16,089 research outputs found

    Automated design of robust discriminant analysis classifier for foot pressure lesions using kinematic data

    Get PDF
    In the recent years, the use of motion tracking systems for acquisition of functional biomechanical gait data, has received increasing interest due to the richness and accuracy of the measured kinematic information. However, costs frequently restrict the number of subjects employed, and this makes the dimensionality of the collected data far higher than the available samples. This paper applies discriminant analysis algorithms to the classification of patients with different types of foot lesions, in order to establish an association between foot motion and lesion formation. With primary attention to small sample size situations, we compare different types of Bayesian classifiers and evaluate their performance with various dimensionality reduction techniques for feature extraction, as well as search methods for selection of raw kinematic variables. Finally, we propose a novel integrated method which fine-tunes the classifier parameters and selects the most relevant kinematic variables simultaneously. Performance comparisons are using robust resampling techniques such as Bootstrap632+632+and k-fold cross-validation. Results from experimentations with lesion subjects suffering from pathological plantar hyperkeratosis, show that the proposed method can lead tosim96sim 96%correct classification rates with less than 10% of the original features

    Statistical Significance of the Netflix Challenge

    Full text link
    Inspired by the legacy of the Netflix contest, we provide an overview of what has been learned---from our own efforts, and those of others---concerning the problems of collaborative filtering and recommender systems. The data set consists of about 100 million movie ratings (from 1 to 5 stars) involving some 480 thousand users and some 18 thousand movies; the associated ratings matrix is about 99% sparse. The goal is to predict ratings that users will give to movies; systems which can do this accurately have significant commercial applications, particularly on the world wide web. We discuss, in some detail, approaches to "baseline" modeling, singular value decomposition (SVD), as well as kNN (nearest neighbor) and neural network models; temporal effects, cross-validation issues, ensemble methods and other considerations are discussed as well. We compare existing models in a search for new models, and also discuss the mission-critical issues of penalization and parameter shrinkage which arise when the dimensions of a parameter space reaches into the millions. Although much work on such problems has been carried out by the computer science and machine learning communities, our goal here is to address a statistical audience, and to provide a primarily statistical treatment of the lessons that have been learned from this remarkable set of data.Comment: Published in at http://dx.doi.org/10.1214/11-STS368 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A Comparative Review of Dimension Reduction Methods in Approximate Bayesian Computation

    Get PDF
    Approximate Bayesian computation (ABC) methods make use of comparisons between simulated and observed summary statistics to overcome the problem of computationally intractable likelihood functions. As the practical implementation of ABC requires computations based on vectors of summary statistics, rather than full data sets, a central question is how to derive low-dimensional summary statistics from the observed data with minimal loss of information. In this article we provide a comprehensive review and comparison of the performance of the principal methods of dimension reduction proposed in the ABC literature. The methods are split into three nonmutually exclusive classes consisting of best subset selection methods, projection techniques and regularization. In addition, we introduce two new methods of dimension reduction. The first is a best subset selection method based on Akaike and Bayesian information criteria, and the second uses ridge regression as a regularization procedure. We illustrate the performance of these dimension reduction techniques through the analysis of three challenging models and data sets.Comment: Published in at http://dx.doi.org/10.1214/12-STS406 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Estimating High Dimensional Covariance Matrices and its Applications

    Get PDF
    Estimating covariance matrices is an important part of portfolio selection, risk management, and asset pricing. This paper reviews the recent development in estimating high dimensional covariance matrices, where the number of variables can be greater than the number of observations. The limitations of the sample covariance matrix are discussed. Several new approaches are presented, including the shrinkage method, the observable and latent factor method, the Bayesian approach, and the random matrix theory approach. For each method, the construction of covariance matrices is given. The relationships among these methods are discussed.Factor analysis, Principal components, Singular value decomposition, Random matrix theory, Empirical Bayes, Shrinkage method, Optimal portfolios, CAPM, APT, GMM
    • …
    corecore