62 research outputs found

    On some intriguing problems in Hamiltonian graph theory -- A survey

    Get PDF
    We survey results and open problems in Hamiltonian graph theory centred around three themes: regular graphs, tt-tough graphs, and claw-free graphs

    Toughness and hamiltonicity in kk-trees

    Get PDF
    We consider toughness conditions that guarantee the existence of a hamiltonian cycle in kk-trees, a subclass of the class of chordal graphs. By a result of Chen et al.\ 18-tough chordal graphs are hamiltonian, and by a result of Bauer et al.\ there exist nontraceable chordal graphs with toughness arbitrarily close to 74\frac{7}{4}. It is believed that the best possible value of the toughness guaranteeing hamiltonicity of chordal graphs is less than 18, but the proof of Chen et al.\ indicates that proving a better result could be very complicated. We show that every 1-tough 2-tree on at least three vertices is hamiltonian, a best possible result since 1-toughness is a necessary condition for hamiltonicity. We generalize the result to kk-trees for k≥2k\ge 2: Let GG be a kk-tree. If GG has toughness at least k+13,\frac{k+1}{3}, then GG is hamiltonian. Moreover, we present infinite classes of nonhamiltonian 1-tough kk-trees for each $k\ge 3

    How tough is toughness?

    Get PDF
    The concept of toughness was introduced by Chvátal [34] more than forty years ago. Toughness resembles vertex connectivity, but is different in the sense that it takes into account what the effect of deleting a vertex cut is on the number of resulting components. As we will see, this difference has major consequences in terms of computational complexity and on the implications with respect to cycle structure, in particular the existence of Hamilton cycles and k-factors

    Pseudo-hamiltonian graphs

    Get PDF
    A pseudo-h-hamiltonian cycle in a graph is a closed walk that visits every vertex exactly h times. We present a variety of combinatorial and algorithmic results on pseudo-h-hamiltonian cycles. First, we show that deciding whether a graph is pseudo-h-hamiltonian is NP-complete for any given h > 1. Surprisingly, deciding whether there exists an h > 1 such that the graph is pseudo-h-hamiltonian, can be done in polynomial time. We also present sufficient conditions for pseudo-h-hamiltonicity that axe based on stable sets and on toughness. Moreover, we investigate the computational complexity of finding pseudo-h-hamiltonian cycles on special graph classes like bipartite graphs, split graphs, planar graphs, cocomparability graphs; in doing this, we establish a precise separating line between easy and difficult cases of this problem

    Maximum and minimum toughness of graphs of small genus

    Get PDF
    AbstractA new lower bound on the toughness t(G) of a graph G in terms of its connectivity ϰ(G) and genus γ(G) is obtained. For γ > 0, the bound is sharp via an infinite class of extremal graphs all of girth 4. For planar graphs, the bound is t(G) > ϰ(G)/2 − 1. For ϰ = 1 this bound is not sharp, but for each ϰ = 3, 4, 5 and any ϵ > 0, infinite families of graphs {G(ϰ, ϵ)} are provided with ϰ(G(ϰ, ϵ)) = ϰ, but t(G(ϰ, ϵ)) < ϰ/2 − 1 + ϵ.Analogous investigations on the torus are carried out, and finally the question of upper bounds is discussed. Several unanswered questions are posed

    A Study of Sufficient Conditions for Hamiltonian Cycles

    Get PDF
    A graph G is Hamiltonian if it has a spanning cycle. The problem of determining if a graph is Hamiltonian is well known to be NP-complete. While there are several necessary conditions for Hamiltonicity, the search continues for sufficient conditions. In their paper, On Smallest Non-Hamiltonian Regular Tough Graphs (Congressus Numerantium 70), Bauer, Broersma, and Veldman stated, without a formal proof, that all 4-regular, 2-connected, 1-tough graphs on fewer than 18 nodes are Hamiltonian. They also demonstrated that this result is best possible. Following a brief survey of some sufficient conditions for Hamiltonicity, Bauer, Broersma, and Veldman\u27s result is demonstrated to be true for graphs on fewer than 16 nodes. Possible approaches for the proof of the n=16 and n=17 cases also will be discussed
    • …
    corecore