

Indonesian Journal of Information Systems (IJIS)

Vol. 5, No. 1, August 2022

48

Tarwireyi, Terzoli, Adigun (BarkDroid: Android Malware Detection Using Bark Frequency Cepstral

Coefficients)

BarkDroid: Android Malware Detection Using Bark Frequency

Cepstral Coefficients

P Tarwireyi*1, A Terzoli2, M O Adigun3

1-3University of Zululand

E-mail: tarwireyip@unizulu.ac.za1, terzolia@unizulu.ac.za2, adigunm@unizulu.ac.za3

Submitted: 4 August 2022, revised: 19 August 2022, accepted: 26 August 2022

Abstract. Since their inaugural releases in 2007, Google’s Android and Apple’s iOS have grown

to dominate the mobile OS market share. Currently, they jointly possess over 99% of the global

market share with Android being the leading mobile Operating System of choice worldwide,

controlling close to 70% of the market share. Mobile devices have enabled the exponential growth

of a plethora of mobile applications that play key roles in enabling many use cases that are pivotal

in our daily lives. On the other hand, access to a large pool of potential end users is available to

both legitimate and nefarious applications, thus making mobile devices a burgeoning target of

malicious applications. Current malware detection solutions rely on tedious, time-consuming,

knowledge-based, and manual processes to identify malware. This paper introduces BarkDroid, a

novel Android malware detection technique that uses the low-level Bark Frequency Cepstral

Coefficients audio features to detect malware. The initial results obtained show that Bark

Frequency Cepstral Coefficients have high discriminative capabilities to achieve accurate

preditions. BarkDroid achieved 97.9% accuracy, 98.5% precision, an F1 score of 98.6%, and

shorter execution times.

Keywords: Android malware detection, malware classification, bark frequency cepstral

coefficients.

1. Introduction

Mobile devices have become an indispensable part of our daily lives. They have caused a paradigm shift

in the way people used to live, learn, communicate, collaborate, and conduct business. Despite the fact

that they only started in 1973, their proliferation has been so rapid that it was estimated that the number of

people using mobile devices had reached 6.3 billion by 2021. This number is projected to rise to 7.7

billion in 2027 [1].

Since their advent in the early 70’s, mobile devices have taken enormous leaps and bounds to

introduce feature sets and functionalities that puts them on par with, if not exceeding, handheld

computers. Advances in electronics, cutting-edge technologies, and the maturity of operating system

ecosystems have led to mobile devices incorporating many advanced functionalities that were previously

thought to be only possible with computers. Additionally, the rapid evolution of mobile devices from the

Indonesian Journal of Information Systems (IJIS)

Vol. 5, No. 1, August 2022

49

Tarwireyi, Terzoli, Adigun (BarkDroid: Android Malware Detection Using Bark Frequency Cepstral

Coefficients)

initially bulky and expensive device which could only make calls, to the present-day smartphone that has

been miniaturised and is jam-packed with advanced features, has been partly due to the ever-growing use

cases and user expectations [2].

At the core of the mobile device sits the operating system (OS), which acts as an intermediary

between the mobile device hardware and users. Its main responsibilities include managing device

hardware, and software and providing utilities and interfaces that enable users to interact with mobile

devices. As far as mobile operating systems are concerned, Google’s Android and Apple’s iOS are the

most successful operating systems [1].

Since their inaugural releases in 2007, Google’s Android and Apple’s iOS have grown to dominate

the mobile OS market share. Currently, they jointly possess over 99% of the global market share with

Android being the leading mobile Operating System of choice worldwide, controlling close to 70% of the

market share [2]. Mobile devices have enabled the exponential growth of a plethora of mobile

applications that play key roles in enabling many use cases which are pivotal in our daily lives. This

means mobile applications have become a forte of the mobile phone ecosystem. On the other hand,

mobile applications have also become the Achilles heel because the ability to access a large pool of

potential end users is not only available to legitimate applications, but also to malicious ones. The term

malware refers to any software that deliberately infects and causes harm to computing systems.

If we can track the historical malware patterns, it can be noted that attackers have always preferred

targeting popular platforms to maximise their chances. This means that in their unprecedented attack

campaigns and sophistication, hackers also play the numbers game. They cast their net as wide as

possible, hoping to compromise as many as possible. Consequently, it is unsurprising that although all

mobile operating systems have been attacked by malware, Android has been the lucrative primary target

for malware attacks. Android is reported to host roughly 99% of known mobile malware and is the focus

of most research efforts in mobile malware detection [1], [2]. It used to be the Microsoft Windows

operating system on personal computers; now, it is Android. Unfortunately, the permission system meant

to be the first line of defence in the Android system has been ineffective. The assumption was that users

will scrutinise the permissions that an app will request at installation and only allow them when

necessary. However, this was never due to the users' naivety, lack of knowledge, and unsuspecting nature

[3].

Android malware can steal, corrupt, or delete user data causing stress and financial loss. According

to Symantec 2019 [4], even though around 24000 malicious mobile apps are blocked daily, a sizeable

number still managed to find ways to bypass detection. Malware developers have been generating new

malware using techniques such as module reuse and automated generation tools. For several decades,

antivirus solutions have been the defacto malware mitigation strategy. Traditionally, such solutions have

primarily been reactive. They rely on known fixed string patterns or signatures to detect malware [5].

With signature-based malware detection solutions, applications are scanned while searching a database

for predefined matching patterns. The sheer number of applications that have successfully bypassed such

systems is testimony that this countermeasure is ineffective. Not only because it does not give zero-day

insurance, but it also does not scale very well in the face of the astronomical rate of malware generation

per day.

Malicious applications pose an enormous security threat to mobile devices. Current malware

detection solutions generally rely on time-consuming, knowledge-based, and manual processes to identify

malware. This has serious shortcomings, especially against new and unknown malware. Signature-based

malware solutions are not able to detect modern malware that uses packing and smart coding techniques

such as polymorphism, metamorphism, and other evasive techniques that quickly change the malware

behaviours and generate a large number of new variants which are predominantly variants of existing

malware.

Indonesian Journal of Information Systems (IJIS)

Vol. 5, No. 1, August 2022

50

Tarwireyi, Terzoli, Adigun (BarkDroid: Android Malware Detection Using Bark Frequency Cepstral

Coefficients)

As we more and more rely on mobile devices that have become hosts for our sensitive data and

applications, there is a need to develop new intelligent malware detection systems that besides detecting

known attacks also have the ability to provide zero-day insurance. Such systems should be able to cope

with the scale and complexity of malware applications being generated every day.

2. Literature review

Several previous works have investigated different android malware detection techniques [5]. Static and

dynamic analysis techniques have been used in literature to ascertain whether an android app is malicious

or not [6].

2.1. Static analysis

Several static features have been proposed in literature. These include:

• Requested permissions – is the first line of defence provided by the Android operating system to

restrict access to data and actions that the app can perform [6]–[10]. Permissions are a major

source of malware infection [11], [12] [13], [14]. Studies that use permissions for malware

detection generate attribute feature vectors from the AndroidManifest.xml file where a one is

assigned if the permission is present; otherwise, a zero is assigned [15], [16][17]–[19]. Other

studies use text classification techniques such as Term Frequency-Inverse Document Frequency

[6]. Researchers have noted that malicious applications tend to request many dangerous

permissions [15], [18].

• Hardware components – access to the hardware is explicitly declared in the manifest file. Some

hardware components are red flag signs, for instance, GPS, mic, and Internet should be viewed

with scrutiny [20], [21]

• API calls and Intents – unnecessary access to sensitive resources can be a sign of malevolent

intentions, for example getDeviceId() – IMEI [12], [14] [21], [22].

• Opcode sequences - Android applications are generally developed in Java and then compiled and

converted to the optimised Dalvik bytecode, an executable format for Android applications.

Dalvik bytecode of compiled applications can be used to distinguish malware from benign

applications. Most works have disassembled the Dex to extract the opcodes and then use the n-

grams of opcodes in machine learning analysis [22]–[24].

2.2. Dynamic analysis

Dynamic malware analysis techniques that have been used in literature include:

• Resource utilisation – Resource usage is monitored whilst the installed app is being tested. This

includes CPU, memory, network usage, API calls, and energy consumption [25], [26].

• System calls – researchers have used agent-based systems to collect system calls and generate

unique signatures or text sequences that can be used for malware detection [27], [28].

While there exists some prior work that utilises static features such as acoustic signals and images

[4], [29], [30] to analyse and detect malware, there remain a number of issues that should be explored in

future research [31]. This work is still very limited quantity-wise and in its infancy stage, but it should be

noted that no negative result have been reported up to now, to suggest that there is no value in further

exploration. As an illustration of current limitations related to this use of static features, the researchers

that have looked at using APKs to detect malware, in most instances, have only used the dex file for their

analysis. This neglects the other files that offer opportunities for generating more discriminative features

that can be used to improve overall detection accuracy. Moreover, they only utilise the typical audio

Indonesian Journal of Information Systems (IJIS)

Vol. 5, No. 1, August 2022

51

Tarwireyi, Terzoli, Adigun (BarkDroid: Android Malware Detection Using Bark Frequency Cepstral

Coefficients)

features, Mel-frequency cepstral coefficients (MFCC), which represent the short-term power spectrum of

the generated malware audio signal [31].

Evidence from recent studies suggests that machine learning can be used as a viable solution for

malware classification [33], [34]. Android malware detection using machine learning is a complex task

due to the ever-changing malware evasion techniques and the lack of well-defined features which can be

used to distinguish the various android applications with high fidelity [29]. Despite there being a body of

work that has been used to find the best way of classifying android malware, it remains unknown which

feature set is the best. It is generally agreed that malware detection is an undecidable problem which

warrants ongoing research efforts.

3. Research Method

The raw Android Application Package is an archive that contains various components of the android

application and is not suitable to be directly fed to machine learning algorithms for automatic analysis and

prediction. Each Android Application Package carries components such as libraries, methods, classes,

certificates, assets, resources, and configuration files that make it functional. The variances in the content,

nature, and compositions of these components make the unique characteristics of each android

application. Selecting appropriate distinguishable characteristics from the raw Android Application

Package is an open area of research. In order to improve accuracy and reduce the number of false

positives in android malware detection, strategies are needed for discarding irrelevant details and only

selecting relevant information. Such relevant features should possess stable and effective discriminative

characteristics that will enable machine learning algorithms to distinguish between various types of

android applications.

The research reported in this study is inspired by similar work in the audio engineering field [35],

[36]. Our work treats an android application as a signal modeled so that it carries unique characteristics

that can be analysed using Automated Signal Recognition techniques. At the low level, an android

application is simply translated into a series of ones and zeros. This has similar characteristics to signals

such as audio which is a sequence of sounds translated to a series of ones and zeros to represent the

oscillating longitudinal waves. Such waveform representation renders itself nicely for automatic analysis

and processing in digital systems.

From a high-level point of view, this study employed a simple two-phase machine learning life

cycle that uses data engineering as the first phase, followed by model engineering. Data engineering is

concerned with building systems and processes for raw data ingestion, storage, wrangling, feature

creation, and transforming into formats useful for analysis. On the other hand, model engineering is an

iterative process of writing, executing, and tuning machine learning models. A graphical description of

the procedure is presented in Figure 1.

• Step 1: Dataset is collected and unzipped into respective folders

• Step 2: The dataset is cleaned to de-duplicate and remove corrupted APK files

• Step 3: Data exploration and validation are performed to ascertain the distribution of the different

samples contained in the dataset

• Step 4: Using algorithm 1 given below, traverse through all the folders and subfolders in the

dataset to convert APK files into WAV files. The output of this step is a novel malware audio

dataset that can be used by the research community to carry out further analysis.

• Step 5: Like the raw APK file that is not suitable for feeding directly as input into automatic

recognition systems, wav files are also unsuitable. There is a need for an intermediary step that

will extract relevant information analysable by acoustic models. Because the generated audio

signals exhibited characteristics that are similar to those seen in noisy signals, such as the

../../../../:w:/g/personal/tarwireyip_unizulu_ac_za/Ecq_CZEs-VpMuryCwIvIwm4BvAl63CIakXBBwRCNhz3S-A

Indonesian Journal of Information Systems (IJIS)

Vol. 5, No. 1, August 2022

52

Tarwireyi, Terzoli, Adigun (BarkDroid: Android Malware Detection Using Bark Frequency Cepstral

Coefficients)

Watkins Marine Mammal Sound Database, there is a need to consider features that exhibit

superior noise robustness. This study uses the bark-frequency cepstrum coefficients algorithm

highlighted in figure 2 to extract features. This algorithm segments the waveform and uses a

combination of low and high pass filters to bark frequency cepstrum.

Figure 1. Proposed methodology architecture diagram

Bark Frequency Cepstrum is the short-time power spectrum representation of a signal based on the linear cosine

transform of a log spectrum on a non-linear Bark scale of frequency [35], [36]. Figure 2 shows the block diagram

for the bark-frequency cepstrum coefficients algorithm. The bark frequency is calculated as shown in

equations (1) and (2) [35].

 (1)

 (2)

Where f is the waveform’s linear frequency in hertz and fbark is the resultant frequency in bark.

Indonesian Journal of Information Systems (IJIS)

Vol. 5, No. 1, August 2022

53

Tarwireyi, Terzoli, Adigun (BarkDroid: Android Malware Detection Using Bark Frequency Cepstral

Coefficients)

Algorithm 1: Transforming APK to Audio

Input: APK Dataset directory: DAPK = { dapk1, dapk2, …, dapkn)

Result: WAV Dataset directory: DWAV = { dwav1, dwav2, …, dwavn}

For all dapki ∈ DAPK do: {Where dapki includes all level sub folders}

 For all apks ∈ dapki do:

 Read apk into memory

 Binarize APK (Covert into a series of ones and zeros)

 Put the bits into 16bit groups

 Write the resultant oscillating longitudinal wave to a .wav file in dwavi

 End for

End for

Pre-emphasis is applied to the audio signal as a filter to compensate for the average spectral shape.

Windowing is used to split the input signal into short enough temporal segments, which do not allow

enough time for the properties of the signal to change in each segment [35]. To determine the perceived

loudness of frequencies at given sound pressure levels, the outputs of the bark scale filter banks are

weighted according to the Fletcher Munson or equal loudness curve. The signal is compressed using the

logarithmic function and passed through the discrete cosine transform, a time-frequency transform

operation for decorrelating sequentially correlated data [36].

• Step 6: The resultant dataset of extracted features is split into training, validation, and testing sets.

• Step 7: Models are created, trained, and validated to learn the intrinsic patterns that can be used to

distinguish between malicious and benign android application package files. The train and

validation phases are iteratively repeated until optimal performance levels have been obtained.

This phase includes hyperparameter optimisation.

• Step 8: The generalisability of the trained classifier is tested when it is used to make predictions

on data it has never seen before. This data comes from the testing set.

3.1. Datasets

We use the CICMalAnal2017 [32] and CICMalDroid 2020 [33] [34] datasets provided by the Canadian

Institute for Cybersecurity. The CICMalDroid 2020 dataset consists of 17341 android application

packages collected from several sources such as Contagio blog, AMD, Maldozer, and other recent and

sophisticated datasets collected until 2018. The dataset covers five broad categories of android malware.

Details of the datasets are given in tables 1 and 2.

Indonesian Journal of Information Systems (IJIS)

Vol. 5, No. 1, August 2022

54

Tarwireyi, Terzoli, Adigun (BarkDroid: Android Malware Detection Using Bark Frequency Cepstral

Coefficients)

Figure 2. Bark-Frequency Cepstrum Coefficients algorithm block diagram [36]

Table 1. CICMalAnal2017 dataset.

Category Description
Number of

samples

Number of

resultant

audio

samples

Adware This unwanted program works by repeatedly

displaying pop-up adverts on the mobile screen to

generate revenue for its authors.

104 104

Ransomware The malware encrypts the victims’ files and demands a

ransom to restore access.

101 101

Scareware Is a form of malware that uses social engineering to

manipulate victims into buying malicious software.

112 112

SMSmalware This malware utilises short messaging services and

other mobile messaging services to exploit mobile

devices. It sends malicious SMSes and intercepts

109 109

Indonesian Journal of Information Systems (IJIS)

Vol. 5, No. 1, August 2022

55

Tarwireyi, Terzoli, Adigun (BarkDroid: Android Malware Detection Using Bark Frequency Cepstral

Coefficients)

SMSes to steal passwords, online banking details, and

other information from infected devices.

Benign These are legitimate applications that were scanned

with VirusTotal to certify that they are not malicious.

1 700 1 648

TOTAL 2 126 2 074

Table 2. CICMalDroid2020 dataset.

Category Description
Number of

samples

Number of

resultant

audio

samples

Adware Same as in table 1. 1 515 1 514

Banking Malware Infiltrate mobile devices to attempt to convince users

to divulge sensitive banking details such as credit card

number, login username, password, or pin. In most

cases, the apps are designed as a trojan that will send

the exploited data to the cybercriminal.

2 506 2 504

SMS Malware As provided in the previous table 4 822 4 821

Mobile Riskware These are legitimate applications that are potentially

risky because they leave users and systems vulnerable

to legal risks and data and application exploits. For

example, they might expose vulnerabilities that

cybercriminals might exploit to access the kernel and

misuse programs to exfiltrate data.

4 362 3 904

Benign As provided in the previous table 4 042 4 039

TOTAL 17 247 16 783

4. Result and Discussion
In this section, we present the experimental results of the proposed method. It should be noted that the

discussion will be preliminary and focused on assessing how promising our method is. A more detailed

interpretation of every single result will be the focus of future papers.

After downloading the CICMaldroid2020 and CICMalAnal2017 datasets, 97.3% and 97.6% of the

samples were successfully converted to the .wav audio format, respectively. The remaining samples were

discarded because they were either corrupted or duplicates. On average, converting CICMaldroid2020

apks to audio took 21 minutes, whereas CICMalAnal2017 took 5 minutes and 34 seconds. Bark-

frequency cepstrum coefficient features were generated from the audio files for analysis. The sample data

in Figure 3 shows the generated audio files and their corresponding extracted bark frequency features.

We implemented the proposed strategy on a 1.80GHz Intel(R) Core (TM) i7-8565U CPU laptop

with 24 GB RAM. The code to implement the machine learning pipeline discussed above was developed

using TensorFlow and Python. In the experiment, 23 machine learning classifiers were implemented for

performance evaluation. These include extra trees, Gaussian Process, Multi-Layer Perceptron, Bayesian

Indonesian Journal of Information Systems (IJIS)

Vol. 5, No. 1, August 2022

56

Tarwireyi, Terzoli, Adigun (BarkDroid: Android Malware Detection Using Bark Frequency Cepstral

Coefficients)

Network, Passive Aggressive, Support Vector Machine, AdaBoost, Random Forest, KNeighbors, and

Decision Tree.

 (a) (b)

Figure 3. Sample Data (a) Malware waveforms, (b) Benign waveforms

4.1. Classification performance

4.1.1. CICMalAnal2017

To comprehensively measure how accurately bark-frequency cepstral coefficients can be used to classify

android applications, classification accuracy, precision, recall, and area under the curve are calculated.

Moreover, the train and test times are also calculated to estimate the complexity of the algorithms. The

following table shows the results of the malware detection and classification experiments on the

CICMalAnal2017 dataset using an 80 – 20 % split.

Table 3. CICMalAnal2017 performance results.

Classifier used
Test

Accuracy
Precision Recall

F1

Score
AUC

Train

Time [s]

Test

Time [s]

RandomForest 0.9325 0.8434 0.8235 0.8333 0.8921 2.4956 0.0642

CatBoost 0.9301 0.8500 0.8000 0.8242 0.8818 4.0229 0.0034

ExtraTrees 0.9277 0.8873 0.7412 0.8077 0.8585 0.1654 0.0194

LGBM 0.9253 0.8293 0.8000 0.8144 0.8788 0.1860 0.0141

Bagging 0.9229 0.8354 0.7765 0.8 0.8685 0.1464 0.0023

XGB 0.9157 0.7976 0.7882 0.7929 0.8684 0.6426 0.0034

GaussianProcess 0.9157 0.8906 0.6706 0.7651 0.8247 2.6927 0.0171

XGBRF 0.9108 0.8333 0.7059 0.7805 0.8348 0.2434 0.0038

Gradient

Boosting

0.9108 0.8000 0.7529 0.7643 0.8522 0.6347 0.0013

DecisionTree 0.9060 0.7738 0.7647 0.7285 0.8536 0.0358 0.0005

KNeighbors 0.9012 0.7558 0.7647 0.7602 0.8505 0.0042 0.0306

Indonesian Journal of Information Systems (IJIS)

Vol. 5, No. 1, August 2022

57

Tarwireyi, Terzoli, Adigun (BarkDroid: Android Malware Detection Using Bark Frequency Cepstral

Coefficients)

Classifier used
Test

Accuracy
Precision Recall

F1

Score
AUC

Train

Time [s]

Test

Time [s]

SVC 0.8988 0.8525 0.6118 0.7529 0.7922 0.2593 0.0101

MLP 0.8988 0.8413 0.6235 0.7123 0.7966 2.2036 0.0006

AdaBoost 0.8988 0.8209 0.6471 0.7152 0.8053 0.2455 0.0095

LinearSVC 0.8747 0.7619 0.5647 0.7134 0.7596 0.0704 0.0003

Logistic

RegressionCV

0.8747 0.7538 0.5765 0.6533 0.7640 1.3264 0.0003

NuSVC 0.8627 0.6429 0.7412 0.6395 0.8176 0.1992 0.0069

RidgeCV 0.8627 0.7593 0.4824 0.6707 0.7215 0.0109 0.0003

SGD 0.8458 0.6567 0.5176 0.6885 0.7240 0.0073 0.0003

BernoulliNB 0.8410 0.6173 0.5882 0.5899 0.7471 0.0028 0.0006

Passive

Aggressive

0.8386 0.8000 0.2824 0.6024 0.6321 0.0023 0.0003

Perceptron 0.8241 0.6500 0.3059 0.416 0.6317 0.0024 0.0002

GaussianNB 0.8193 0.5735 0.4588 0.5098 0.6855 0.0020 0.0006

4.1.2. CICMaldroid2020

The following table shows the results of the malware detection and classification experiments on the

CICMaldroid2020 dataset using an 80 – 20 % split.

Table 4. CICMaldroid2020 performance results.

MLA used
Test

Accuracy
Precision Recall

F1

Score
AUC

Train

Time [s]

Test

Time [s]

RandomForest 0.9787 0.9840 0.9885 0.9862 0.9669 18.1183 0.2386

ExtraTrees 0.9784 0.9851 0.9870 0.986 0.9681 0.7067 0.0742

CatBoost 0.9739 0.9809 0.9854 0.9832 0.9601 6.1896 0.0169

KNeighbors 0.9728 0.9820 0.9828 0.9824 0.9607 0.0420 0.1974

XGB 0.9725 0.9805 0.9839 0.9822 0.9587 2.0600 0.0060

LGBM 0.9719 0.9805 0.9831 0.9818 0.9583 0.2125 0.0076

Bagging 0.9686 0.9782 0.9812 0.981 0.9535 1.1242 0.0073

MLP 0.9636 0.9766 0.9762 0.9765 0.9484 17.4428 0.0026

GradientBoosting 0.9609 0.9733 0.9762 0.9748 0.9425 5.3028 0.0062

GaussianProcess 0.9594 0.9758 0.9716 0.9737 0.9448 377.1062 0.8963

Indonesian Journal of Information Systems (IJIS)

Vol. 5, No. 1, August 2022

58

Tarwireyi, Terzoli, Adigun (BarkDroid: Android Malware Detection Using Bark Frequency Cepstral

Coefficients)

XGBRF 0.9571 0.9746 0.9697 0.9722 0.9418 1.5513 0.0065

SVC 0.9553 0.9727 0.9693 0.9721 0.9384 7.2397 0.2970

DecisionTree 0.9526 0.9658 0.9732 0.971 0.9279 0.2303 0.0007

AdaBoost 0.9464 0.9620 0.9690 0.9655 0.9193 1.2990 0.0272

Logistic

RegressionCV

0.9464 0.9644 0.9663 0.9654 0.9225 1.4583 0.0004

LinearSVC 0.9449 0.9640 0.9648 0.9644 0.9211 0.5492 0.0008

Perceptron 0.9426 0.9618 0.9640 0.9629 0.9168 0.0119 0.0006

SGD 0.9417 0.9657 0.9586 0.9626 0.9213 0.0631 0.0005

RidgeCV 0.9233 0.9431 0.9586 0.9508 0.8809 0.0227 0.0005

Passive

Aggressive

0.9055 0.9712 0.9046 0.9362 0.9067 0.0207 0.0006

BernoulliNB 0.8993 0.9179 0.9552 0.9348 0.8322 0.0059 0.0011

NuSVC 0.8981 0.9247 0.9452 0.9222 0.8416 6.1177 0.1409

GaussianNB 0.6799 0.9458 0.6215 0.7501 0.7501 0.0082 0.0016

The tables 3 and 4 above show the performance statistics of the various models that were evaluated in this

study. The tables are sorted by the testing accuracy column. A summary of the relevant top performing

algorithms is given below:

• Accuracy: Random Forest, extra trees and catboost algorithms achieved the top 3 test accuracy

scores in both datasets. The highest scores achieved are 97.9%, 97.8%, and 97.4%, respectively.

• Precision: Extra Trees achieved the highest score of 98.5%, followed by random forest which

had 98.4%.

• Recall: Random forest accomplished the highest recall rate of 98.9 whereas extra trees was

second with 98.7%.

• F1 Score: Random forest was the best with an f1 score of 98.62%, followed by extra trees which

had 98.6%.

• ROC Score: Extra trees achieved the best score of 96.8%, followed by random forest, which had

96.7%.

• Generally, it was observed that ensemble algorithms performed well in the malware classification

task while the GaussianNB was the worst performing in all experiments. Furthermore, most fast

algorithms in terms of processing speed, did not have good results to warranty consideration.

The figure below shows highlights of the top 3 performing algorithms over the two experimental datasets.

Indonesian Journal of Information Systems (IJIS)

Vol. 5, No. 1, August 2022

59

Tarwireyi, Terzoli, Adigun (BarkDroid: Android Malware Detection Using Bark Frequency Cepstral

Coefficients)

Figure 4. Performance results of the top 3 algorithms

The table 5 below ranks the models column-wise by identifying the best model according to each

performance metric.

Table 5. CICMaldroid2020 performance ranking results.

Classifier used Test Accuracy Precision F1 Score AUC Train Time [s] Test Time [s]

RandomForest 1 2 1 2 22 21

ExtraTrees 2 1 2 1 11 18

CatBoost 3 4 3 4 19 16

KNeighbors 4 3 4 3 6 20

XGB 5 5 5 5 16 11

LGBM 6 6 6 6 8 15

Bagging 7 7 7 7 12 14

MLP 8 8 8 8 21 10

GradientBoosting 9 11 9 10 17 12

GaussianProcess 10 9 10 9 23 23

XGBRF 11 10 11 11 15 13

SVC 12 12 12 12 20 22

DecisionTree 13 14 13 13 9 6

AdaBoost 14 18 15 17 13 17

LogisticRegressionCV 15 16 14 14 14 1

LinearSVC 16 17 16 16 10 7

Perceptron 17 19 17 18 3 4

SGD 18 15 18 15 7 3

RidgeCV 19 21 19 20 5 2

PassiveAggressive 20 13 20 19 4 5

BernoulliNB 21 23 21 22 1 8

NuSVC 22 22 22 21 18 19

GaussianNB 23 20 23 23 23 9

Indonesian Journal of Information Systems (IJIS)

Vol. 5, No. 1, August 2022

60

Tarwireyi, Terzoli, Adigun (BarkDroid: Android Malware Detection Using Bark Frequency Cepstral

Coefficients)

Figure 5. Precision-Recall Graphs of the top algorithms

Based on the highest test accuracy results, the top five models are Random Forest, Extra Trees, CatBoost,

KNeighbors, and XGBClassifier. In the precision-recall graphs shown in figure 5, these algorithms have

high precision and recall rates, meaning they returned many correctly labelled results. While the

differences between the performance metrics of random forest and extra trees are minimal, if one

considers the resource limitations of mobile devices, the extra trees algorithm is probably the better

choice because of shorter train and test times. Furthermore, it also has a better precision score, meaning it

has the highest ratio of malicious applications that are correctly classified. By looking at the two datasets

that were used for experimentation, it can also be observed that the highest accuracy achieved improved

by around 4.62% by utilising a slightly bigger dataset. It should be noted that the dataset used is

substantially smaller than the bigger datasets used in the research field. The achieved results evidently

show that bark-frequency cepstral coefficients are promising static features for malware detection.

5. Conclusion

This paper proposes an android malware detection system that uses acoustic signals and Bark Frequency

Cepstral Coefficients as malware features. To the best of our knowledge, this is the first study to

introduce such features for malware detection. Twenty three machine learning algorithms were used to

evaluate the efficiency of the proposed system. As this research has shown, bark frequency cepstral

coefficients proved highly discriminative in android malware detection reaching an average precision of

99%.

Indonesian Journal of Information Systems (IJIS)

Vol. 5, No. 1, August 2022

61

Tarwireyi, Terzoli, Adigun (BarkDroid: Android Malware Detection Using Bark Frequency Cepstral

Coefficients)

References

[1] S. O’Dea, “Smartphone subscriptions worldwide 2027 | Statista,” 2022.

https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/ (accessed

Aug. 02, 2022).
[2] Federica Laricchia, “Global mobile OS market share 2012-2022 | Statista,” Market share of mobile

operating systems worldwide 2012-2022, 2022. https://www.statista.com/statistics/272698/global-

market-share-held-by-mobile-operating-systems-since-2009/ (accessed Aug. 02, 2022).

[3] Symantec, “ISTR Internet Security Threat Report Volume 24 |,” 2019.

[4] M. Yang and Q. Wen, “Detecting android malware by applying classification techniques on images

patterns,” 2017 2nd IEEE International Conference on Cloud Computing and Big Data Analysis,

ICCCBDA 2017, pp. 344–347, Jun. 2017, doi: 10.1109/ICCCBDA.2017.7951936.

[5] A. Razgallah, R. Khoury, S. Hallé, and K. Khanmohammadi, “A survey of malware detection in

Android apps: Recommendations and perspectives for future research,” Computer Science Review,

vol. 39, p. 100358, Feb. 2021, doi: 10.1016/J.COSREV.2020.100358.

[6] D. Ö. Şahın, O. E. Kural, S. Akleylek, and E. Kiliç, “New results on permission based static

analysis for Android malware,” 2018. Accessed: Aug. 01, 2022. [Online]. Available:

https://ieeexplore.ieee.org/document/8355377/

[7] N. Milosevic, A. Dehghantanha, and K. K. R. Choo, “Machine learning aided Android malware

classification,” Computers and Electrical Engineering, vol. 61, pp. 266–274, Sep. 2017, doi:

10.1016/j.compeleceng.2017.02.013.

[8] M. Ganesh, P. Pednekar, P. Prabhuswamy, D. S. Nair, Y. Park, and H. Jeon, “CNN-Based Android

Malware Detection,” Proceedings - 2017 International Conference on Software Security and

Assurance, ICSSA 2017, pp. 60–65, 2018, doi: 10.1109/ICSSA.2017.18.

[9] A. Mahindru and A. L. Sangal, “FSDroid:- A feature selection technique to detect malware from

Android using Machine Learning Techniques: FSDroid,” Multimedia Tools and Applications, pp.

1–53, Sep. 2021, doi: 10.1007/s11042-020-10367-w.

[10] O. E. Kural, D. Ö. Şahin, S. Akleylek, and E. Kılıç, “Permission Weighting Approaches in

Permission Based Android Malware Detection,” 2019. Accessed: Aug. 01, 2022. [Online].

Available: https://ieeexplore.ieee.org/document/8907187/

[11] S. J. K., S. Chakravarty, and R. K. V. P., “Feature Selection and Evaluation of Permission-based

Android Malware Detection,” 2020. Accessed: Aug. 01, 2022. [Online]. Available:

https://ieeexplore.ieee.org/document/9142929/

[12] S. Kumar, D. Mishra, and S. K. Shukla, “Android Malware Family Classification: What Works-

API Calls, Permissions or API Packages?,” Proceedings - 2021 14th International Conference on

Security of Information and Networks, SIN 2021, 2021, doi: 10.1109/SIN54109.2021.9699322.

[13] E. Amer, “Permission-Based Approach for Android Malware Analysis Through Ensemble-Based

Voting Model,” 2021. Accessed: Aug. 01, 2022. [Online]. Available:

https://ieeexplore.ieee.org/document/9447675/

[14] F. Guyton, W. Li, L. Wang, and A. Kumar, “Android Feature Selection based on Permissions,

Intents, and API Calls,” 2022 IEEE/ACIS 20th International Conference on Software Engineering

Research, Management and Applications (SERA), pp. 149–154, May 2022, doi:

10.1109/SERA54885.2022.9806471.

[15] S. R. T. Mat, M. F. A. Razak, M. N. M. Kahar, J. M. Arif, and A. Zabidi, “Applying Bayesian

probability for Android malware detection using permission features,” 2021. Accessed: Aug. 01,

2022. [Online]. Available: https://ieeexplore.ieee.org/document/9537090/

Indonesian Journal of Information Systems (IJIS)

Vol. 5, No. 1, August 2022

62

Tarwireyi, Terzoli, Adigun (BarkDroid: Android Malware Detection Using Bark Frequency Cepstral

Coefficients)

[16] M. Upadhayay, A. Sharma, G. Garg, and A. Arora, “RPNDroid: Android Malware Detection using

Ranked Permissions and Network Traffic,” 2021. Accessed: Aug. 01, 2022. [Online]. Available:

https://ieeexplore.ieee.org/document/9513992/

[17] H. H. R. Manzil and M. S. Naik, “COVID-Themed Android Malware Analysis and Detection

Framework Based on Permissions,” 2022 International Conference for Advancement in

Technology, ICONAT 2022, 2022, doi: 10.1109/ICONAT53423.2022.9726024.

[18] P. R. K. Varma, K. P. Raj, and K. V. S. Raju, “Android mobile security by detecting and

classification of malware based on permissions using machine learning algorithms,” 2017.

Accessed: Aug. 01, 2022. [Online]. Available: https://ieeexplore.ieee.org/document/8058358/

[19] T. Lu and S. Hou, “A Two-Layered Malware Detection Model Based on Permission for Android,”

2018. Accessed: Aug. 01, 2022. [Online]. Available:

https://ieeexplore.ieee.org/document/8542215/

[20] M. Guri, Y. Poliak, B. Shapira, and Y. Elovici, “JoKER: Trusted detection of kernel rootkits in

android devices via JTAG interface,” Proceedings - 14th IEEE International Conference on Trust,

Security and Privacy in Computing and Communications, TrustCom 2015, vol. 1, pp. 65–73, Dec.

2015, doi: 10.1109/TRUSTCOM.2015.358.

[21] F. Wenbo, Z. Linlin, W. Chenyue, H. Yingjie, Y. Yuaner, and Z. Kai, “AMC-MDL: A Novel

Approach of Android Malware Classification using Multimodel Deep Learning,” Proceedings -

IEEE 18th International Conference on Dependable, Autonomic and Secure Computing, , pp. 251–

256, Aug. 2020.

[22] V. Sihag, M. Vardhan, and P. Singh, “BLADE: Robust malware detection against obfuscation in

android,” Forensic Science International: Digital Investigation, vol. 38, p. 301176, Sep. 2021, doi:

10.1016/j.fsidi.2021.301176.

[23] S. Lee, W. Jung, S. Kim, and E. T. Kim, “Android Malware Similarity Clustering using Method

based Opcode Sequence and Jaccard Index,” ICTC 2019 - 10th International Conference on ICT

Convergence: ICT Convergence Leading the Autonomous Future, pp. 178–183, Oct. 2019, doi:

10.1109/ICTC46691.2019.8939894.

[24] H. Rathore, S. K. Sahay, and S. Thukral, “Detection of Malicious Android Applications: Classical

Machine Learning vs. Deep Neural Network Integrated with Clustering ficiency (training and

testing time) many folds without much penalty on effectiveness of detection model.” 2021.

[Online]. Available: https://developer.android.com/guide/platform

[25] A. Merlo, M. Migliardi, and P. Fontanelli, “On energy-based profiling of malware in Android,”

Proceedings of the 2014 International Conference on High Performance Computing and

Simulation, HPCS 2014, pp. 535–542, Sep. 2014, doi: 10.1109/HPCSIM.2014.6903732.

[26] Y. Dai, H. Li, Y. Qian, and X. Lu, “A malware classification method based on memory dump

grayscale image,” Digital Investigation, vol. 27, pp. 30–37, Sep. 2018, doi:

10.1016/j.diin.2018.09.006.

[27] M. Damshenas, A. Dehghantanha, K.-K. R. Choo, and R. Mahmud, “M0Droid: An Android

Behavioral-Based Malware Detection Model,” Journal of Information Privacy and Security, vol.

11, no. 3, pp. 141–157, Sep. 2015, doi: 10.1080/15536548.2015.1073510.

[28] V. M. Afonso, M. F. de Amorim, A. R. A. Grégio, G. B. Junquera, and P. L. de Geus, “Identifying

Android malware using dynamically obtained features,” Journal of Computer Virology and

Hacking Techniques, vol. 11, no. 1, pp. 9–17, Sep. 2015, doi: 10.1007/s11416-014-0226-7.

[29] A. Dhavlle and S. Shukla, “A Novel Malware Detection Mechanism based on features extracted

from converted Malware binary images,” 2021.

[30] L. Yang and J. Liu, “TuningMalconv: Malware Detection with Not Just Raw Bytes,” IEEE Access,

vol. 8, pp. 140915–140922, 2020, doi: 10.1109/ACCESS.2020.3014245.

Indonesian Journal of Information Systems (IJIS)

Vol. 5, No. 1, August 2022

63

Tarwireyi, Terzoli, Adigun (BarkDroid: Android Malware Detection Using Bark Frequency Cepstral

Coefficients)

[31] F. Mercaldo and A. Santone, “Audio signal processing for Android malware detection and family

identification,” Journal of Computer Virology and Hacking Techniques, vol. 17, no. 2, pp. 139–

152, 2021, doi: 10.1007/s11416-020-00376-6.

[32] A. H. Lashkari, A. F. A. Kadir, L. Taheri, and A. A. Ghorbani, “Toward Developing a Systematic

Approach to Generate Benchmark Android Malware Datasets and Classification,” Proceedings -

International Carnahan Conference on Security Technology, vol. 2018-October, Dec. 2018, doi:

10.1109/CCST.2018.8585560.

[33] S. Mahdavifar, A. F. Abdul Kadir, R. Fatemi, D. Alhadidi, and A. A. Ghorbani, “Dynamic Android

Malware Category Classification using Semi-Supervised Deep Learning,” Proceedings - IEEE 18th

International Conference on Dependable, Autonomic and Secure Computing, Intl Conf on

Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on

Cyber Science and Technology Congress, pp. 515–522, Aug. 2020, doi: 10.1109/DASC-PICOM-

CBDCOM-CYBERSCITECH49142.2020.00094.

[34] S. Mahdavifar, D. Alhadidi, and A. A. Ghorbani, “Effective and Efficient Hybrid Android Malware

Classification Using Pseudo-Label Stacked Auto-Encoder,” Journal of Network and Systems

Management, vol. 30, no. 1, Jan. 2021, doi: 10.1007/S10922-021-09634-4.

[35] C. Kumar, F. Ur Rehman, S. Kumar, A. Mehmood, and G. Shabir, “Analysis of MFCC and BFCC

in a speaker identification system” 2018 International Conference on Computing, Mathematics and

Engineering Technologies: Invent, Innovate and Integrate for Socioeconomic Development,

iCoMET 2018 - Proceedings, vol. 2018-January, pp. 1–5, Apr. 2018, doi:

10.1109/ICOMET.2018.8346330.

[36] T. Gulzar, A. Singh, and S. Sharma, “Comparative Analysis of LPCC, MFCC and BFCC for the

Recognition of Hindi Words using Artificial Neural Networks,” International Journal of Computer

Applications, vol. 101, no. 12, pp. 22–27, Sep. 2014, doi: 10.5120/17740-8271.

