12 research outputs found

    An intuitive control space for material appearance

    Get PDF
    Many different techniques for measuring material appearance have been proposed in the last few years. These have produced large public datasets, which have been used for accurate, data-driven appearance modeling. However, although these datasets have allowed us to reach an unprecedented level of realism in visual appearance, editing the captured data remains a challenge. In this paper, we present an intuitive control space for predictable editing of captured BRDF data, which allows for artistic creation of plausible novel material appearances, bypassing the difficulty of acquiring novel samples. We first synthesize novel materials, extending the existing MERL dataset up to 400 mathematically valid BRDFs. We then design a large-scale experiment, gathering 56,000 subjective ratings on the high-level perceptual attributes that best describe our extended dataset of materials. Using these ratings, we build and train networks of radial basis functions to act as functionals mapping the perceptual attributes to an underlying PCA-based representation of BRDFs. We show that our functionals are excellent predictors of the perceived attributes of appearance. Our control space enables many applications, including intuitive material editing of a wide range of visual properties, guidance for gamut mapping, analysis of the correlation between perceptual attributes, or novel appearance similarity metrics. Moreover, our methodology can be used to derive functionals applicable to classic analytic BRDF representations. We release our code and dataset publicly, in order to support and encourage further research in this direction

    An intuitive control space for material appearance

    Get PDF
    Many different techniques for measuring material appearance have been proposed in the last few years. These have produced large public datasets, which have been used for accurate, data-driven appearance modeling. However, although these datasets have allowed us to reach an unprecedented level of realism in visual appearance, editing the captured data remains a challenge. In this paper, we present an intuitive control space for predictable editing of captured BRDF data, which allows for artistic creation of plausible novel material appearances, bypassing the difficulty of acquiring novel samples. We first synthesize novel materials, extending the existing MERL dataset up to 400 mathematically valid BRDFs. We then design a large-scale experiment, gathering 56,000 subjective ratings on the high-level perceptual attributes that best describe our extended dataset of materials. Using these ratings, we build and train networks of radial basis functions to act as functionals mapping the perceptual attributes to an underlying PCA-based representation of BRDFs. We show that our functionals are excellent predictors of the perceived attributes of appearance. Our control space enables many applications, including intuitive material editing of a wide range of visual properties, guidance for gamut mapping, analysis of the correlation between perceptual attributes, or novel appearance similarity metrics. Moreover, our methodology can be used to derive functionals applicable to classic analytic BRDF representations. We release our code and dataset publicly, in order to support and encourage further research in this direction

    Analyzing interfaces and workflows for light field editing

    Get PDF
    With the increasing number of available consumer light field cameras, such as Lytro, Raytrix, or Pelican Imaging, this new form of photography is progressively becoming more common. However, there are still very few tools for light field editing, and the interfaces to create those edits remain largely unexplored. Given the extended dimensionality of light field data, it is not clear what the most intuitive interfaces and optimal workflows are, in contrast with well-studied two-dimensional (2-D) image manipulation software. In this work, we provide a detailed description of subjects' performance and preferences for a number of simple editing tasks, which form the basis for more complex operations. We perform a detailed state sequence analysis and hidden Markov chain analysis based on the sequence of tools and interaction paradigms users employ while editing light fields. These insights can aid researchers and designers in creating new light field editing tools and interfaces, thus helping to close the gap between 4-D and 2-D image editing

    The joint role of geometry and illumination on material recognition

    Get PDF
    Observing and recognizing materials is a fundamental part of our daily life. Under typical viewing conditions, we are capable of effortlessly identifying the objects that surround us and recognizing the materials they are made of. Nevertheless, understanding the underlying perceptual processes that take place to accurately discern the visual properties of an object is a long-standing problem. In this work, we perform a comprehensive and systematic analysis of how the interplay of geometry, illumination, and their spatial frequencies affects human performance on material recognition tasks. We carry out large-scale behavioral experiments where participants are asked to recognize different reference materials among a pool of candidate samples. In the different experiments, we carefully sample the information in the frequency domain of the stimuli. From our analysis, we find significant first-order interactions between the geometry and the illumination, of both the reference and the candidates. In addition, we observe that simple image statistics and higher-order image histograms do not correlate with human performance. Therefore, we perform a high-level comparison of highly nonlinear statistics by training a deep neural network on material recognition tasks. Our results show that such models can accurately classify materials, which suggests that they are capable of defining a meaningful representation of material appearance from labeled proximal image data. Last, we find preliminary evidence that these highly nonlinear models and humans may use similar high-level factors for material recognition tasks

    Toward Evaluating Material Design Interface Paradigms for Novice Users

    No full text
    physical sliders perceptual sliders image navigation physical sliders perceptual sliders image navigation final final final final final fina

    Appearance-design interfaces and tools for computer cinematography: Evaluation and application

    Get PDF
    We define appearance design as the creation and editing of scene content such as lighting and surface materials in computer graphics. The appearance design process takes a significant amount of time relative to other production tasks and poses difficult artistic challenges. Many user interfaces have been proposed to make appearance design faster, easier, and more expressive, but no formal validation of these interfaces had been published prior to our body of work. With a focus on novice users, we present a series of investigations into the strengths and weaknesses of various appearance design user interfaces. In particular, we develop an experimental methodology for the evaluation of representative user interface paradigms in the areas of lighting and material design. We conduct three user studies having subjects perform design tasks under controlled conditions. In these studies, we discover new insight into the effectiveness of each paradigm for novices measured by objective performance as well as subjective feedback. We also offer observations on common workflow and capabilities of novice users in these domains. We use the results of our lighting study to develop a new representation for artistic control of lighting, where light travels along nonlinear paths

    Toward evaluating material design interface paradigms for novice users

    No full text
    corecore