16,426 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationAir medical transport (AMT) is a complex process that requires coordination of aircraft and highly skilled professionals to transport critically ill patients to definitive care. To achieve optimal performance, medical transport services employ quality and safety management systems (QSMS) to report errors and evaluate performance. Unfortunately, there are no standards for classifying miscommunication in these systems. A thoughtfully developed ontology, based upon theoretical models, provides the foundation within a QSMS for reporting communication errors and standardizing analysis. This research used a mixed-methods, pre-post design, with four distinct studies to analyze communication at the Life Flight AMT service. Study 1 was a qualitative study of communication and miscommunication. Study 2 (pre) was a quantitative study measuring communication errors in reports to the QSMS. Study 3 developed a new communication ontology for the QSMS to improve reporting and analysis of communication errors. Study 4 (post) implemented the new ontology and evaluated its performance for analyzing communication errors in the QSMS. Study 1 showed that communication in this AMT service is a complex process that may require more than 28 communication interactions between 10 or more people and utilize as many as 6 different communication technologies. Omissions of information were the most frequent communication errors described. Study 2 revealed that Life Flight's ontology in their QSMS was inadequate for measuring communication errors. iii Two hundred seventy-eight event reports were reviewed from the QSMS with 58 (21%) having evidence of a communication error during transport. Of those 58 reports, only 18 (31%) could be retrieved by a simple query. A new, theory-based, communication ontology was developed in Study 3. Study 4 showed the new communication ontology more than doubled the ability to retrieve reports with communication errors by simple query of the QSMS (71%). Furthermore, analysis showed that 50% of communication errors occurred at the initial phase of transport. The most frequent errors were information not being forwarded to key persons (37%). This research provided the foundation for describing and measuring communication errors in an AMT Service. Further research is needed to identify strategies that will improve information distribution between persons involved with patient transport

    Understanding Patient Safety Reports via Multi-label Text Classification and Semantic Representation

    Get PDF
    Medical errors are the results of problems in health care delivery. One of the key steps to eliminate errors and improve patient safety is through patient safety event reporting. A patient safety report may record a number of critical factors that are involved in the health care when incidents, near misses, and unsafe conditions occur. Therefore, clinicians and risk management can generate actionable knowledge by harnessing useful information from reports. To date, efforts have been made to establish a nationwide reporting and error analysis mechanism. The increasing volume of reports has been driving improvement in quantity measures of patient safety. For example, statistical distributions of errors across types of error and health care settings have been well documented. Nevertheless, a shift to quality measure is highly demanded. In a health care system, errors are likely to occur if one or more components (e.g., procedures, equipment, etc.) that are intrinsically associated go wrong. However, our understanding of what and how these components are connected is limited for at least two reasons. Firstly, the patient safety reports present difficulties in aggregate analysis since they are large in volume and complicated in semantic representation. Secondly, an efficient and clinically valuable mechanism to identify and categorize these components is absent. I strive to make my contribution by investigating the multi-labeled nature of patient safety reports. To facilitate clinical implementation, I propose that machine learning and semantic information of reports, e.g., semantic similarity between terms, can be used to jointly perform automated multi-label classification. My work is divided into three specific aims. In the first aim, I developed a patient safety ontology to enhance semantic representation of patient safety reports. The ontology supports a number of applications including automated text classification. In the second aim, I evaluated multilabel text classification algorithms on patient safety reports. The results demonstrated a list of productive algorithms with balanced predictive power and efficiency. In the third aim, to improve the performance of text classification, I developed a framework for incorporating semantic similarity and kernel-based multi-label text classification. Semantic similarity values produced by different semantic representation models are evaluated in the classification tasks. Both ontology-based and distributional semantic similarity exerted positive influence on classification performance but the latter one shown significant efficiency in terms of the measure of semantic similarity. Our work provides insights into the nature of patient safety reports, that is a report can be labeled by multiple components (e.g., different procedures, settings, error types, and contributing factors) it contains. Multi-labeled reports hold promise to disclose system vulnerabilities since they provide the insight of the intrinsically correlated components of health care systems. I demonstrated the effectiveness and efficiency of the use of automated multi-label text classification embedded with semantic similarity information on patient safety reports. The proposed solution holds potential to incorporate with existing reporting systems, significantly reducing the workload of aggregate report analysis

    The Translational Medicine Ontology and Knowledge Base: driving personalized medicine by bridging the gap between bench and bedside

    Get PDF
    Background: Translational medicine requires the integration of knowledge using heterogeneous data from health care to the life sciences. Here, we describe a collaborative effort to produce a prototype Translational Medicine Knowledge Base (TMKB) capable of answering questions relating to clinical practice and pharmaceutical drug discovery. Results: We developed the Translational Medicine Ontology (TMO) as a unifying ontology to integrate chemical, genomic and proteomic data with disease, treatment, and electronic health records. We demonstrate the use of Semantic Web technologies in the integration of patient and biomedical data, and reveal how such a knowledge base can aid physicians in providing tailored patient care and facilitate the recruitment of patients into active clinical trials. Thus, patients, physicians and researchers may explore the knowledge base to better understand therapeutic options, efficacy, and mechanisms of action. Conclusions: This work takes an important step in using Semantic Web technologies to facilitate integration of relevant, distributed, external sources and progress towards a computational platform to support personalized medicine. Availability: TMO can be downloaded from http://code.google.com/p/translationalmedicineontology and TMKB can be accessed at http://tm.semanticscience.org/sparql

    Medication visualization and cohort specification

    Get PDF

    Knowledge-based Biomedical Data Science 2019

    Full text link
    Knowledge-based biomedical data science (KBDS) involves the design and implementation of computer systems that act as if they knew about biomedicine. Such systems depend on formally represented knowledge in computer systems, often in the form of knowledge graphs. Here we survey the progress in the last year in systems that use formally represented knowledge to address data science problems in both clinical and biological domains, as well as on approaches for creating knowledge graphs. Major themes include the relationships between knowledge graphs and machine learning, the use of natural language processing, and the expansion of knowledge-based approaches to novel domains, such as Chinese Traditional Medicine and biodiversity.Comment: Manuscript 43 pages with 3 tables; Supplemental material 43 pages with 3 table

    Using conceptual graphs for clinical guidelines representation and knowledge visualization

    Get PDF
    The intrinsic complexity of the medical domain requires the building of some tools to assist the clinician and improve the patient’s health care. Clinical practice guidelines and protocols (CGPs) are documents with the aim of guiding decisions and criteria in specific areas of healthcare and they have been represented using several languages, but these are difficult to understand without a formal background. This paper uses conceptual graph formalism to represent CGPs. The originality here is the use of a graph-based approach in which reasoning is based on graph-theory operations to support sound logical reasoning in a visual manner. It allows users to have a maximal understanding and control over each step of the knowledge reasoning process in the CGPs exploitation. The application example concentrates on a protocol for the management of adult patients with hyperosmolar hyperglycemic state in the Intensive Care Unit

    Adverse Drug Event Detection, Causality Inference, Patient Communication and Translational Research

    Get PDF
    Adverse drug events (ADEs) are injuries resulting from a medical intervention related to a drug. ADEs are responsible for nearly 20% of all the adverse events that occur in hospitalized patients. ADEs have been shown to increase the cost of health care and the length of stays in hospital. Therefore, detecting and preventing ADEs for pharmacovigilance is an important task that can improve the quality of health care and reduce the cost in a hospital setting. In this dissertation, we focus on the development of ADEtector, a system that identifies ADEs and medication information from electronic medical records and the FDA Adverse Event Reporting System reports. The ADEtector system employs novel natural language processing approaches for ADE detection and provides a user interface to display ADE information. The ADEtector employs machine learning techniques to automatically processes the narrative text and identify the adverse event (AE) and medication entities that appear in that narrative text. The system will analyze the entities recognized to infer the causal relation that exists between AEs and medications by automating the elements of Naranjo score using knowledge and rule based approaches. The Naranjo Adverse Drug Reaction Probability Scale is a validated tool for finding the causality of a drug induced adverse event or ADE. The scale calculates the likelihood of an adverse event related to drugs based on a list of weighted questions. The ADEtector also presents the user with evidence for ADEs by extracting figures that contain ADE related information from biomedical literature. A brief summary is generated for each of the figures that are extracted to help users better comprehend the figure. This will further enhance the user experience in understanding the ADE information better. The ADEtector also helps patients better understand the narrative text by recognizing complex medical jargon and abbreviations that appear in the text and providing definitions and explanations for them from external knowledge resources. This system could help clinicians and researchers in discovering novel ADEs and drug relations and also hypothesize new research questions within the ADE domain
    • …
    corecore