1,104 research outputs found

    Architecture of participation : the realization of the Semantic Web, and Internet OS

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, System Design and Management Program, February 2008.Includes bibliographical references (p. 65-68).The Internet and World Wide Web (WWW) is becoming an integral part of our daily life and touching every part of the society around the world including both well-developed and developing countries. The simple technology and genuine intention of the original WWW, which is to help researchers share and exchange information and data across incompatible platforms and systems, have evolved into something larger and beyond what one could conceive. While WWW has reached the critical mass, many limitations are uncovered. To address the limitations, the development of its extension, the Semantic Web, has been underway for more than five years by the inventor of WWW, Tim Berners-Lee, and the technical community. Yet, no significant impact has been made. Its awareness by the public is surprisingly and unfortunately low. This thesis will review the development effort of the Semantic Web, examine its progress which appears lagging compared to WWW, and propose a promising business model to accelerate its adoption path.by Shelley Lau.S.M

    Re-new - IMAC 2011 Proceedings

    Get PDF

    (re)new configurations:Beyond the HCI/Art Challenge: Curating re-new 2011

    Get PDF

    Landscapes of the invisible: sounds, cosmologies and poetics of space

    Get PDF
    In this PhD by Publication I revisit and contextualize art works and essays I have collaboratively created under the name Flow Motion between 2004-13, in order to generate new insights on the contributions they have made to diverse and emerging fields of contemporary arts practice/research, including digital, virtual, sonic and interdisciplinary art. The works discussed comprise the digital multimedia installation and sound art performance Astro Black Morphologies/Astro Dub Morphologies (2004-5), the sound installation and performance Invisible (2006-7), the web art archive and performance presentation project promised lands (2008-10), and two related texts, Astro Black Morphologies: Music and Science Lovers (2004) and Music and Migration (2013). I show how these works map new thematic constellations around questions of space and diaspora, music and cosmology, invisibility and spectrality, the body and perception. I also show how the works generate new connections between and across contemporary avant-garde, experimental and popular music, and visual art and cinema traditions. I describe the methodological design, approaches and processes through which the works were produced, with an emphasis on transversality, deconstruction and contemporary black music forms as key tools in my collaborative artistic and textual practice. I discuss how, through the development of methods of data translation and transformation, and distinctive visual approaches for the re-elaboration of archival material, the works produced multiple readings of scientific narratives, digital X-ray data derived from astronomical research on black holes and dark energy, and musical, photographic and textual material related to historical and contemporary accounts of migration. I also elaborate on the relation between difference and repetition, the concepts of multiplicity and translation, and the processes of collective creation which characterize my/Flow Motion’s work. The art works and essays I engage with in this commentary produce an idea of contemporary art as the result of a fluid, open and mutating assemblage of diverse and hybrid methods and mediums, and as an embodiment of a cross-cultural, transversal and transdisciplinary knowledge shaped by research, process, creative dialogues, collaborative practice and collective signature

    The Augmented Learner : The pivotal role of multimedia enhanced learning within a foresight-based learning model designed to accelerate the delivery of higher levels of learner creativity

    Get PDF
    The central theme for this dissertation lies at the intersection of multisensory technology enhanced learning, the field of foresight and transformative pedagogy and their role in helping to develop greater learner creativity. These skills will be key to meeting the needs of the projected growing role of the creative class within the emerging global workforce structure and the projected growth in R&D and the advancement of human-machine resource management. Over the past two decades, we have traversed from the Industrial Age through the Information Age into what we now call postnormal times, manifested partly in Industry 4.0. It is widely considered that the present education system in countries with developed economies is not optimised for delivering the much-needed creative skills, which are prominent amongst the critical 21st C skills required by the creative class, (also known as creatives), which will be increasingly dominant in terms of near future employability. Consequently, there will be a potential shortfall of creatives unless this issue is rapidly addressed. To ensure that the creative skills I aimed to enhance were relevant and aligned with emerging demands of the changing landscape, I deconstructed the critical dimensions, context, and concept of creativity in postnormal times as well as undertaking in-depth research on the potential future workscape and the future of education and learning, applying a comprehensive foresight approach to the latter using a 2030-2040 horizon. Based upon the outcomes of these studies I designed an experimental integrative learning system that I have applied, researched, and evolved over the past 4 years with over 150 students at PhD and master’s level. The system is aimed at generating higher levels of creative engagement and development through a focus on increased immersion and creativity-inducing approaches. The system, which I call the Living Learning System, is based upon eight integrated elements, supported by course development pillars aimed at optimizing learner future skill competencies and levels of creativity for which I apply severalevaluation techniques and metrics. Accordingly, as the central hypothesis of this dissertation, I argue that by integrating the critical elements of the Living Learning System, such as emerging multisensory technology enhanced learning coupled with optimised transformative and experiential learning approaches, framed within the field of foresight, with its futures focus and decentralised thinking approaches, students increase their ability to be creative. This increased ability is based on the student attaining a richer level of personal ambience through deeper immersion generated through higher incidence of self-direction, constructivism-based blended pedagogy, futures literacy, and a balance of decentralised and systems-based thinking, as well as cognitive and social platforms aimed at optimizing learner creative achievement. This dissertation demonstrates how the application of the combined elements of the Living Learning System, with its futures focus and its ensuing transdisciplinary curricula and courses, can provide a clear path towards significantly increased learner creativity. The findings of the quantitative, questionnaire-based research set out in detail in Chapter 9, together with the performance and creativity evaluation models applied against the selected case studies of student projects substantiate the validity of the hypothesis that the application of the Living Learning System with its futures focus leads to increased creativity in line with the needs of the postnormal era.publishedVersio

    Logical Networks: Self-organizing Overlay Networks and Overlay Computing Systems: [EPI Proposal V2.0]

    Get PDF
    Contents 1 Team on March 15, 2010 ...........................................42 Capsule ...........................................52.1 Slogan and logo............................................ 5 2.2 One equation fits all and keywords ................................. 6 2.3 How to read this proposal ...................................... 63 Vertical view ...........................................63.1 Panorama............................................... 6 3.2 General definitions .......................................... 8 3.3 Virtual organization ......................................... 9 3.4 Execution model ........................................... 94 Horizontal view ...............................................94.1 Panorama............................................... 94.2 Arigatoni overlay network ...................................... 10 4.2.1 Arigatoni units........................................ 10 4.2.2 Virtual organizations in Arigatoni ............................. 12 4.2.3 Resource discovery protocol (RDP)............................. 12 4.2.4 Virtual Intermittent Protocol (VIP) ............................ 13 4.2.5 iNeu: librairies for network computing........................... 144.3 Babelchord, a DHT’s tower ..................................... 144.4 Synapse,interconnecting heterogeneous overlay networks. . . . . . . . . . . . . . . . . . . . . 154.5 Cross-layer overlay design for geo-sensible applications . . . . . . . . . . . . . . . . . . . . . . 175 Diagonal view...............................................175.1 Panorama............................................... 17 5.2 Trees versus graphs: a conflict without a cause .......................... 17 5.3 Fault tolerance ............................................ 18 5.4 Parametricity and universality ................................... 18 5.5 Social networking........................................... 19 5.6 Choice of development platform................................... 19 5.7 Quality metrics for an overlay computer .............................. 19 5.8 Trust and security .......................................... 20 5.9 New models of computations .................................... 216 Topics and time line...............................................226.1 Panorama............................................... 226.2 Topicview............................................... 22 6.2.1 Vertical issues......................................... 22 6.2.2 Horizontal issues ....................................... 22 6.2.3 Diagonalissues........................................ 236.3 Timeview............................................... 23 6.3.1 Short-term .......................................... 23 6.3.2 Medium-term......................................... 24 6.3.3 Long-term........................................... 247 Potential application domains ...........................................247.1 Panorama............................................... 24 7.2 P2P social networks ......................................... 25 7.3 Overlay computer for mobile ad hoc networks........................... 25 7.4 OverStic: the mesh overlay network in Sophia Antipolis ..................... 27 7.5 Reducing the Digital Divide..................................... 28 7.6 GRID applications: scenario for seismic monitoring ....................... 29 7.7 Interconnection of heterogeneous overlay networks ........................ 30 7.8 Toward an overlay network of things (RFID) ........................... 318 Software ...........................................328.1 Panorama............................................... 328.2 Prototype software.......................................... 32 8.2.1 Arigatoni simulator ..................................... 32 8.2.2 Ariwheels........................................... 32 8.2.3 BabelChord.......................................... 36 8.2.4 Synapse............................................ 37 8.2.5 Open-Synapse Client..................................... 38 8.2.6 myTransport Gui....................................... 39 8.2.7 CarPal: a P2P carpooling service ............................. 39 8.2.8 Husky interpreter....................................... 408.3 Potential software .......................................... 41 8.3.1 myMed (in french), see http://www-sop.inria.fr/mymed . . . . . . . . . . . . . . . . 419 Contracts...........................................439.1 INTERREG Alcotra: myMed,2010-2013.............................. 43 9.2 COLOR:JMED,2010 ........................................ 43 9.3 FP6 FET GlobalComputing: IST AEOLUS, 2006-2010 ..................... 43 9.4 JET TEMPUS DEUKS, 2007-2009................................. 4410 Collaborations ...........................................4411 Self assessment ...........................................4411.1 Trivia ................................................. 45 11.2 Conclusions.............................................. 45We propose foundations for generic overlay networks and overlay computing systems. Such overlays are built over a large number of distributed computational agents, virtually organized in colonies or virtual organizations, and ruled by a leader (broker) who is elected democratically (vox populi, vox dei) or imposed by system administrators (primus inter pares). Every agent asks the broker to log in the colony by declaring the resources that can be offered (with variable guarantees). Once logged in, an agent can ask the broker for other resources. Colonies can recursively be considered as evolved agents who can log in an outermost colony governed by another super-leader. Communications and routing intra-colonies goes through a broker-2-broker PKI-based negotiation. Every broker routes intra- and inter- service requests by filtering its resource routing table, and then forwarding the request first inside its colony, and second outside, via the proper super-leader (thus applying an endogenous-first-estrogen- last strategy). Theoretically, queries are formulæ in first-order logic equipped with a small program used to orchestrate and synchronize atomic formulæ (atomic services). When the client agent receives notification of all (or part of) the requested resources, then the real resource exchange is performed directly by the server(s) agents, without any further mediation of the broker, in a pure peer-to-peer fashion. The proposed overlay promotes an intermittent participation in the colony, since peers can appear, disappear, and organize themselves dynamically. This implies that the routing process may lead to failures, because some agents have quit or are temporarily unavailable, or they were logged out manu militari by the broker due to their poor performance or greediness. We aim to design, validate through simulation, and implement these foundations in an overlay network computer system. (From [Liquori-Cosnard TGC-07 paper])

    Digital media in modern art (theater perfomances).

    Get PDF
    Mastergradsoppgave i digital kommunikasjon og kultur, Avdeling for lærerutdanning og naturvitenskap, Høgskolen i Hedmark, 2016.This thesis seeks to explore how digital media / digital artefacts are being used and implemented in theater performance art, based on analysis of one modern play. The aim of this thesis is also to see how digital performances affects and changes the traditional notion of theater as an art form. This thesis aims to answer the following research question: What impact do new digital devices have on such art as theater

    Value activity monitoring

    Get PDF
    • …
    corecore