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Abstract

Let Φ ∈ Rm×n be a sparse Johnson-Lindenstrauss transform [52] with s non-zeroes per column. For
a subset T of the unit sphere, ε ∈ (0, 1/2) given, we study settings for m, s required to ensure

E
Φ
sup
x∈T

∣∣‖Φx‖22 − 1
∣∣ < ε,

i.e. so that Φ preserves the norm of every x ∈ T simultaneously and multiplicatively up to 1 + ε. We
introduce a new complexity parameter, which depends on the geometry of T , and show that it suffices
to choose s and m such that this parameter is small. Our result is a sparse analog of Gordon’s theo-
rem, which was concerned with a dense Φ having i.i.d. gaussian entries. We qualitatively unify several
results related to the Johnson-Lindenstrauss lemma, subspace embeddings, and Fourier-based restricted
isometries. Our work also implies new results in using the sparse Johnson-Lindenstrauss transform in
numerical linear algebra, classical and model-based compressed sensing, manifold learning, and con-
strained least squares problems such as the Lasso.
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1 Introduction

Dimensionality reduction is a ubiquitous tool across a wide array of disciplines: machine learning [79],
high-dimensional computational geometry [48], privacy [15], compressed sensing [25], spectral graph the-
ory [73], interior point methods for linear programming [58], numerical linear algebra [72], computational
learning theory [11, 12], manifold learning [47, 29], motif-finding in computational biology [22], astronomy
[35], and several others. Across all these disciplines one is typically faced with data that is not only massive,
but each data item itself is represented as a very high-dimensional vector. For example, when learning spam
classifiers a data point is an email, and it is represented as a high-dimensional vector indexed by dictionary
words [79]. In astronomy a data point could be a star, represented as a vector of light intensities measured
over various points sampled in time [54, 78]. Dimensionality reduction techniques in such applications pro-
vide the following benefits: (1) smaller storage consumption, (2) speedup during data analysis, (3) cheaper
signal acquisition, and (4) cheaper transmission of data across computing clusters.

Typically such methods reduce the dimension while preserving point geometry, e.g. inter-point distances
and angles. That is, one has X ⊂ Rn with n very large, and we would like a dimensionality-reducing map
f : X → Rm, m � n, for some norm ‖ · ‖ such that ∀x, y ∈ X, (1 − ε)‖x − y‖ ≤ ‖f(x) − f(y)‖ ≤
(1 + ε)‖x− y‖. A powerful tool for achieving this is the Johnson-Lindenstrauss (JL) lemma [50].

Theorem 1 (JL lemma). For any subset X of Euclidean space and 0 < ε < 1/2, there exists f : X → `m2
with m = O(ε−2 log |X|) providing the above distance preservation for ‖ · ‖ = ‖ · ‖2.

This bound on m is nearly tight: for any n ≥ 1 Alon exhibited a point set X , |X| = n+1, such that any
such JL map f must have m = Ω(ε−2 logn

log(1/ε)) [5]. In fact all known proofs of the JL lemma provide linear
f , and the JL lemma is tight up to a constant factor in m when f must be linear [57]. Unfortunately, for
actual applications such worst-case understanding is unsatisfying. Rather we could ask: if given a distortion
parameter ε and point set X as input (or a succinct description of it if X is large or even infinite, as in some
applications), what is the best target dimension m = m(X, ε) such that a JL map exists for X with this
particular ε; that is, move beyond worst case analysis and be as efficient as possible for our particular X .

Unfortunately the previous question seems difficult. For the related question of computing the optimal
distortion for embedding X into a line (i.e. m = 1), it is NP-hard to approximate the optimal distortion even
up to a |X|Ω(1) factor [10]. In practice, however, typically f cannot be chosen arbitrarily as a function of X
anyway. For example, when employing certain learning algorithms such as stochastic gradient descent on
dimensionality-reduced data, f is required to be differentiable [79]. For several applications it is also crucial
f be linear, e.g. in numerical linear algebra [72] and compressed sensing [25, 40]. In one-pass streaming
applications [31] and data structural problems such as nearest neighbor search [46], it is further required that
f even be chosen randomly without knowing X and still works with good probability. In streaming this is
because X is not known up front. In data structure applications f must preserve distances to some future
query points, which are not known when the data structure is constructed.

Due to the considerations discussed, in practice typically f is chosen as a random linear map drawn from
some distribution with a small number of parameters (in some cases simply the parameter m). For example,
popular choices of f include a random matrix with independent gaussian [46] or Rademacher [1] entries.
While worst case bounds inform us how to set parameters to obtain the JL guarantee for worst case X , we
typically can obtain better parameters by exploiting prior knowledge about X . Henceforth we only discuss
linear f , so we write f(x) = Φx for Φ ∈ Rm×n. Furthermore by linearity, rather than preserving Euclidean
distances in X it is equivalent to discuss preserving norms of all vectors in T = {(x− y)/‖x− y‖2 : x, y ∈
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X} ⊂ Sn−1, the set of all normalized difference vectors in X . Thus the JL guarantee is equivalent to

sup
x∈T

∣∣∣‖Φx‖2 − 1
∣∣∣ < ε. (1.1)

Furthermore, since we consider Φ chosen at random, we more specifically want

E
Φ
sup
x∈T

∣∣∣‖Φx‖2 − 1
∣∣∣ < ε. (1.2)

Instance-wise understanding for achieving Eq. (1.2) was given by Gordon [45], who proved a random
gaussian matrix satisfies Eq. (1.2) for m & (g2(T ) + 1)/ε2, where we write A & B if A ≥ CB for a
universal constant C. Letting g be a standard n-dimensional Gaussian, the parameter g(T ) is defined as

the gaussian mean width g(T )
def
= Eg supx∈T 〈g, x〉. One thinks of g(T ) as describing the `2-geometric

complexity of T . It is always true that g2(T ) . log |T |, and thus Gordon’s theorem implies the JL lemma.
In fact for all T we know from applications, such as for the restricted isometry property from compressed
sensing [25] or subspace embeddings from numerical linear algebra [72], the best bound on m is a corollary
of Gordon’s theorem. Later works extended Gordon’s theorem to Φ having Rademacher entries [53, 61, 39].

Although Gordon’s theorem gives a good understanding for m, it analyzes a dense random Φ, which
means that performing the dimensionality reduction x 7→ Φx is dense matrix-vector multiplication, and is
thus slow. For example, in some numerical linear algebra applications (such as least squares regression [72])
multiplying a dense unstructured Φ times the input is slower than solving the exact solution of the original,
high-dimensional problem! In compressed sensing, certain iterative recovery algorithms such as CoSamp
[63] and Iterative Hard Thresholding [16] involve repeated multiplications by Φ and Φ∗, the conjugate
transpose of Φ, and thus Φ supporting fast matrix-vector multiplication are desirable in such applications as
well.

The first work to provide Φ with small m supporting faster multiplication is the FJLT of [2] for finite T ,
achieving m = O(ε−2 log |T |) but with the time to multiply Φx being O(n log n +m3). Improvements to
the O(m3) term are in [3, 4, 56, 66]. In these works Φ is the product of some sparse matrices and Fourier
matrices, with the speed coming from the Fast Fourier Transform (FFT) [36]. This FFT-based approach can
also be used to obtain fast RIP matrices for compressed sensing [26, 71, 28] and fast subspace embeddings
for numerical linear algebra applications [72] (see also [77, 59] for refined analyses for the latter).

Another line of work, initiated in [1] and greatly advanced in [37], sought speedup by sparsifying Φ. If Φ
has at most s non-zeroes per column, then Φx can be computed in time s · ‖x‖0. After some initial improve-
ments [51, 21], the best known s to date for JL with m . ε−2 log |T | is the sparse Johnson-Lindenstrauss
Transform (SJLT) of [52], achieving s . ε−1 log |T | . εm. Furthermore, an example T exists requiring this
bound on s up to O(log(1/ε)) for any linear JL map [65]. Note though, that this is again an understanding
of the worst-case parameter settings over all T .

In summary, while Gordon’s theorem gives us a good understanding of instance-wise bounds on T for
achieving good dimensionality reduction, it only does so for dense, slow Φ. Meanwhile, our understanding
for efficient Φ, such as the SJLT with small s, has not moved beyond the worst case. In some very specific
examples of T we do have good bounds for settings of s,m that suffice, such as T being the unit norm
vectors in a d-dimensional subspace [32, 62, 64], or all elements of T having small `∞ norm [60]. However,
our understanding for general T is non-existent. This brings us to the main question addressed in this work,
where Sn−1 = {x ∈ Rn : ‖x‖2 = 1} and we assume T ⊆ Sn−1 and Φ is the SJLT.

Question 2. What relationship must s,m satisfy, in terms of the geometry of T , to ensure (1.2)?
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We also note that while the FFT-based and sparse Φ approaches may seem orthogonal, they are not, as
pointed out before [2, 60, 66]. The FJLT sets Φ = SP where P is some random preconditioning matrix that
makes T “nice” with high probability, and S is, similarly to the SJLT, a random sparse matrix.

The analog of Question 2 for a standard gaussian matrix depends only on the `2-metric structure of T ,
since both `2-distances and gaussian matrices are invariant under orthogonal transformations. However a
resolution of Question 2 cannot solely depend on the `2-metric structure of T since Φ must be sparse in a
particular basis. Thus an answer to Question 2 must be more nuanced.

Our Main Contribution: We provide a general theorem which answers Question 2. Specifically, for
every T ⊆ Sn−1 analyzed in previous work that we apply our general theorem to here, we qualitatively
either (1) recover or improve the previous best known result, or (2) prove the first non-trivial result for
dimensionality reduction with sparse Φ. We say “qualitatively” since applying our general theorem to these
applications loses a factor of logc(n/ε) in m and logc(n/ε)/ε in s.

In particular for (2), our work is the first to imply that non-trivially sparse dimensionality reducing
linear maps can be applied for gain in model-based compressed sensing [13], manifold learning [75, 41],
and constrained least squares problems such as the Lasso [76].

Theorem 3 (Main Theorem). Let T ⊂ Sn−1 and Φ be an SJLT with column sparsity s. Define κ(T )
def
=

κs,m(T ) = maxq≤m
s
log s{ 1√

qs(Eη(Eg supx∈T |
∑n

j=1 ηjgjxj |)q)1/q} where (gj) are i.i.d. standard gaus-
sian and (ηj) i.i.d. Bernoulli with mean qs/(m log s). If

m & (logm)3(log n)5 · (g
2(T ) + 1)

ε2
, s & (logm)6(log n)4 · 1

ε2
.

Then (1.2) holds as long as s,m furthermore satisfy the condition (logm)2(log n)5/2κ(T ) < ε.

The complexity parameter κ(T ) may seem daunting at first, but Section 7 shows that it can be controlled
quite easily for all the T we have come across in applications.

1.1 Applications
Here we first describe various T and their importance in certain applications and then state the consequences
of our theorem. In order to highlight the qualitative understanding arising from our work, we introduce the
notation A <

∗ B if A ≤ B · (ε−1 log n)c. A summary of our bounds is in Figure 1.

Finite |T |: Here |T | < ∞, for which the SJLT satisfies Eq. (1.2) with s . ε−1 log |T |, m . ε−2 log |T |
[52]. If also T ⊂ B`n∞(α), i.e. ‖x‖∞ ≤ α for all x ∈ T , [60] showed it is possible to achieve m .
ε−2 log |T | with a Φ that has an expected O(ε−2(α log |T |)2) non-zeroes per column.

Our theorem implies s,m <
∗ log |T | suffices in general, and s <

∗ 1+ (α log |T |)2,m <
∗ log |T | in the latter

case, qualitatively matching the above.

Linear subspace: Here T = {x ∈ E : ‖x‖2 = 1} for a d-dimensional linear subspace E ⊂ Rn.
Here achieving Eq. (1.2) with m . d/ε2 is possible [7, 32]. A distribution satisfying Eq. (1.2) for any d-
dimensional subspace is known as an oblivious subspace embedding (OSE). [72] pioneered the use of OSE’s
for fast approximate algorithms for numerical linear algebra problems such as low-rank approximation and
least-squares regression. More applications have since been found to approximating leverage scores [42],
k-means clustering [20, 33], canonical correlation analysis [8], support vector machines [68], `p regression
[30, 80], ridge regression [59], streaming approximation of eigenvalues [6], and speeding up interior point
methods for linear programming [58]. In many applications there is some input A ∈ Rn×d, n � d, and the
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subspace E is for example the column space of A. Often an exact solution requires computing the singular
value decomposition (SVD) of A, but using OSE’s the running time is reduced to that for computing ΦA,
plus computing the SVD of the smaller matrix ΦA. The work [32] showed s = 1 with small m is sufficient,
yielding algorithms for least squares regression and low-rank approximation with runtimes linear in the
number of non-zero entries in A for sufficiently lopsided rectangular matrices.

Our theorem implies s<∗1 and m<
∗d suffices, which is correct. Furthermore, a subset of our techniques re-

veal that if the maximum leverage score, or incoherence, α = max1≤i≤n ‖PEei‖2 is at most poly(ε/ log n),
then s = 1 suffices. This was not known in previous work. A random d-dimensional subspace has incoher-
ence

√
d/n w.h.p. for d & log n by the JL lemma, and thus is very incoherent if n � d.

Closed convex cones: For A ∈ Rn×d (n � d), b ∈ Rn, and C ⊆ Rd a closed convex set, consider
the constrained least squares problem of minimizing ‖Ax − b‖22 subject to x ∈ C. A popular choice is
the Lasso [76], in which the constraint set C = {x ∈ Rd : ‖x‖1 ≤ R} encourages sparsity of x. Let x∗
be an optimal solution, and let TC(x∗) be the tangent cone of C at x∗ (see Appendix B for a definition).
Suppose we wish to accelerate approximately solving the constrained least squares problem by instead
computing x̃∗, the minimizer of ‖ΦAx − Φb‖22 subject to x ∈ C. The work [70] showed that to guarantee
‖Ax̃∗ − b‖22 ≤ (1 + ε)‖Ax∗ − b‖22, it suffices that Φ satisfy two conditions, one of which is Eq. (1.1) for
T = ATC(x∗) ∩ Sn−1. [70] then analyzed dense random matrices for sketching constrained least squares
problems. For example, for the Lasso if we are promised the optimal solution x∗ is k-sparse, [70] shows
m & ε−2maxj=1,...,d ‖Aj‖22σ

−2
min,kk log d suffices for Aj the jth column of A, and where σmin,k is the

smallest `1-restricted eigenvalue of A: σmin,k = inf‖y‖2=1, ‖y‖1≤2
√
k ‖Ay‖2.

Our work also applies to such T (and we further show the SJLT with small s,m satisfies the sec-
ond condition required for approximate constrained least squares; see full version). For example for the
Lasso, we show that again it suffices that m >

∗ maxj=1,...,d ‖Aj‖22σ
−2
min,kk log d, but for s we only need

s >
∗ max1≤i≤n

1≤j≤d
A2

i,jσ
−2
min,kk. That is, the sparsity of Φ need only depend on the largest entry in A as opposed

to the largest column norm in A, which can be much smaller.

Unions of subspaces: Define T = ∪θ∈ΘEθ ∩ Sn−1, where Θ is some index set and each Eθ ⊂ Rn is
a d-dimensional linear subspace. A case of particular interest is when θ ∈ Θ ranges over all k-subsets
of {1, . . . , n}, and Eθ is the subspace spanned by {eij}j∈θ (so d = k). Then T is simply the set of all

k-sparse unit vectors of unit Euclidean norm: Sn,k
def
= {x ∈ Rn : ‖x‖2 = 1, ‖x‖0 ≤ k} for ‖ · ‖0 denoting

support size. Φ satisfying (1.1) is then referred to as having the restricted isometry property (RIP) of order
k with restricted isometry constant εk = ε [25]. Such Φ are known to exist with m . ε−2

k k log(n/k),
and furthermore it is known that ε2k <

√
2 − 1 implies that any (approximately) k-sparse x ∈ Rn can

be (approximately) recovered from Φx in polynomial time by solving a certain linear program [25, 24].
Unfortunately it is known for ε = Θ(1) that any RIP Φ with such small m must have s & m [65]. Related
examples are the case of vectors sparse in some other basis, i.e. T = {Dx ∈ Rn : ‖Dx‖2 = 1, ‖x‖0 ≤ k}
for some so-called “dictionary” D (i.e. the subspaces are acted on by D), or when T only allows for some
subset of all

(
n
k

)
sparsity patterns in model-based compressed sensing [13] (so that |Θ| <

(
n
k

)
).

Our theorem also implies RIP matrices with s,m <
∗ k log(n/k). More generally, when a dictionary D is

involved such that the subspaces span({Deij}j∈θ) are all α-incoherent (as defined above), the sparsity can
be improved to s <

∗ 1 + (αk log(n/k))2. That is, for RIP with dictionaries yielding incoherent subspaces,
we can keep m qualitatively the same while making s much smaller. For the general problem of unions
of d-dimensional subspaces, our theorem implies one can either set m <

∗ d + log |Θ|, s <
∗ log |Θ| or m <

∗
d + log |Θ|, s <

∗ 1 + (α log |Θ|)2. Previous work required m to depend on the product of d and (log |Θ|)c
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instead of the sum [64], including a nice recent improvement by Cohen [34], and is thus unsuitable for this
application (RIP matrices with <

∗k
2 rows are already attainable via simpler methods using incoherence; e.g.

see [17, Proposition 1]). Iterative recovery algorithms such as CoSamp can also be used in model-based
sparse recovery [13], which again involves multiplications by Φ,Φ∗, and thus sparse Φ is relevant for faster
recovery. Our theorem thus shows, for the first time, that the benefit of model-based sparse recovery is
not just smaller m, but rather that the measurement matrix Φ can be made much sparser if the model is
simple (i.e. |Θ| is small). For example, in the block-sparse model one wants to (approximately) recover a
signal x ∈ Rn based on m linear measurements, where x is (approximately) k-block-sparse. That is, the
n coordinates are partitioned into n/b blocks of size b each, and each block is either “on” (all coordinates
in that block non-zero), or “off” (all non-zero). A k-block-sparse signal has at most k/b blocks on (thus
‖x‖0 ≤ k). Thus s <

∗ log |Θ| = log(
(n/b
k/b

)
) . (k/b) log(n/k). Then as long as b = ω(log(n/k)), our results

imply non-trivial column-sparsity s � m. Ours is the first result yielding non-trivial sparsity in a model-
RIP Φ for any model with a number of measurements qualitatively matching the optimal bound (which is
on the order of m . k + (k/b) log(n/k) [9]). We remark that for model-based RIP1, where one wants to
approximately preserve `1 norms of k-block-sparse vectors, which is useful for `1/`1 recovery, [49] have
shown a much better sparsity bound of O(dlogb(n/k)e) non-zeroes per column in their measurement matrix.
However, they have also shown that any model-based RIP1 matrix for block-sparse signals must satisfy the
higher lower bound of m & k + (k/ log b) log(n/k) (which is tight).

Previous work also considered T = HSn,k, where H is any bounded orthonormal system, i.e. H ∈
Rn×n is orthogonal and maxi,j |Hi,j | = O(1/

√
n) (e.g. the Fourier matrix). Work of [26, 71, 28] shows Φ

can then be a sampling matrix (one non-zero per row) with m . ε−2k log(n/k)(log k)3. Since randomly
flipping the signs of every column in an RIP matrix yields JL [56], this also gives a good implementation
of an FJLT. Our theorem recovers a similar statement, but using the SJLT instead of a sampling matrix and
with m <

∗ k and s <
∗ 1 for orthogonal H satisfying the weaker requirement maxi,j |Hi,j | = O(1/

√
k).

Smooth manifolds: Suppose we are given several images of a human face with varying lighting and angle
of rotation, or many sample handwritten images of letters. Though these inputs are high-dimensional (n
being the number of pixels), we imagine all inputs come from a set of low intrinsic dimension. That is, they
lie on a d-dimensional manifold M ⊂ Rn where d � n. The goal is, given a large number of manifold
examples, to learn the parameters of M to allow for nonlinear dimensionality reduction (reducing just to the
few parameters of interest). This idea, and the first successful algorithm (ISOMAP) to learn a manifold from
sampled points is due to [75]. For human faces, [75] shows that different images of a human face can be
well-represented by a 3-dimensional manifold, with parameters being brightness and two angles of rotation.

Baraniuk and Wakin [14] proposed using dimensionality reduction to first map M to ΦM, then learn the
parameters of interest in the reduced space (for improved speed). Later sharper analyses are in [29, 43, 39].
Of interest are both (1) any C1 curve in M should have length approximately preserved in ΦM, and (2) Φ
should be a manifold embedding, in the sense that all C1 curves γ′ ∈ ΦM should have their preimage (in
M) be a C1 curve in M. Then by (1) and (2), geodesic distances are preserved between M and ΦM.

To be concrete, let M ⊂ Rn be a d-dimensional manifold obtained as the image M = F (B`d2
), for

smooth F : B`d2
→ Rn (BX the unit ball of X). We assume ‖F (x) − F (y)‖2 ' ‖x − y‖2 (where A ' B

denotes both A . B and A & B), and that the map sending x ∈ M to the tangent plane at x, Ex, is
Lipschitz from ρM to ρFin. Here ρM is geodesic distance on M, and ρFin(Ex, Ey) = ‖PEx − PEy‖`n2→`n2
is the Finsler distance, for PE the orthogonal projection onto E.

We want Φ satisfying (1 − ε)|γ| ≤ |Φ(γ)| ≤ (1 + ε)|γ| for all C1 curves γ ⊂ M, for | · | being curve
length. It then suffices Φ satisfy Eq. (1.1) for T =

⋃
x∈MEx ∩ Sn−1 [39], an infinite union of subspaces.

[39] showed it suffices s = m & d/ε2 with a dense matrix of subgaussian entries. For F as given above,
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set T to preserve our m our s previous m previous s ref
|T | < ∞ log |T | log |T | log |T | log |T | [50]

|T | < ∞, ∀x ∈ T‖x‖∞ ≤ α log |T | dα log |T |e2 log |T | dα log |T |e2 [60]
E, dim(E) ≤ d d 1 d 1 [64]

Sn,k k log(n/k) k log(n/k) k log(n/k) k log(n/k) [25]
HSn,k k log(n/k) 1 k log(n/k) 1 [71]

tangent cone for Lasso maxj
‖Aj‖22
σ2
min,k

k maxi,j
A2

i,j

σ2
min,k

k same as here s = m [70]∗

|Θ| < ∞ d+ log |Θ| log |Θ| d · (log |Θ|)6 (log |Θ|)3 [64]
∀E ∈ Θ,dim(E) ≤ d

|Θ| < ∞ d+ log |Θ| dα log |Θ|e2 — — —
∀E ∈ Θ,dim(E) ≤ d

max1≤j≤n
E∈Θ

‖PEej‖2 ≤ α

|Θ| infinite see appendix see appendix similar to m [39]
∀E ∈ Θ,dim(E) ≤ d (non-trivial) this work
M a smooth manifold d 1 + (α

√
d)2 d d [39]

Figure 1: The m, s that suffice when using the SJLT with various T via our main theorem, compared with
best bounds from previous work. All bounds hide poly(ε−1 log n) factors. Some cells are blank due to no
non-trivial results being previously known. For the Lasso, we assume k is the sparsity of the true optimum.

preservation of geodesic distances is also satisfied for this m.
Our main theorem implies that to preserve curve lengths one can set m <

∗ d for s <
∗ 1 + (α

√
d)2, where

α is the largest incoherence of any tangent space Ex for x ∈ M. Thus we have non-trivial sparsity with
m<

∗ d for α � 1/
√
d. Furthermore, we show that this is optimal by constructing a manifold with maximum

incoherence of a tangent space 1/
√
d such that preserving curve lengths with m >

∗ d requires s >
∗ d (see full

version). We also show Φ is a manifold embedding with large probability if the weaker condition m>
∗ d, s

>
∗ 1

is satisfied, implying that the SJLT also preserves geodesics.

As seen above, not only does our answer to Question 2 qualitatively explain all known results, but
it gives new results not known before with implications in numerical linear algebra, compressed sensing
(model-based, and with incoherent dictionaries), constrained least squares, and manifold learning. We also
believe it is possible for future work to sharpen our analyses to give asymptotically correct parameters for
all the applications; see the Discussion section in the full version.

Due to space constraints, many results are stated without proof; proofs are contained in the attached full
version. The full version also has several appendices to help the reader, by reviewing probabilistic tools and
introductory convex analysis used in this work. We also show in Appendix C an analysis of using the FJLT
for sketching constrained least squares, providing some improvements to [70].

2 Preliminaries
We fix some notation. Denote [t] = {1, . . . , t}. To any S ⊂ Rn we associate a semi-norm |||z|||S

def
=

supx∈S | 〈z, x〉 |. We use ei to denote a standard basis vector. If η = (ηi)i≥1 is a sequence of random
variables, we let (Ωη,Pη) denote the probability space on which it is defined. We use Eη and Lp

η to denote
the associated expected value and Lp-space, respectively. If ζ is another sequence of r.v.’s, then ‖ · ‖Lp

η ,L
q
ζ

means that we first take the Lp
η-norm and afterwards the Lq

ζ-norm. We reserve the symbol g for standard
gaussian vectors. For A ∈ Rm×n, ‖A‖ and ‖A‖`n2→`m2

are both the operator norm; Tr(·) is trace; ‖ · ‖F is
Frobenius norm.

In the remainder, we reserve the letter ρ to denote (semi-)metrics. If ρ is a (semi-)norm ‖ · ‖X , we
let ρX(x, y) = ‖x − y‖X denote the associated (semi-)metric. Also, we use dρ(S) = supx,y∈S ρ(x, y) to
denote the diameter of a set S with respect to ρ and write dX instead of dρX for brevity. So, for example,

6



ρ`n2 is the Euclidean metric and d`n2 (S) the `2-diameter of S. From here on, T is always a fixed subset of
Sn−1 = {x ∈ Rn : ‖x‖ = 1}, and ε ∈ (0, 1/2) the parameter appearing in (1.2).

We make use of chaining results in the remainder, so we define some relevant quantities. For a (semi-
)metric ρ on Rn, Talagrand’s γ2-functional is defined by γ2(S, ρ) = inf{Sr}∞r=0

supx∈S
∑∞

r=0 2
r/2 ·ρ(x, Sr),

where ρ(x, Sr) is the distance from x to Sr, and the infimum is taken over all collections {Sr}∞r=0, S0 ⊂
S1 ⊂ . . . ⊆ S, with |S0| = 1, |Sr| ≤ 22

r
. If ρ corresponds to a (semi-)norm ‖ · ‖X , then we usually write

γ2(S, ‖ · ‖X) instead of γ2(S, ρX). It is known that for any bounded S ⊂ Rn, g(S) and γ2(S, ‖ · ‖2) differ
multiplicatively by at most a universal constant [44, 74]. Whenever γ2 appears without a specified norm, we
imply use of `2 or `2 → `2 operator norm. We frequently use the entropy integral estimate called Dudley’s
inequality (see [74]): gamma2(S, ρ) .

∫∞
0 log1/2N (S, ρ, u)du. Here N (S, ρ, u) denotes the minimum

number of ρ-balls of radius u centered at points in S required to cover S. If ρ is a (semi-)norm ‖ · ‖X , we
write N (S, ‖ · ‖X , u) instead of N (S, ρX , u).

Let us now introduce the SJLT. Let σij ∈ {−1, 1} be independent Rademachers (i.e. uniformly random
signs). We consider random variables δij ∈ {0, 1} satisfying:

• ∀j the δij are negatively correlated, i.e. E
∏k

t=1 δit,j ≤ (s/m)k for any k distinct indices it;
• For any fixed j there are exactly s nonzero δi,j , i.e.,

∑m
i=1 δij = s;

• The vectors (δi,j)mi=1 are independent across different 1 ≤ j ≤ n.

We emphasize that the σij and δij are independent, as they are defined on different probability spaces.
The SJLT is defined by Φi,j = (1/

√
s)σi,jδi,j . [52] gives two implementations of such a Φ satisfying the

above conditions. In one example, the columns are independent, and in each column we choose exactly s
locations uniformly at random, without replacement, to specify the δi,j . The other example is essentially the
CountSketch of [27]; for details see the full version.

In the following we will be interested in estimating supx∈T |‖Φx‖22 − 1|. For this purpose, we use the
following bound [55] (see [38, Theorem 6.5] for the refinement stated here).

Theorem 4. For A ⊂ Rm×n and (σj) independent Rademachers, p ≥ 1, (Eσ supA∈A |‖Aσ‖22−E ‖Aσ‖22|p)1/p
is . γ22(A, ‖ · ‖`2→`2) + dF (A)γ2(A, ‖ · ‖`2→`2) +

√
pdF (A)d`2→`2(A) + pd2`2→`2

(A).

For any x ∈ Rn we can write Φx = Aδ,xσ, where

Aδ,x :=
1√
s

m∑
i=1

n∑
j=1

δijxjei ⊗ eij =
1√
s

−x(δ1,·)− · · · 0
...

...
...

0 · · · −x(δm,·)−

 . (2.1)

for x(δi,)j = δi,jxj . Note that E ‖Φx‖22 = ‖x‖22 for all x ∈ Rn and therefore supx∈T |‖Φx‖22 − ‖x‖22| =
supx∈T |‖Aδ,xσ‖22 − E ‖Aδ,xσ‖22|. Associated with δ = (δij) we define a random norm on Rn by ‖x‖δ =

(1/
√
s)max1≤i≤m(

∑n
j=1 δijx

2
j )

1/2. Then for any x, y ∈ T that ‖Aδ,x − Aδ,y‖ = ‖x − y‖δ and ‖Aδ,x −
Aδ,y‖F = ‖x− y‖2. Therefore, by Theorem 4 and taking Lp(Ωδ)-norms on both sides,(
E
Φ
sup
x∈T

∣∣∣‖Φx‖22−‖x‖22
∣∣∣p)1/p

. (E
δ
γ2p2 (T, ‖·‖δ))1/p+(E

δ
γp2(T, ‖·‖δ))

1/p+
√
p(E dpδ(T ))

1/p+p(E d2pδ (T ))1/p.

(2.2)
Thus, to bound the LHS of Eq. (1.2), it suffices to estimate Eδ γ

2
2(T, ‖ · ‖δ) and Eδ d

2
δ(T ). Good bounds

on (Eδ γ
p
2(T, ‖ · ‖δ))1/p and (E dpδ(T ))

1/p for all p ≥ 1, yield in addition a high probability bound. Unless
stated otherwise, Φ always denotes the SJLT with column sparsity s.
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3 Overview of proof of main theorem
Here we give an overview of the proof of Theorem 3. To illustrate the ideas, it is first simplest to consider the
case of T being the set of all unit vectors in a d-dimensional linear subspace E ⊂ Rn. By Eq. (2.2) for p = 1
we have to bound for example Eδ γ2(T, ‖ · ‖δ). Standard estimates give γ2(T, ‖ · ‖δ) ≤ γ2(BE , ‖ · ‖δ) �
supt>0 t[logN (BE , ‖ · ‖δ, t)]1/2 for BE the unit ball of E. Let U ∈ Rn×d have columns forming an
orthonormal basis for E. Dual Sudakov minoration [18, Proposition 4.2], [67] states supt>0 t[logN (BE , ‖ ·
‖δ, t)]1/2 ≤ Eg ‖Ug‖δ for a gaussian vector g. Then bounding Eg ‖Ug‖δ is a probability exercise.

Unfortunately, dual Sudakov is specific to unit balls of subspaces and has no analog for general T . For
general T we use a statement about the duality of entropy numbers [19, Proposition 4]. This states that
for two symmetric convex bodies K and D, N (K,D) and N (D◦, aK◦) are roughly comparable for some
constant a (N (K,D) is the number of translates of D needed to cover K, and D◦ is the polar body; see
Appendix B for a definition). Although it has been a conjecture for over 40 years as to whether this holds
in general [69, p. 38], [19, Proposition 4] shows these quantities are comparable up to logarithmic factors
as well as a factor depending on the type-2 constant of the norm defined by D (the norm whose unit vectors
are those on D’s boundary). In our case, this lets us relate logN (T̃ , ‖ · ‖δ, t) with {logN (conv(BJi , ||| ·
|||T ,

√
st/8)}mi=1, losing small factors, for T̃ the convex hull of T ∪ −T , and BJi the unit ball of span{ej :

δi,j = 1}. We next use Maurey’s lemma, which is a tool for bounding covering numbers of the set of convex
combinations of vectors in various spaces. This lets us relate logN (conv(BJi), ||| · |||T , ε) to quantities of
the form logN ( 1k

∑
i∈ABJi , ||| · |||T , ε), where A ⊂ [m] has size k . 1/ε2. For a fixed A, we bucket

j ∈ [n] according to
∑

i∈A δi,j and define Uα = {j ∈ [n] :
∑

i∈A δi,j ' 2α}. Abusing notation, we
also let Uα denote the coordinate subspace spanned by j ∈ Uα. This leads to (see Eq. (6.4)) the inequality

logN ( 1k
∑

i∈ABJi , ||| · |||T , ε) .
∑

α logN (BUα , ||| · |||T ,
√

k
2α

epsilon
logm ).

Finally we are in a position to apply dual Sudakov minoration to the right hand side of the above, after
which point we apply various concentration arguments to yield our main theorem.

4 The case of a linear subspace
Let E ⊂ Rn be a d-dimensional linear subspace, T = E ∩ Sn−1, BE the unit `2-ball of E. We use PE to
denote the orthogonal projection onto E. The values ‖PEej‖2, j = 1, . . . , n, are typically referred to as the
leverage scores of E in the numerical linear algebra literature. We denote the maximum leverage score by
µ(E) = max1≤j≤n ‖PEej‖2, which is called the incoherence µ(E) of E.

Theorem 5. For any p ≥ logm and any 0 < ε < 1,

(E γ2p2 (T, ‖ · ‖δ))1/p . ε2 +
(d+ logm) log2(d/ε)

m
+

p log2(d/ε) logm

s
µ(E)2 (4.1)

and
(E d2pδ (T ))1/p . d

m
+

p

s
µ(E)2. (4.2)

As a consequence, Eq. (1.1) holds with probability at least 1− η if η ≤ 1/m and

m & ((d+ logm)min{log2(d/ε), log2(m)}+ d log(η−1))/ε2

s & (log(m) log(η−1)min{log2(d/ε), log2(m)}+ log2(η−1))µ(E)2/ε2 (4.3)

Proof. By dual Sudakov minoration (see full version), logN (BE , ‖ · ‖δ, t) . (1/t)Eg ‖Ug‖δ for all t > 0,
with U ∈ Rn×d having columns an orthonormal basis for E and g gaussian. Let U (i) be U but where each
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row j is multiplied by δi,j . A simple calculation with ` = logm using gaussian concentration of Lipschitz
functions (see full version) implies Eg ‖Ug‖δ . 1√

s
(max1≤i≤m ‖U (i)‖F +

√
` ·max1≤i≤m ‖U (i)‖`d2→`n2

).
Using Dudley’s integral estimate, the full version shows for any ε > 0 and t∗ = (ε/d)/ log(d/ε),

γ2(T, ‖ · ‖δ) .
∫ t∗

0

√
d ·

[
log

(
2 +

1

t
√
s

)]1/2
dt+

∫ 1/
√
s

t∗

Eg ‖Ug‖δ
t

dt

.
√
dt∗

[
log

( 1

t∗
√
s

)]1/2
+ E

g
‖Ug‖δ log

( 1

t∗
√
s

)
. ε+

log(d/ε)√
s

·
[
max
1≤i≤m

[ n∑
j=1

δi,j‖PEej‖22
]1/2

+
√

logm max
1≤i≤m

‖U (i)‖`d2→`n2

]
(4.4)

As a consequence,

(E
δ
γ2p2 (T, ‖·‖δ))1/p . ε2+

log2(d/ε)

s

[(
E
δ

max
1≤i≤m

[ n∑
j=1

δi,j‖PEej‖22
]p)1/p

+log(m)
(
E
δ

max
1≤i≤m

‖U (i)‖2p
`d2→`n2

)1/p]
(4.5)

The first sum inside brackets is treated essentially by a standard Chernoff-type argument. The second
summand is bounded by the non-commutative Khintchine inequality, leading to the bound in Theorem 5.
(E d2pδ (T ))1/p is bounded by a similar but simpler argument; see full version.

Theorem 5 recovers a result similar to the main result of [64] but via a different method, less logarithmic
factors in m, better dependence on 1/η, and the revelation that s can be smaller if µ(E) is small (note if
‖PEej‖2 � (log d · logm)−1 for all j, we may take s = 1). Our dependence on 1/ε in s is quadratic
instead of the linear dependence in [64], though in most applications ε = Θ(1). Also note if d & log n, then
a random d-dim. subspace E has µ(E) .

√
d/n by the JL lemma.

5 Sketching constrained least squares programs
Consider A ∈ Rn×d, with n ≥ d, and a sketching matrix Φ ∈ Rm×n. Define f(x) = ‖Ax − b‖22 and
g(x) = ‖ΦAx−Φb‖22. Let C ⊂ Rd be any closed convex set. Define the minimizers of the constrained least
squares programs x∗ to be argminf(x) subject to x ∈ C and x̂ to be argming(x) subject to x ∈ C. We define
two quantities introduced in [70]. Given K ⊂ Rd and u ∈ Sn−1 we set Z1(A,Φ,K) = infv∈AK∩Sn−1 ‖Φv‖22
and Z2(A,Φ,K, u) = supv∈AK∩Sn−1 |〈Φu,Φv〉 − 〈u, v〉|. We denote the tangent cone of C at a point x by
TC(x) (see Appendix B for a definition). The first statement in the following lemma is [70, Lemma 1]. The
second statement (when x∗ is the global minimizer) follows by a slight modification of their proof.

Lemma 6. Define u = (Ax∗−b)/‖Ax∗−b‖2. For Z1 = Z1(A,Φ, TC(x∗)) and Z2 = Z2(A,Φ, TC(x∗), u).
Then f(x̂) ≤ (1 + Z2

Z1
)2f(x∗). If x∗ is the global minimizer of f , then f(x̂) ≤ (1 +

Z2
2

Z2
1
)f(x∗).

We give a proof of the above in the full version. Clearly, if Φ satisfies (1.1) for T = ATC(x∗) ∩ Sn−1

then Z1 ≥ 1 − ε. We do not immediately obtain an upper bound for Z2, however, as u is in general not in
ATC(x∗) ∩ Sn−1. Nevertheless, we show the following in the full version.

Lemma 7. Fix u ∈ B`n2
, T ⊂ Rn and let Φ be the SJLT. Set Z = supv∈T |〈Φu,Φv〉 − 〈u, v〉|. Then for any

p ≥ 1, (Eδ,σ Z
p)1/p . (

√
p/s+ 1)((Eδ γ

p
2(T, ‖ · ‖δ))1/p +

√
p(Eδ d

p
δ(T ))

1/p).
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5.1 `2,1-constrained case

In the full version we discuss any convex set C. For illustration, here we discuss a special case. Set d = bD.
For x = (xB1 , . . . , xBb

) ∈ Rd consisting of b blocks, each of dimension D, we define its `2,1-norm by
‖x‖2,1 := ‖x‖`b1(`D2 ) =

∑b
`=1 ‖xB`

‖2. We study the effect of sketching on the problem

min ‖Ax− b‖22 subject to ‖x‖2,1 ≤ R,

which is corresponds to C = {x ∈ Rd : ‖x‖2,1 ≤ R}. In the statistics literature, this is called the
group Lasso (with non-overlapping groups of equal size). The `2,1-constraint encourages a block sparse
solution, i.e., a solution which has few blocks containing non-zero entries. We refer to e.g. [23] for more
information. In the special case D = 1 the program reduces to min ‖Ax − b‖22 subject to ‖x‖1 ≤ R,
which is the well-known Lasso [76]. To formulate our results we consider two norms on Rn×d, given by
|||A||| := max1≤`≤b(

∑n
j=1

∑
k∈B`

|Ajk|2)1/2 and ‖A‖`2,1→`∞ = max1≤j≤nmax1≤`≤b ‖(Ajk)k∈B`
‖2. In

the case D = 1, |||A||| is the maximum Euclidean norm of a column of A, and ‖A‖`2,1→`∞ is the maximum
magnitude of any entry of A. In the full version, we use the previous section to show the following, which
is qualitatively similar to [70] but allows for a much sparser Φ (i.e. our s depends on the maximum entry of
A as opposed to the maximum column norm when D = 1 for Lasso).

Theorem 8. Let Φ be the SJLT. Set C = {x ∈ Rd : ‖x‖2,1 ≤ R}. Suppose x∗ is k-block sparse, ‖x∗‖2,1 =
R. Define σmin,k = inf‖y‖2=1, ‖y‖2,1≤2

√
k ‖Ay‖2 and α = (log n)6(logm)(log b)2. Assume

m & αε−2|||A|||2kσ−2
min,k, and s & αε−2‖A‖2`2,1→`∞kσ−2

min,k max{log b, log(η−1)},

and further s & ε−2max{α(logm)(log b)−1, log(η−1)},

and η ≤ 1
m . Then with probability at least 1− η, f(x̂) ≤ (1− ε)−2f(x∗).

6 Proof sketch of the main theorem

In the full version we show following inequality and lemma:

logN (T̃ , ‖·‖δ, t) .
(
log

1√
st

)
(logm) logN

(
conv

( m⋃
i=1

BJi

)
, ||| · |||T ,

1

8

√
st
)

(6.1)

Lemma 9. Let ε > 0. Then

logN
(
conv

( m⋃
i=1

BJi

)
, ||| · |||T , ε

)
. 1

ε2
logm+ (log 1/ε)max

k. 1
ε2

max
|A|=k

logN
(1
k

∑
i∈A

BJi , ||| · |||T , ε
)

(6.2)

Next, we analyze further the set (1/k)
∑

i∈ABJi for some k . 1/ε2 (ε > 0 will be fixed later). The

elements of (1/k)
∑

i∈ABJi are of the form y = (1/k)
∑n

j=1(
∑

i∈A δi,jx
(i)
j )ej with

∑
j∈Ji |x

(i)
j |2 ≤ 1 for

all i. Therefore, by Cauchy-Schwarz,

‖y‖2 =
1

k

( n∑
j=1

∣∣∣∑
i∈A

δi,jx
(i)
j

∣∣∣2)1/2
≤ 1

k

[ n∑
j=1

(∑
i∈A

δi,j

)∑
i∈A

|x(i)j |2
]1/2
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Define for α = 1, . . . , log(min{k, s}) the set Uα = Uα(δ) = {1 ≤ j ≤ n : 2α ≤
∑

i∈A δi,j < 2α+1}
and U0 = U0(δ) = {1 ≤ j ≤ n :

∑
i∈A δi,j < 2}. We show in the full version that for any fixed j,

τk,α
def
= P

δ

(
2α ≤

∑
i∈A

δi,j < 2α+1
)
≤

{
1, if 2α ≤ 2esk

m

min
{
2−α sk

m , 2−2α
}
, if 2α > 2esk

m .
(6.3)

Write according to the preceding y =
∑

α yα with yα =
∑

j∈Uα
yjej and ‖yα‖2 . 1√

k
2α/2. Hence,

denoting BUα := {
∑

j∈Uα
xjej :

∑
j∈Uα

|xj |2 ≤ 1}, we have 1
k

∑
i∈ABJi ⊂

∑
α

1√
k
2α/2BUα . Therefore,

logN
(1
k

∑
i∈A

BJi , |||·|||T , ε
)
.

∑
α

logN
( 1√

k
2α/2BUα , |||·|||T ,

ε

logm

)
=

∑
α

logN
(
BUα , |||·|||T ,

√
k

2α
ε

logm

)
(6.4)

Now we are in familiar territory: on the RHS we would like to bound the covering number of the unit ball
of a subspace under some norm (namely the subspace BUα). Then proceeding as in Section 4 using dual
Sudakov minoration (see full version for details), we show[
logN

(
conv

( m⋃
i=1

BJi

)
, |||·|||T , ε

)]1/2
≤ 1

ε
(logm)1/2+

logm

ε

(
log

1

ε

)1/2
max
k. 1

ε2

|A|=k

[∑
α

√
2α

k
E
g

∣∣∣∣∣∣∣∣∣ ∑
j∈Uα

gjej

∣∣∣∣∣∣∣∣∣
T

]
(6.5)

We then show in the full version using standard arguments involving Dudley’s inequality that

γ2(T, ‖ · ‖δ) .
1√
s
(log n)3/2 logm+

1√
s
(logm)3/2(log n)2 ·max

k≤m
max
|A|=k

{ ∑
α,2α≤k

√
2α

k
E
g

∣∣∣∣∣∣∣∣∣ ∑
j∈Uα

gjej

∣∣∣∣∣∣∣∣∣
T

}
(6.6)

The above then just amounts to estimating the random variable Eg |||
∑

j∈Uα
gjej |||T for various α. We do

this in the full version by splitting α into three regions and applying various probabilistic arguments for each
case (see full version). We then conclude by bounding the above when taking expectation over δ and show
(1.2) holds for m & (logm)3(log n)5

γ2
2(T )
ε2

and s & (logm)6(log n)4 1
ε2

and (logm)2(log n)5/2κ(T ) < ε

for κT
def
= maxq≤m

s
log s{ 1√

qs(Eη(Eg |||
∑n

j=1 ηjgjej |||T )q)1/q}.

7 Example applications of main theorem
Understanding applications amounts to upper bounding γ2(T, ‖ · ‖2) and κ(T ). Note however γ2(T, ‖ ·
‖2) . (log s)1/2κ(T ). Indeed, take q = m

s log s in the definition of κ(T ); then ηj = 1. This gives
κ(T ) ≥ (log s)−1/2g(T ) ' (log s)−1/2γ2(T, ‖ · ‖2). Thus, ignoring log factors, it suffices to bound κ(T ).

In the full version we show how to bound κ(T ) for several examples of T , including: finite T , flat T
(i.e. all x ∈ T have small ‖x‖∞), T the set of k sparse vectors in a dictionary that is a bounded orthonormal
system, finite unions of subspaces (both the general and the incoherent cases), infinite unions of subspaces,
and manifolds. In the full version we also construct a manifold for which the maximum incoherence of any
tangent space is approximately 1/

√
d such that Φ with m <

∗ d requires s >
∗ d (in contrast, we show that max

incoherence o(1/
√
d) allows for non-trivially small s <

∗ 1 + (α
√
d)2). We also show that under the weak

conditions m >
∗ d and s >

∗ 1, the SJLT even preserves geodesic distances.
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linear programs with õ(sqrt(rank)) linear system solves. CoRR, abs/1312.6677, 2013.

[59] Yichao Lu, Paramveer Dhillon, Dean Foster, and Lyle Ungar. Faster ridge regression via the subsam-
pled randomized Hadamard transform. In Proceedings of the 26th Annual Conference on Advances in
Neural Information Processing Systems (NIPS), 2013.

[60] Jirı́ Matousek. On variants of the Johnson-Lindenstrauss lemma. Random Struct. Algorithms,
33(2):142–156, 2008.

[61] S. Mendelson, A. Pajor, and N. Tomczak-Jaegermann. Reconstruction and subgaussian operators in
asymptotic geometric analysis. Geom. Funct. Anal., 17(4):1248–1282, 2007.

[62] Xiangrui Meng and Michael W. Mahoney. Low-distortion subspace embeddings in input-sparsity time
and applications to robust linear regression. In Proceedings of the 45th ACM Symposium on Theory of
Computing (STOC), pages 91–100, 2013.

[63] Deanna Needell and Joel A. Tropp. CoSaMP: Iterative signal recovery from incomplete and inaccurate
samples. Appl. Comput. Harmon. Anal., 26:301–332, 2009.

[64] Jelani Nelson and Huy L. Nguy˜̂en. OSNAP: Faster numerical linear algebra algorithms via sparser sub-
space embeddings. In Proceedings of the 54th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 117–126, 2013.

[65] Jelani Nelson and Huy L. Nguy˜̂en. Sparsity lower bounds for dimensionality-reducing maps. In
Proceedings of the 45th ACM Symposium on Theory of Computing (STOC), pages 101–110, 2013.

15



[66] Jelani Nelson, Eric Price, and Mary Wootters. New constructions of RIP matrices with fast multiplica-
tion and fewer rows. In Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2014.

[67] Alain Pajor and Nicole Tomczak-Jaegermann. Subspaces of small codimension of finite dimensional
Banach spaces. Proc. Amer. Math. Soc., 97:637–642, 1986.

[68] Saurabh Paul, Christos Boutsidis, Malik Magdon-Ismail, and Petros Drineas. Random projections for
support vector machines. In Proceedings of the 16th International Conference on Artificial Intelligence
and Statistics (AISTATS), pages 498–506, 2013.

[69] Albrecht Pietsch. Theorie der Operatorenideale (Zusammenfassung). Friedrich-Schiller-Universität
Jena, 1972.

[70] M. Pilanci and M. Wainwright. Randomized sketches of convex programs with sharp guarantees.
arXiv, abs/1404.7203, 2014.

[71] Mark Rudelson and Roman Vershynin. On sparse reconstruction from Fourier and Gaussian measure-
ments. Communications on Pure and Applied Mathematics, 61(8):1025–1045, 2008.

[72] Tamás Sarlós. Improved approximation algorithms for large matrices via random projections. In
Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
143–152, 2006.

[73] Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. SIAM J.
Comput., 40(6):1913–1926, 2011.

[74] Michel Talagrand. The generic chaining: upper and lower bounds of stochastic processes. Springer
Verlag, 2005.

[75] Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. A global geometric framework for nonlin-
ear dimensionality reduction. Science, 290(5500):2319–2323, 2000.

[76] Robert Tibshirani. Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical
Society, Series B, 58(1):267–288, 1996.

[77] Joel A. Tropp. Improved analysis of the subsampled randomized hadamard transform. Adv. Adapt.
Data Anal., 3(1–2):115–126, 2011.

[78] Andrew Vanderburg and John Asher Johnson. A technique for extracting highly precise photometry
for the two-wheeled Kepler mission. CoRR, abs/1408.3853, 2011.

[79] Kilian Q. Weinberger, Anirban Dasgupta, John Langford, Alexander J. Smola, and Josh Attenberg.
Feature hashing for large scale multitask learning. In Proceedings of the 26th Annual International
Conference on Machine Learning (ICML), pages 1113–1120, 2009.

[80] David P. Woodruff and Qin Zhang. Subspace embeddings and `p regression using exponential random
variables. In Proceedings of the 26th Conference on Learning Theory (COLT), 2013.

FULL VERSION STARTS ON NEXT PAGE.

16


