234,804 research outputs found

    Learning computationally efficient dictionaries and their implementation as fast transforms

    Get PDF
    Dictionary learning is a branch of signal processing and machine learning that aims at finding a frame (called dictionary) in which some training data admits a sparse representation. The sparser the representation, the better the dictionary. The resulting dictionary is in general a dense matrix, and its manipulation can be computationally costly both at the learning stage and later in the usage of this dictionary, for tasks such as sparse coding. Dictionary learning is thus limited to relatively small-scale problems. In this paper, inspired by usual fast transforms, we consider a general dictionary structure that allows cheaper manipulation, and propose an algorithm to learn such dictionaries --and their fast implementation-- over training data. The approach is demonstrated experimentally with the factorization of the Hadamard matrix and with synthetic dictionary learning experiments

    Fast object detection in compressed JPEG Images

    Full text link
    Object detection in still images has drawn a lot of attention over past few years, and with the advent of Deep Learning impressive performances have been achieved with numerous industrial applications. Most of these deep learning models rely on RGB images to localize and identify objects in the image. However in some application scenarii, images are compressed either for storage savings or fast transmission. Therefore a time consuming image decompression step is compulsory in order to apply the aforementioned deep models. To alleviate this drawback, we propose a fast deep architecture for object detection in JPEG images, one of the most widespread compression format. We train a neural network to detect objects based on the blockwise DCT (discrete cosine transform) coefficients {issued from} the JPEG compression algorithm. We modify the well-known Single Shot multibox Detector (SSD) by replacing its first layers with one convolutional layer dedicated to process the DCT inputs. Experimental evaluations on PASCAL VOC and industrial dataset comprising images of road traffic surveillance show that the model is about 2×2\times faster than regular SSD with promising detection performances. To the best of our knowledge, this paper is the first to address detection in compressed JPEG images

    Toward a unified theory of sparse dimensionality reduction in Euclidean space

    Get PDF
    Let Ί∈Rm×n\Phi\in\mathbb{R}^{m\times n} be a sparse Johnson-Lindenstrauss transform [KN14] with ss non-zeroes per column. For a subset TT of the unit sphere, Δ∈(0,1/2)\varepsilon\in(0,1/2) given, we study settings for m,sm,s required to ensure EΊsup⁥x∈T∣∄Ίx∄22−1∣<Δ, \mathop{\mathbb{E}}_\Phi \sup_{x\in T} \left|\|\Phi x\|_2^2 - 1 \right| < \varepsilon , i.e. so that Ί\Phi preserves the norm of every x∈Tx\in T simultaneously and multiplicatively up to 1+Δ1+\varepsilon. We introduce a new complexity parameter, which depends on the geometry of TT, and show that it suffices to choose ss and mm such that this parameter is small. Our result is a sparse analog of Gordon's theorem, which was concerned with a dense Ί\Phi having i.i.d. Gaussian entries. We qualitatively unify several results related to the Johnson-Lindenstrauss lemma, subspace embeddings, and Fourier-based restricted isometries. Our work also implies new results in using the sparse Johnson-Lindenstrauss transform in numerical linear algebra, classical and model-based compressed sensing, manifold learning, and constrained least squares problems such as the Lasso

    Neural Network Models of Learning and Memory: Leading Questions and an Emerging Framework

    Full text link
    Office of Naval Research and the Defense Advanced Research Projects Agency (N00014-95-1-0409, N00014-1-95-0657); National Institutes of Health (NIH 20-316-4304-5

    Learning to Transform Time Series with a Few Examples

    Get PDF
    We describe a semi-supervised regression algorithm that learns to transform one time series into another time series given examples of the transformation. This algorithm is applied to tracking, where a time series of observations from sensors is transformed to a time series describing the pose of a target. Instead of defining and implementing such transformations for each tracking task separately, our algorithm learns a memoryless transformation of time series from a few example input-output mappings. The algorithm searches for a smooth function that fits the training examples and, when applied to the input time series, produces a time series that evolves according to assumed dynamics. The learning procedure is fast and lends itself to a closed-form solution. It is closely related to nonlinear system identification and manifold learning techniques. We demonstrate our algorithm on the tasks of tracking RFID tags from signal strength measurements, recovering the pose of rigid objects, deformable bodies, and articulated bodies from video sequences. For these tasks, this algorithm requires significantly fewer examples compared to fully-supervised regression algorithms or semi-supervised learning algorithms that do not take the dynamics of the output time series into account

    Speech Development by Imitation

    Get PDF
    The Double Cone Model (DCM) is a model of how the brain transforms sensory input to motor commands through successive stages of data compression and expansion. We have tested a subset of the DCM on speech recognition, production and imitation. The experiments show that the DCM is a good candidate for an artificial speech processing system that can develop autonomously. We show that the DCM can learn a repertoire of speech sounds by listening to speech input. It is also able to link the individual elements of speech to sequences that can be recognized or reproduced, thus allowing the system to imitate spoken language

    Flexible Multi-layer Sparse Approximations of Matrices and Applications

    Get PDF
    The computational cost of many signal processing and machine learning techniques is often dominated by the cost of applying certain linear operators to high-dimensional vectors. This paper introduces an algorithm aimed at reducing the complexity of applying linear operators in high dimension by approximately factorizing the corresponding matrix into few sparse factors. The approach relies on recent advances in non-convex optimization. It is first explained and analyzed in details and then demonstrated experimentally on various problems including dictionary learning for image denoising, and the approximation of large matrices arising in inverse problems

    Approximate k-space models and Deep Learning for fast photoacoustic reconstruction

    Get PDF
    We present a framework for accelerated iterative reconstructions using a fast and approximate forward model that is based on k-space methods for photoacoustic tomography. The approximate model introduces aliasing artefacts in the gradient information for the iterative reconstruction, but these artefacts are highly structured and we can train a CNN that can use the approximate information to perform an iterative reconstruction. We show feasibility of the method for human in-vivo measurements in a limited-view geometry. The proposed method is able to produce superior results to total variation reconstructions with a speed-up of 32 times
    • 

    corecore