378 research outputs found

    Explainable Artificial Intelligence Applications in Cyber Security: State-of-the-Art in Research

    Get PDF
    This survey presents a comprehensive review of current literature on Explainable Artificial Intelligence (XAI) methods for cyber security applications. Due to the rapid development of Internet-connected systems and Artificial Intelligence in recent years, Artificial Intelligence including Machine Learning and Deep Learning has been widely utilized in the fields of cyber security including intrusion detection, malware detection, and spam filtering. However, although Artificial Intelligence-based approaches for the detection and defense of cyber attacks and threats are more advanced and efficient compared to the conventional signature-based and rule-based cyber security strategies, most Machine Learning-based techniques and Deep Learning-based techniques are deployed in the “black-box” manner, meaning that security experts and customers are unable to explain how such procedures reach particular conclusions. The deficiencies of transparencies and interpretability of existing Artificial Intelligence techniques would decrease human users’ confidence in the models utilized for the defense against cyber attacks, especially in current situations where cyber attacks become increasingly diverse and complicated. Therefore, it is essential to apply XAI in the establishment of cyber security models to create more explainable models while maintaining high accuracy and allowing human users to comprehend, trust, and manage the next generation of cyber defense mechanisms. Although there are papers reviewing Artificial Intelligence applications in cyber security areas and the vast literature on applying XAI in many fields including healthcare, financial services, and criminal justice, the surprising fact is that there are currently no survey research articles that concentrate on XAI applications in cyber security. Therefore, the motivation behind the survey is to bridge the research gap by presenting a detailed and up-to-date survey of XAI approaches applicable to issues in the cyber security field. Our work is the first to propose a clear roadmap for navigating the XAI literature in the context of applications in cyber security

    Towards a better labeling process for network security datasets

    Full text link
    Most network security datasets do not have comprehensive label assignment criteria, hindering the evaluation of the datasets, the training of models, the results obtained, the comparison with other methods, and the evaluation in real-life scenarios. There is no labeling ontology nor tools to help assign the labels, resulting in most analyzed datasets assigning labels in files or directory names. This paper addresses the problem of having a better labeling process by (i) reviewing the needs of stakeholders of the datasets, from creators to model users, (ii) presenting a new ontology of label assignment, (iii) presenting a new tool for assigning structured labels for Zeek network flows based on the ontology, and (iv) studying the differences between generating labels and consuming labels in real-life scenarios. We conclude that a process for structured label assignment is paramount for advancing research in network security and that the new ontology-based label assignation rules should be published as an artifact of every dataset

    BarkDroid: Android Malware Detection Using Bark Frequency Cepstral Coefficients

    Get PDF
    Since their inaugural releases in 2007, Google’s Android and Apple’s iOS have grown to dominate the mobile OS market share. Currently, they jointly possess over 99% of the global market share with Android being the leading mobile Operating System of choice worldwide, controlling close to 70% of the market share. Mobile devices have enabled the exponential growth of a plethora of mobile applications that play key roles in enabling many use cases that are pivotal in our daily lives. On the other hand, access to a large pool of potential end users is available to both legitimate and nefarious applications, thus making mobile devices a burgeoning target of malicious applications. Current malware detection solutions rely on tedious, time-consuming, knowledge-based, and manual processes to identify malware. This paper presents BarkDroid, a novel Android malware detection technique that uses the low-level Bark Frequency Cepstral Coefficients audio features to detect malware. The results obtained outperform results obtained using other features on the same datasets. BarkDroid achieved 97.9% accuracy, 98.5% precision, an F1 score of 98.6%, and shorter execution times

    Android source code vulnerability detection: a systematic literature review

    Get PDF
    The use of mobile devices is rising daily in this technological era. A continuous and increasing number of mobile applications are constantly offered on mobile marketplaces to fulfil the needs of smartphone users. Many Android applications do not address the security aspects appropriately. This is often due to a lack of automated mechanisms to identify, test, and fix source code vulnerabilities at the early stages of design and development. Therefore, the need to fix such issues at the initial stages rather than providing updates and patches to the published applications is widely recognized. Researchers have proposed several methods to improve the security of applications by detecting source code vulnerabilities and malicious codes. This Systematic Literature Review (SLR) focuses on Android application analysis and source code vulnerability detection methods and tools by critically evaluating 118 carefully selected technical studies published between 2016 and 2022. It highlights the advantages, disadvantages, applicability of the proposed techniques and potential improvements of those studies. Both Machine Learning (ML) based methods and conventional methods related to vulnerability detection are discussed while focusing more on ML-based methods since many recent studies conducted experiments with ML. Therefore, this paper aims to enable researchers to acquire in-depth knowledge in secure mobile application development while minimizing the vulnerabilities by applying ML methods. Furthermore, researchers can use the discussions and findings of this SLR to identify potential future research and development directions

    Security of data science and data science for security

    Get PDF
    In this chapter, we present a brief overview of important topics regarding the connection of data science and security. In the first part, we focus on the security of data science and discuss a selection of security aspects that data scientists should consider to make their services and products more secure. In the second part about security for data science, we switch sides and present some applications where data science plays a critical role in pushing the state-of-the-art in securing information systems. This includes a detailed look at the potential and challenges of applying machine learning to the problem of detecting obfuscated JavaScripts
    • …
    corecore