14 research outputs found

    The Semantics of Non-Declaratives

    Get PDF

    Intensional Entities

    Get PDF

    The Semantics of Non-Declaratives

    Get PDF

    Complexity Classifications via Algebraic Logic

    Get PDF
    Complexity and decidability of logics is an active research area involving a wide range of different logical systems. We introduce an algebraic approach to complexity classifications of computational logics. Our base system GRA, or general relation algebra, is equiexpressive with first-order logic FO. It resembles cylindric algebra but employs a finite signature with only seven different operators, thus also giving a very succinct characterization of the expressive capacities of first-order logic. We provide a comprehensive classification of the decidability and complexity of the systems obtained by limiting the allowed sets of operators of GRA. We also discuss variants and extensions of GRA, and we provide algebraic characterizations of a range of well-known decidable logics

    Algebraic classifications for fragments of first-order logic and beyond

    Full text link
    Complexity and decidability of logics is a major research area involving a huge range of different logical systems. This calls for a unified and systematic approach for the field. We introduce a research program based on an algebraic approach to complexity classifications of fragments of first-order logic (FO) and beyond. Our base system GRA, or general relation algebra, is equiexpressive with FO. It resembles cylindric algebra but employs a finite signature with only seven different operators. We provide a comprehensive classification of the decidability and complexity of the systems obtained by limiting the allowed sets of operators. We also give algebraic characterizations of the best known decidable fragments of FO. Furthermore, to move beyond FO, we introduce the notion of a generalized operator and briefly study related systems.Comment: Significantly updates the first version. The principal set of operations change

    On the identification of properties and propositional functions

    Get PDF

    Property Theories

    Get PDF
    Revised and reprinted; originally in Dov Gabbay & Franz Guenthner (eds.), Handbook of Philosophical Logic, Volume IV. Kluwer 133-251. -- Two sorts of property theory are distinguished, those dealing with intensional contexts property abstracts (infinitive and gerundive phrases) and proposition abstracts (‘that’-clauses) and those dealing with predication (or instantiation) relations. The first is deemed to be epistemologically more primary, for “the argument from intensional logic” is perhaps the best argument for the existence of properties. This argument is presented in the course of discussing generality, quantifying-in, learnability, referential semantics, nominalism, conceptualism, realism, type-freedom, the first-order/higher-order controversy, names, indexicals, descriptions, Mates’ puzzle, and the paradox of analysis. Two first-order intensional logics are then formulated. Finally, fixed-point type-free theories of predication are discussed, especially their relation to the question whether properties may be identified with propositional functions

    Property theory: The Type-Free Approach v. the Church Approach

    Get PDF

    Semantics in a frege structure

    Get PDF

    A solution to Frege's puzzle

    Get PDF
    corecore