 I | I I I 11 I I
T T T LIl T T T LI T T
562576 6.06 6.29 6.8 7.09 737 769 7.81 8.06 834
6.34 776
CD=249
(a) Davies Index
F10 F44 F35
F5 F15 F2 Fi1 F20 A F25  F30  F43 F40
1 (| I 11 I I 1 I
T T T T LI | T LI LIl T
5.04 583 6.04  6.36 676 6.91 767 7.99 83 8.8
503 7.96 8.25
CD=249
(b) Dunn Index
F10 F25 F30 A
F5 Fi5 F2  F20 F1 F35 F44 F43  F40
Il 1 1 [ [ Il 1
T T T T T T LI T
537 6.04 641 664 684 7.56 772 818 839
533 683 7.85 8.14

F10 F5 F1s

Wl

Ch=249

(c) Silhouette Index

F20 F1

F256 A F30 F35 Fa4 F40 F43

AR 2 2 2 N

T T
522537 562

1
T T
631 6.816.96 789 T
6.41 6.35

CD =249

(d) Calinski-Harabasz

79 832 674 892

F20
F30 F25 F40
F43 F44 F35 F15 F5 F10 F2 F1 A
IR 11 ] I I I
T 1T T T T T T
6.25 6.336.49 696 726 773 839 872
6.3 6.43 6.54 7.07
CD =249

Figure 7.4: Accuracy rank with Nemenyi test of the most suitable CAOS solution obtained with the indexes (a) Davies,
(b) Dunn, (c) Silhouette, (d) Calinski-Harabasz, and (e) the adjacent angles strategy with all the Pareto set (A) and with

using different angles to the define the sweet spot size: 1 (F1), 2 (F2), 5 (F5), 10 (F10), 15 (F15), 20 (F25), 30 (F30), 35
(F35), 40 (F40), 43 (F43) and 44 (F44) degrees. CD indicates the value of the critical distance, representing with a line

(e) Adjacent Angles Strategy

the area that is not significantly different with respect to the best ranked method.
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is represented by Rd. Figure 7.5(a) shows that using artificial data sets there is not virtually any
difference among the solutions obtained using the sweet spot and the overall Pareto set. Also, it
can be observed that Dunn and Silhouette indexes, using the sweet spot or using the overall Pareto
set, obtain solutions that are not significantly different to the best solution Rd obtained using the
original classes of the data set. Moreover, with this kind of data sets the adjacent angles strategy
and the Calinski-Harabasz index obtain bad results in comparison with the other strategies. It is
important to highlight that the artificial data sets used do not have outliers and, in the majority of
the data sets, the classes are well-separated and there is no overlapping among them. Thus, it is
easier for the indexes to retrieve a suitable solution without leave out any solution, and for this
there is not strong differences between the solutions retrieved with the overall Pareto set and with

the sweet spot.

Figure 7.5(b) shows the solutions retrieved using the real-world data sets. It can be observed
that all the solutions retrieved from the sweet spot with the clustering validation indexes are better
than the solutions retrieved by the same indexes using the overall Pareto set. Nevertheless, there
are virtually not differences between the results obtained with the adjacent angles strategy using
the sweet spot and the overall Pareto set. Moreover, it is important to highlight that there are
no statistically differences between the supervised solution Rd and the solution obtained from the

sweet spot with the Calinski-Harabasz index. Thus, it seems that this index is very robust with

ASI
FSI

ADn ACH
Rd FDn  ADv FDv FCH FAg AAg

\ Wl v W \

229 4.87 5.03 5.59 761 7.91 9.74
497 627 T84

CD=293
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(b) Real-world data sets

Figure 7.5: Accuracy rank with Nemenyi test of the most suitable CAOS solution obtained with the indexes Davies (Dv),
Dunn (Dn), Silhouette (S /), Calinski-Harabasz (CH), and the adjacent angles strategy (Ag) with all the Pareto set (A)
and with the best sweet spot size for each strategy (F). Also, the best solution retrieved according the Adjusted Rand
index is shown (Rd). The results are obtained using (a) artificial data sets and (b) real-world data sets. CD indicates the
value of the critical distance, representing with a line the area that is not significantly different with respect to the best
ranked method.
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real-world problems due to the fact that it is less affected by noise than the other indexes.
For more details about the results, consult Table D.1 and Table D.2 in Appendix D, where the
accuracy of each strategy for each data set is shown.

7.4.3 Discussion

The experiments show that with artificial data sets the solutions retrieved by clustering validation
indexes from the sweet spot are virtually equivalent to the solutions obtained from the overall
Pareto set. On the other hand, the solutions retrieved by the indexes from the sweet spot with
the real-world data sets are better than the solutions obtained from the overall Pareto set. Thus,
independently of the typology of data sets used (compact classes, scattered classes, noisy data
sets...) the sweet spot solutions improve or maintains the accuracy of the retrieved solutions, so it
is an useful retrieval approach. Moreover, it is worth noting that there are some indexes that are
not significantly different from the supervised approach that uses the original classes of the data set
for retrieving the solution. These indexes are Dunn and Silhouette with the artificial data sets, and
Calinski-Harabasz with the real-world data sets. However, even Dunn index applied to real-world
problems is statistically different from the supervised solution, it obtains also good results. Thus,
if we have to choose only one index, Dunn index can be useful for any kind of data set. After
all, each one of the indexes evaluates the quality of the clusters using different features of them
and we consider that, in CAOS, the solutions retrieved by each one of the indexes can be offered
as final solution to the clustering experts. It must be emphasized that the solutions retrieved with
the adjacent angles strategy, independently if they use the sweet spot or the overall Pareto set, are
worse than the solutions retrieved from the sweet spot using the indexes. This has sense due to
the fact that these solutions do not take into account the quality of the clusters and they only try to
retrieve a solution near the knee of the Pareto front.

Finally, regarding the size of the sweet spot, the experiments show that with the clustering
validation indexes is not necessary to filter a lot of solutions to improve the accuracy of the method.
Concretely, using sweet spot angles of 5 or 10 degrees the results are remarkably better than using
the overall the Pareto set. Thus, only the solutions that optimize solely one of the objectives are
not taken into account, so potentially good solutions are not discarded. On the other hand, the
adjacent angles strategy can discard a big amount of solutions without decreasing the accuracy of
the method. This effect is explained as follows: due that the goal of this strategy is to obtain a

solution near the knee of the Pareto front, all the solutions that are not around it can be discarded.

7.5 Summary and Conclusions

The solution returned by multiobjective algorithms is a Pareto set where there is no solution better
than the others for each objective. Even there is not a winner solution according to all the opti-
mizing objectives, the most suitable solution to solve a specific problem can be retrieved. This

has motivated the necessity of proposing methods for automatically retrieving the most suitable
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solution. These methods usually select this solution according to (1) the shape of the Pareto set,
which correspond to the value of the objectives to optimize, and to (2) the quality of the solutions
conforming to specific characteristics of the problem. In clustering problems, the main lack of the
first method is that it retrieves a solution without taking into account the shape and quality of the
clusters and it can return a solution with a good trade-off between objectives but with incomprehen-
sible clusters. On the other hand, the second method retrieves a solution according to the quality
and shape of clusters using clustering validation indexes but it does not take into account the value
of the objectives, so it can return a solution with an inadequate trade-off between them and this
is not the aim of MC. For these reasons, we propose the combination of both methods to obtain
a new one that selects a solution according to a clustering validation index from the region of the
Pareto set where are placed all the solutions with a good trade-off between objectives (sweet spot).
The main problem of this approach is to define the size of the sweet spot, because potentially good
solutions can be discarded if it is very small and not useful solutions can distort the results of the
validation indexes if it is very large. In the experimentation we tested several sweet spot sizes to
find the most appropriate one and several clustering validation indexes in order to properly analyze
the performance of the method. Moreover, the performance of the proposed method was analyzed
in comparison with a method that uses a clustering validation index to retrieve the solution and with
another one that tries to retrieve the solution in the knee of the Pareto front according to the use of
adjacent angles. These tests have been carried out using a wide set of artificial and real-world data.

The results showed that it is not necessary to define a small sweet spot size, so it is not necessary
to discard a lot of solutions. Thus, in order to filter the solutions that can distort the value of the val-
idation indexes it is only necessary to discard the solutions that extremely maximize just one of the
objectives. These solutions have usually very large or very small clusters that become non-human
readable clustering solutions. Moreover, the performance of the sweet spot method combined with
clustering validation indexes is better than the performance of the solutions retrieved according to
the overall Pareto set and to the adjacent angles strategy, independently of the kind of data sets
used. Furthermore, the proposed method can obtain solutions that are not significantly different
to the solutions retrieved by a supervised method, so they work as well as a method that uses the
classes of the problem to retrieve the best solution. Finally, it is important to highlight that the
sweet spot method, combined with quantitative measures that evaluates the quality of the solutions
according to specific characteristics of the problem, can be applied in any kind of multiobjective
optimization algorithm.

As future work we can analyze the effect of using other strategies to filter the solutions that are
not near the knee of the Pareto front, the use of other retrieval strategies based on the quality of
the clusters, and the application of the sweet spot technique, or a technique with a similar aim, to

Pareto sets with more than two objectives.
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Chapter 8

Decision Support System for the
Analysis of Vulnerabilities in Telematic
Networks

Information system security must battle regularly with new threats that jeopardize the pro-
tection of those systems. Security tests have to be run periodically not only to identify vul-
nerabilities but also to control information systems, network devices, services and commu-
nications. Vulnerability assessments gather large amounts of data to be further analyzed
by security experts, who recently have started using data analysis techniques to extract
useful knowledge from these data. With the aim of assisting this process, this chapter uses
CAOS to cluster information of security tests. The process enables the clustering of the
tested devices with similar vulnerabilities to detect hidden patterns, rogue or risky devices.
Two different types of metrics have been selected to guide the discovery process in order to
get the best clustering solution: general-purpose and specific-domain objectives. The re-
sults of both approaches are compared with the state-of-the-art single-objective clustering

techniques to corroborate the benefits of the clustering results to security analysts.

8.1 Motivation

The increase of the dependency of organizations on information and communication technologies,
together with the need of securing companies systems in a world were new threats are risks appear
daily, has unleased the demand for new and effective security techniques. Therefore, maintaining
a proper level of security is a key challenge in current organizations, even when they have the
most advanced technology and trained professionals (Nedjah et al., 2007). Consequently periodic
security tests —project-oriented risk assessments of information systems and networks through the
application of professional analysis on a security scan— are necessary to assure that security does
not degrade below an acceptable risk level. One of the most important analysis included in these

tests is the vulnerability assessment, i.e., the process followed to identify and quantify vulnerabili-
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ties. Both follow a two-step process: test everything possible and generate a concise report.

The cost and the time involved in a security test may limit its depth, so an automation is es-
sential, specially in the analysis of test results. A complete analysis must also coordinate diverse
sources of information to support an intelligent response (Dawkins and Hale, 2004). So security
applications demand intelligence to detect malicious data, unauthorized traffic or vulnerabilities
(DeLooze, 2004). Machine learning can be applied to process the results of vulnerability assess-
ments. The use of unsupervised learning for discovering hidden patterns through the identification
of groups of tested devices with similar vulnerabilities has already been presented in Analia. This
is the analysis module of the framework Consensus, a computer-aided system that automates the
processes associated to security tests for information systems and networks (Corral, 2009).

Analia helps security analysts in the task of extracting conclusions from data of security tests.
This is due to the integration of different clustering approaches and clustering validation tech-
niques. However, two independent steps are needed before extracting conclusions: analysts have
to select (1) the clustering approach and (2) the validity index to return the most appropriate solu-
tion. Therefore, the best clustering solution depends on the selected validity index, as each index
may evaluate different goals. Moreover, the clustering and the index goals may not be aligned.
Analysts also ask for a system where configuration parameters not related to their domain, like the
clustering technique or the validation index, are provided automatically.

This chapter presents a new contribution in the domain of information system security. The
drawbacks of the clustering process in Analia are tackled with CAOS. This approach groups tested
devices with similar vulnerabilities guided by different goals, as a multiobjective technique allows.
So security analysts will obtain the best clustering solution considering different criteria simulta-
neously. Thus analysts will not need to configure any parameter regarding clustering or validity
indexes and will be able to focus only on the obtained clustering results, which is their actual
concern. Two different configurations for CAOS are studied, depending on the objectives used
to evaluate the system: general-purpose and domain-specific objectives. The experimental anal-
ysis presented in this chapter demonstrates the improvement of clustering results when using the
domain-specific objectives with CAOS. Also the process of extracting conclusions from results is
simplified, as analysts are now able to extract the best clustering solution and the most adapted to
the domain-specific objectives in a single step.

The remainder of this chapter is organized as follows. First, the related work on machine learn-
ing in the security domain is introduces. Next, the objectives used to guide CAOS are proposed.

Finally, the clustering process in Analia and the experimentation results are presented.

8.2 Related Work

The increasing frequency of incidents of security breaches in information systems and the ever-
increasing reliance of organizations on information technologies involve a constant monitoring of

the existing security level for early detection of any negative variation in that control measure. The
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last IBM Trend and Risk Report provided an account of vulnerability disclosures in the last few
years. It stated that the annual vulnerability disclosure rate appears to be fluctuating between 6-
7 thousand new disclosures each year. The most prevalent primary consequence of vulnerability
exploitation continues to be gain access (Services, 2009). A study carried out by IDC states that
external threats often overshadow the importance of protecting against internal risks (Burke, 2009).
Therefore, periodic security tests are needed to check that security is maintained. Consensus is a
security testing framework created to aid security managers in these regular tasks (Corral, 2009).
However, these periodical tests generate large volumes of data that have to be processed to give an
alarm signal in case new vulnerabilities or security holes are detected.

The huge amount of data produced by security tests has promoted the use of enhanced tech-
niques to recognize malicious behavior patterns or unauthorized changes in information systems or
networks (DeLooze, 2004). These domains are usually defined by sets of unlabeled examples, and
experts aim at extracting novel and useful information about the network behavior that helps them
detect vulnerabilities, among others. In this context, clustering appears as an appealing approach
that allows grouping network devices with similar security vulnerabilities, thence, identifying po-
tential threats to the network.

Several clustering techniques have been applied to the network security domain thus far. For
example, k-means (Hartigan and Wong, 1979) has been used to group similar alarm records (Bloe-
dorn et al., 2006) and to detect network intrusions (Leung and Leckie, 2005). Self-organizing
maps (SOM) (Kohonen, 2000) have been employed to detect computer attacks (Del.ooze, 2004),
network intrusions (Depren et al., 2004), and anomalous traffic (Ramadas et al., 2003). Despite
the success of these applications, all these clustering techniques guide the discovery process with a
single criterion. For example, k-means minimizes the total within-cluster variance and tends to find
spherical clusters (Hartigan and Wong, 1979). Our case is different, as we are interested in obtain-
ing clusterings that satisfy different criteria. For this purpose, several authors have proposed to run
different clustering techniques to obtain different structures, and then, involve the network expert
into the process in order to manually select the best structure according to certain predetermined
validation methods.

To automatize this process, we propose the use of CAOS, which guides the clustering pro-
cess with different objectives. Some MC approaches have been successfully applied to important
real-world problems such as intrusion detection (Anchor et al., 2002), formation of cluster-based
sensing networks in wireless sensor networks (Yang et al., 2007), and creation of security profiles
(Gupta et al., 20006).

8.3 Definition of Specific Optimization Objectives According to the

Domain

The quality of each individual, which is a possible clustering solution, is evaluated with a set of ob-

jective functions. These are validation indexes, that is, methods to validate how good a clustering
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solution is. In our experiments, we used two different types of objectives: (1) objectives typi-
cally employed by general-purpose clustering techniques and (2) objectives designed as validation
indexes by network security experts, which reflect how clusters should look like. The general-
purpose indexes considered here are the Deviation of clusters and the Connectivity between clus-
ters, which measure the compactness and the connectedness of clusters, respectively (see Section
4.4). The domain-specific indexes employed here are Intracohesion (Ita) and Intercohesion (Ite)
factors (Corral et al., 2006), which also measure the compactness and connectedness, respectively,
but now in terms of security vulnerabilities. In other words, the Intracohesion factor evaluates the
similarity between the elements of each cluster according to the vulnerabilities they share. Values
close to 1 indicate that the elements of each cluster are similar each other, and close to 0 indicate
that they are different. On the other hand, the Infercohesion factor evaluates the similarity between
the clusters according to the vulnerabilities of each one. Values close to O indicate that the clusters
are different and close to 1 indicate that they are similar. Thus, we are interested in maximize the
Intracohesion factor and minimize the Intercohesion factor. These validation indexes are described
in Equations 8.1 and 8.2. Where m is the number of examples in the training data set; C is the clus-
tering obtained; n is the number of clusters; C; is the cluster #; |C;| is the number of elements in C;;
v; is the centroid of Cj; d(x,y) is the Euclidean distance between x and y elements; nn(x, i) returns
the ith nearest element of x according to d(x,y); € is the amount of nearest elements taken into
account; CommonVulnerabilities(C;, C) is the number of the common vulnerabilities between all
the elements of C; and C;; and TotalVulnerabilities(C;) is the number of vulnerabilities that all the

elements of C; have in common. The Intracohesion factor Intercohesion factor

1 v 1
Ita(C) = ZZ mZZS(x,y) , where (8.1)
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After training, CAOS returns a population of non-dominated solutions which optimize the
particular objectives chosen for the problem. Then, the system needs to select one of the solutions

and, finally, return it to the security expert.

CAOS uses different validation techniques to recover one of the solutions of the Pareto set.

In our experiments, we considered the following ones: the Davies-Bouldin index (Davies and
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Bouldin, 1979), the Dunn index (Dunn, 1974), the Silhouette index (Rousseew, 1987), the Intra-
cohesion factor, the Intercohesion factor, and the Intra-Inter (II) factor (Corral, 2009; Corral et al.,
2006). The first three indexes have been explained in Section 2.5, the other ones are explained
in Equations 8.1 to 8.3. The Intra-Inter factor returns the best solution equally weighting the two

objectives used, and to obtain the best solution the factor has to be maximized.

I(C) = Ita(C) - Ite(C) (8.3)

As we are interested in analyzing the difference in the behavior of the system when it is guided
by general-purpose validation indexes and when it is guided by the domain-specific indexes, in the
remainder of this chapter we take the two approaches to face the network security problem. For the
sake of clarity, the system guided by the two general-purpose validation indexes (i.e., Connectivity
and Deviation) will be referred to as CAOS. On the other hand, the system guided by the two
domain-specific validation indexes (i.e., Intracohesion and Intercohesion) will be addressed as
CAOSII.

8.4 Consensus and Analia to Analyze Security Tests

This section describes Consensus and its analysis module Analia. The benefits of CAOS when

processing the results of security tests are described.

8.4.1 Description

Consensus is an information security system that automates processes related to security assess-
ments in order to minimize the time needed to perform a security test (Corral, 2009). Consensus
gathers data from different network devices, not only computers but also routers, firewalls and
Intrusion Detection Systems (IDS). General information, port and vulnerability scanning data, op-
erating system (OS) fingerprinting, routing and filtering rules, IDS response, answer to malicious
code, weak passwords reporting, and response to denial of service attacks can be stored for each

tested device.

The great amount of data for every device and the different number and type of attributes
complicates a manual traffic pattern finding. Analia is the data analysis module of Consensus and
includes unsupervised learning. It finds resemblances within tested devices, and clustering helps
security analysts in the extraction of conclusions from data. The best clustering results are selected
by applying cluster validity indexes. Explanations of clustering results are provided to security
analysts so as to give a more comprehensive response (Corral, 2009). The integration of Analia in

Consensus is shown in Figure 8.1.
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8.4.2 Single-Objective Clustering

The manual analysis of data gathered after a security test can become an arduous labor that may
even mask relevant information due to the large amount of data. Our previous works validated the
incorporation of several unsupervised learning techniques into Analia. They were based on single-
objective clustering approaches, like k-means, x-means and SOM (Corral, 2009; Corral et al.,
2006).

Analia clusters the data set composed by the network devices that have already been audited.
Security experts look forward to a system that groups devices with similar vulnerabilities. How-
ever, the knowledge representation of the tested devices is based on the port scanning data and the
OS fingerprinting. Features directly related to vulnerabilities have not been used to cluster, as their
data formatting is not suitable for input parameters of the aforementioned clustering algorithms.
On the other hand, data obtained from these two processes is what a security expert would first
analyze to find heterogeneities in tested devices. In fact, devices with similar open ports and OS
may share the same security vulnerabilities, so handling this information is also critical.

Two validation indexes (Intracohesion and Intercohesion) were formulated directly related to
the domain, in order to evaluate the clustering results according to existing security vulnerabilities,
as detailed in Section 8.3. Thus, the resulting clusters with similar open ports and OS can be
appraised according to their common vulnerabilities.

The data set stored in Analia is a real unsupervised domain, where the number of the existing
classes is not known a priori. Two networks never operate in the same way, so each security
assessment produces a new different domain. This is a drawback for several clustering approaches,
which require the user to specify the number of clusters of the solution. So many executions need
to be run to select the best solution according to a certain validity index. The indexes included
in Analia are the following: Davies-Bouldin, Dunn, Silhouette, Intracohesion, Intercohesion and
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Figure 8.1: Architecture of Consensus system and Analia data analysis module.
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The process to achieve the best clustering solution in Analia is summarized as follows:
1. Select the single-objective clustering approach.

2. Run different executions varying input parameters.

3. Calculate validation indexes for each execution.

4. Select the validation index as decision criterion to get the best results.

Security analysts do not usually care about the selected clustering approach and index criteria,
but about the best clustering solution. Analy