387 research outputs found

    Human-Intelligence and Machine-Intelligence Decision Governance Formal Ontology

    Get PDF
    Since the beginning of the human race, decision making and rational thinking played a pivotal role for mankind to either exist and succeed or fail and become extinct. Self-awareness, cognitive thinking, creativity, and emotional magnitude allowed us to advance civilization and to take further steps toward achieving previously unreachable goals. From the invention of wheels to rockets and telegraph to satellite, all technological ventures went through many upgrades and updates. Recently, increasing computer CPU power and memory capacity contributed to smarter and faster computing appliances that, in turn, have accelerated the integration into and use of artificial intelligence (AI) in organizational processes and everyday life. Artificial intelligence can now be found in a wide range of organizational systems including healthcare and medical diagnosis, automated stock trading, robotic production, telecommunications, space explorations, and homeland security. Self-driving cars and drones are just the latest extensions of AI. This thrust of AI into organizations and daily life rests on the AI community’s unstated assumption of its ability to completely replicate human learning and intelligence in AI. Unfortunately, even today the AI community is not close to completely coding and emulating human intelligence into machines. Despite the revolution of digital and technology in the applications level, there has been little to no research in addressing the question of decision making governance in human-intelligent and machine-intelligent (HI-MI) systems. There also exists no foundational, core reference, or domain ontologies for HI-MI decision governance systems. Further, in absence of an expert reference base or body of knowledge (BoK) integrated with an ontological framework, decision makers must rely on best practices or standards that differ from organization to organization and government to government, contributing to systems failure in complex mission critical situations. It is still debatable whether and when human or machine decision capacity should govern or when a joint human-intelligence and machine-intelligence (HI-MI) decision capacity is required in any given decision situation. To address this deficiency, this research establishes a formal, top level foundational ontology of HI-MI decision governance in parallel with a grounded theory based body of knowledge which forms the theoretical foundation of a systemic HI-MI decision governance framework

    A Smart Products Lifecycle Management (sPLM) Framework - Modeling for Conceptualization, Interoperability, and Modularity

    Get PDF
    Autonomy and intelligence have been built into many of today’s mechatronic products, taking advantage of low-cost sensors and advanced data analytics technologies. Design of product intelligence (enabled by analytics capabilities) is no longer a trivial or additional option for the product development. The objective of this research is aimed at addressing the challenges raised by the new data-driven design paradigm for smart products development, in which the product itself and the smartness require to be carefully co-constructed. A smart product can be seen as specific compositions and configurations of its physical components to form the body, its analytics models to implement the intelligence, evolving along its lifecycle stages. Based on this view, the contribution of this research is to expand the “Product Lifecycle Management (PLM)” concept traditionally for physical products to data-based products. As a result, a Smart Products Lifecycle Management (sPLM) framework is conceptualized based on a high-dimensional Smart Product Hypercube (sPH) representation and decomposition. First, the sPLM addresses the interoperability issues by developing a Smart Component data model to uniformly represent and compose physical component models created by engineers and analytics models created by data scientists. Second, the sPLM implements an NPD3 process model that incorporates formal data analytics process into the new product development (NPD) process model, in order to support the transdisciplinary information flows and team interactions between engineers and data scientists. Third, the sPLM addresses the issues related to product definition, modular design, product configuration, and lifecycle management of analytics models, by adapting the theoretical frameworks and methods for traditional product design and development. An sPLM proof-of-concept platform had been implemented for validation of the concepts and methodologies developed throughout the research work. The sPLM platform provides a shared data repository to manage the product-, process-, and configuration-related knowledge for smart products development. It also provides a collaborative environment to facilitate transdisciplinary collaboration between product engineers and data scientists

    Robotix-Academy Conference for Industrial Robotics (RACIR) 2019

    Get PDF
    Robotix-Academy Conference for Industrial Robotics (RACIR) is held in University of Liège, Belgium, during June 05, 2019. The topics concerned by RACIR are: robot design, robot kinematics/dynamics/control, system integration, sensor/ actuator networks, distributed and cloud robotics, bio-inspired systems, service robots, robotics in automation, biomedical applications, autonomous vehicles (land, sea and air), robot perception, manipulation with multi-finger hands, micro/nano systems, sensor information, robot vision, multimodal interface and human-robot interaction.

    Surgical Subtask Automation for Intraluminal Procedures using Deep Reinforcement Learning

    Get PDF
    Intraluminal procedures have opened up a new sub-field of minimally invasive surgery that use flexible instruments to navigate through complex luminal structures of the body, resulting in reduced invasiveness and improved patient benefits. One of the major challenges in this field is the accurate and precise control of the instrument inside the human body. Robotics has emerged as a promising solution to this problem. However, to achieve successful robotic intraluminal interventions, the control of the instrument needs to be automated to a large extent. The thesis first examines the state-of-the-art in intraluminal surgical robotics and identifies the key challenges in this field, which include the need for safe and effective tool manipulation, and the ability to adapt to unexpected changes in the luminal environment. To address these challenges, the thesis proposes several levels of autonomy that enable the robotic system to perform individual subtasks autonomously, while still allowing the surgeon to retain overall control of the procedure. The approach facilitates the development of specialized algorithms such as Deep Reinforcement Learning (DRL) for subtasks like navigation and tissue manipulation to produce robust surgical gestures. Additionally, the thesis proposes a safety framework that provides formal guarantees to prevent risky actions. The presented approaches are evaluated through a series of experiments using simulation and robotic platforms. The experiments demonstrate that subtask automation can improve the accuracy and efficiency of tool positioning and tissue manipulation, while also reducing the cognitive load on the surgeon. The results of this research have the potential to improve the reliability and safety of intraluminal surgical interventions, ultimately leading to better outcomes for patients and surgeons

    Intelligent Web Services Architecture Evolution Via An Automated Learning-Based Refactoring Framework

    Full text link
    Architecture degradation can have fundamental impact on software quality and productivity, resulting in inability to support new features, increasing technical debt and leading to significant losses. While code-level refactoring is widely-studied and well supported by tools, architecture-level refactorings, such as repackaging to group related features into one component, or retrofitting files into patterns, remain to be expensive and risky. Serval domains, such as Web services, heavily depend on complex architectures to design and implement interface-level operations, provided by several companies such as FedEx, eBay, Google, Yahoo and PayPal, to the end-users. The objectives of this work are: (1) to advance our ability to support complex architecture refactoring by explicitly defining Web service anti-patterns at various levels of abstraction, (2) to enable complex refactorings by learning from user feedback and creating reusable/personalized refactoring strategies to augment intelligent designers’ interaction that will guide low-level refactoring automation with high-level abstractions, and (3) to enable intelligent architecture evolution by detecting, quantifying, prioritizing, fixing and predicting design technical debts. We proposed various approaches and tools based on intelligent computational search techniques for (a) predicting and detecting multi-level Web services antipatterns, (b) creating an interactive refactoring framework that integrates refactoring path recommendation, design-level human abstraction, and code-level refactoring automation with user feedback using interactive mutli-objective search, and (c) automatically learning reusable and personalized refactoring strategies for Web services by abstracting recurring refactoring patterns from Web service releases. Based on empirical validations performed on both large open source and industrial services from multiple providers (eBay, Amazon, FedEx and Yahoo), we found that the proposed approaches advance our understanding of the correlation and mutual impact between service antipatterns at different levels, revealing when, where and how architecture-level anti-patterns the quality of services. The interactive refactoring framework enables, based on several controlled experiments, human-based, domain-specific abstraction and high-level design to guide automated code-level atomic refactoring steps for services decompositions. The reusable refactoring strategy packages recurring refactoring activities into automatable units, improving refactoring path recommendation and further reducing time-consuming and error-prone human intervention.Ph.D.College of Engineering & Computer ScienceUniversity of Michigan-Dearbornhttps://deepblue.lib.umich.edu/bitstream/2027.42/142810/1/Wang Final Dissertation.pdfDescription of Wang Final Dissertation.pdf : Dissertatio

    Simulator adaptation at runtime for component-based simulation software

    Get PDF
    Component-based simulation software can provide many opportunities to compose and configure simulators, resulting in an algorithm selection problem for the user of this software. This thesis aims to automate the selection and adaptation of simulators at runtime in an application-independent manner. Further, it explores the potential of tailored and approximate simulators - in this thesis concretely developed for the modeling language ML-Rules - supporting the effectiveness of the adaptation scheme.Komponenten-basierte Simulationssoftware kann viele Möglichkeiten zur Komposition und Konfiguration von Simulatoren bieten und damit zu einem Konfigurationsproblem für Nutzer dieser Software führen. Das Ziel dieser Arbeit ist die Entwicklung einer generischen und automatisierten Auswahl- und Adaptionsmethode für Simulatoren. Darüber hinaus wird das Potential von spezifischen und approximativen Simulatoren anhand der Modellierungssprache ML-Rules untersucht, welche die Effektivität des entwickelten Adaptionsmechanismus erhöhen können

    A Survey on Interpretable Cross-modal Reasoning

    Full text link
    In recent years, cross-modal reasoning (CMR), the process of understanding and reasoning across different modalities, has emerged as a pivotal area with applications spanning from multimedia analysis to healthcare diagnostics. As the deployment of AI systems becomes more ubiquitous, the demand for transparency and comprehensibility in these systems' decision-making processes has intensified. This survey delves into the realm of interpretable cross-modal reasoning (I-CMR), where the objective is not only to achieve high predictive performance but also to provide human-understandable explanations for the results. This survey presents a comprehensive overview of the typical methods with a three-level taxonomy for I-CMR. Furthermore, this survey reviews the existing CMR datasets with annotations for explanations. Finally, this survey summarizes the challenges for I-CMR and discusses potential future directions. In conclusion, this survey aims to catalyze the progress of this emerging research area by providing researchers with a panoramic and comprehensive perspective, illuminating the state of the art and discerning the opportunities
    • …
    corecore