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A Study of Sufficient Conditions

for Hamiltonian Cycles

Melissa DeLeon

Department of Mathematics and Computer Science

Seton Hall University

South Orange, New Jersey 07079, U.S.A.

ABSTRACT

A graph G is Hamiltonian if it has a spanning cycle. The problem of determining
if a graph is Hamiltonian is well known to be NP-complete. While there are
several necessary conditions for Hamiltonicity, the search continues for sufficient
conditions. In their paper, “On Smallest Non-Hamiltonian Regular Tough
Graphs” (Congressus Numerantium 70), Bauer, Broersma, and Veldman stated,
without a formal proof, that all 4-regular, 2-connected, 1-tough graphs on fewer
than 18 nodes are Hamiltonian. They also demonstrated that this result is best
possible.

Following a brief survey of some sufficient conditions for Hamiltonicity, Bauer,
Broersma, and Veldman‘s result is demonstrated to be true for graphs on fewer
than 16 nodes. Possible approaches for the proof of the n=16 and n=17 cases
also will be discussed.

1.  Introduction

In this paper, we will investigate the conjecture that every 2-connected, 4-regular,

1-tough graph on fewer than 18 nodes is Hamiltonian. First, we investigate the historical

development of sufficient conditions for Hamiltonicity as they relate to the notions of

regularity, connectivity, and toughness.  For notation and terminology not introduced

consult [6] and [13].

A graph G consists of a finite nonempty set V = V(G) of n points called nodes,

together with a prescribed set X of e unordered pairs of distinct nodes of V.  Each pair

x = {u,v} of nodes in X is an edge of G, and x is said to join u to v.  We write x = uv or
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x = vu and say that u and v are adjacent nodes, and x is incident on u and v.  The order

of a graph G is the number of nodes in V(G).  In our discussion, we will deal only with

simple graphs, i.e., a graph with no loops or multiple edges.

The degree of a node v, in a graph G, is denoted deg (v), and is defined to be the

number of edges incident with v.  Closely related to the concept of degree is that of the

neighborhood.  The neighborhood of a node u is the set N(u) consisting of all nodes v

which are adjacent to u.  In simple graphs, deg (u) = N(u) .  The minimum degree of a

graph G is denoted by δ, and the maximum degree is denoted by ∆.  If  δ = ∆ = r for any

graph G, we say G is a regular graph of degree r, or simply, G is an r-regular graph, i.e.

all nodes have degree r.  Figure 1.1 contains a 4-regular graph with V(G) = 16.

Figure 1.1

We define a walk to be an alternating sequence of nodes and edges, beginning

and ending with nodes, in which each edge is incident on the two nodes immediately

preceding and following it.  A walk is called a trail if all the edges are distinct, and a

path if all the nodes are distinct.  A path is called a cycle if it begins and ends with the

same node.  A spanning cycle is a cycle that contains all the nodes in V(G), and a graph

is connected iff every pair of nodes is joined by a path.

2.  Hamiltonian Cycles

A graph is said to be Hamiltonian if it contains a spanning cycle.  The spanning

cycle is called a Hamiltonian cycle of G, and G is said to be a Hamiltonian graph (the

graph in Figure 1.1 is also a Hamiltonian graph).  A Hamiltonian path is a path that

contains all the nodes in V(G) but does not return to the node in which it began.  No

characterization of Hamiltonian graphs exists, yet there are many sufficient conditions.
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We begin our investigation of sufficient conditions for Hamiltonicity with two

early results.  The first is due to Dirac, and the second is a result of Ore.  Both results

consider this intuitive fact: the more edges a graph has, the more likely it is that a

Hamiltonian cycle will exist.  Many sources on Hamiltonian theory treat Ore’s Theorem

as the main result that began much of the study of Hamiltonian graphs, and Dirac’s result

a corollary of that result. Dirac's result actually preceded it, however, and in keeping with

the historical intent of this paper, we will begin with him.

Theorem 1.1 (Dirac, 1952, [6], [7]): If G is a graph of order n ≥ 3 such that δ ≥ n/2, then

G is Hamiltonian.

Figure 1.2

As an illustration of Dirac’s Theorem, consider the wheel on six nodes, W6

(Figure 1.2).   In this graph, 
6

3
2

δ = ≥ , so it is Hamiltonian.  Traversing the nodes in

numerical order 1-6 and back to 1 yields a Hamiltonian cycle.

Theorem 1.2 (Ore, 1960, [24]): If G is a graph of order n ≥ 3 such that for all distinct

nonadjacent pairs of nodes u and v, deg (u) + deg (v) ≥ n, then G is Hamiltonian.

The wheel, W6, also satisfies Ore’s Theorem.  The sum of the degrees of

nonadjacent nodes (i.e., deg(2) + deg (5), or deg(3) + deg (6), etc.) is always 6, which is

the order of the graph.

Before we discuss the results of Nash-Williams and Chvatal and Erdos, we must

first define the notions of connectivity and independence.

The connectivity κ =  κ (G) of a graph G is the minimum number of nodes whose

removal results in a disconnected graph.  For κ ≥ k, we say that G is k-connected.  We
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will be concerned with 2-connected graphs, that is to say that the removal of fewer than 2

nodes will not disconnect the graph. For κ = k, we say that G is strictly k-connected.

For clarification purposes, consider the following.  Let G be any simple graph, κ=3.

Then G is 3-connected, 2-connected, and strictly 3-connected.

A set of nodes in G is independent if no two of them are adjacent.  The largest

number of nodes in such a set is called the independence number of G, and is denoted

by β.  The following result by Nash-Williams builds upon the two previous results by

adding the condition that G be 2-connected and using the notion of independence.

Theorem 1.3 (Nash-Williams, 1971, [22]): Let G be a 2-connected graph of order n with

δ(G) ≥ max{(n+2)/3, β}.  Then G is Hamiltonian.

Figure 1.3

The graph in Figure 1.3 demonstrates the Nash-Williams result.  In this 2-

connected graph on six nodes, 3, 2,δ β= = and 
6 2

max , 2
3

δ
+ ≥  

 
, implying

Hamiltonicity.

In the same paper, Nash-Williams presents another very useful result.  Note that a

cycle C is a dominating cycle in G if V(G – C) forms an independent set.

Theorem 1.4 (Nash-Williams, 1971, [22]): Let G be a 2-connected graph on n vertices

with δ ≥ (n+2)/3.  Then every longest cycle is a dominating cycle.

Another sufficient condition uses the notion of a forbidden subgraph, i.e., a graph

that cannot be a subgraph of any graph under consideration.  A subgraph of a graph G is
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a graph having all of its nodes and edges in G.  The following result by Goodman and

Hedetniemi introduces the connection between certain subgraphs and the existence of

Hamiltonian cycles.  A bipartite graph G is a graph whose node set V can be partitioned

into two subsets V1 and V2 such that every edge of G joins V1 with V2.  If G contains

every possible edge joining V1 and V2, then G is a complete bipartite graph.  If V1 and

V2 have m and n nodes, we write G = Km,n  (see Figure 1.4)

Figure 1.4:  K1,3 and K2,3 (or K3,2)

Goodman and Hedetniemi connected {K1,3, K1,3 + x}-free graphs and

Hamiltonicity in 1974. A {K1,3, K1,3 + x}-free graph is a graph that does not contain a

K1,3  or a K1,3 + x (see Figure 1.5 ) as an induced subgraph.  (i.e., the maximal subgraph

of G with a given node set S of V(G).)

Figure 1.5: K1,3 + x

Theorem 1.5 (Goodman and Hedefniemi, 1974, [12]): If G is a 2-connected

{K1,3, K1,3 + x}-free graph, then G is Hamiltonian.

The wheel, W6, in Figure 1.2, is an example of a graph that is

{K1,3, K1,3 + x}-free.  The subgraph formed by node 1 and any three consecutive nodes

on the cycle is K1,3 plus 2 edges.

A year after Nash-Williams’s result, Chvatal and Erdos proved a sufficient

condition linking the ideas of connectivity and independence.

Theorem 1.6 (Chvatal and Erdos, 1972, [7]): Every graph G with n ≥ 3 and κ ≥ β  has a

Hamiltonian cycle.
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Chvatal and Erdos’s result can be demonstrated by the graph in Figure 1.6.  In this

graph, κ=2 and β=2.

Figure 1.6

Theorem 1.6 contains, as a special case, the following result:

Theorem 1.7 (Haggkvist and Nicoghossian, 1981, [14]): Let G be a 2-connected graph of

order n with δ ≥ (n+ κ) /3.  Then G is Hamiltonian.

By requiring that G be 1-tough (which implies 2-connectedness), Bauer and

Schmeichel where able to lower the minimum degree condition found in Theorem 1.7.

Let  ω(G) denote the number of components of a graph G.  Then the toughness [20] of

G, denoted by τ, is defined as follows:

( ), ( ) 1
( ) min .

( )X V G G X

X
G

G Xω
τ

ω⊆ − >

 
=  − 

We say G is t-tough for t ≥ τ(G).  It is important to note that all Hamiltonian graphs are

1-tough, but the converse is not true.  The Petersen Graph (see Figure 1.7) is a 1-tough,

non-Hamiltonian graph.

Figure 1.7: The Petersen Graph
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Theorem 1.8 (Bauer and Schmeichel, 1991, [2]): Let G be a 1-tough graph of order n

with δ(G) ≥ (n+ κ - 2)/3.  Then G is Hamiltonian.

Theorem 1.8 is best possible if κ = 2 (see Figure 1.8).

Figure 1.8

Figure 1.8 is comprised of 3 Kr, r ≥ 2, joined with a single node u.   In this case, G is a 2-

connected, 1-tough graph and δ = r = (n+κ-3)/3 (i.e., δ < (n+ κ - 2)/3).  By relaxing the

minimum degree requirements, we lose Hamiltonicity.

Fan later introduced distance as a contributing factor for Hamiltonicity.  The

distance, d(u,v), between two nodes u and v is the length of the shortest path joining

them.  Theorem 1.9 builds upon Dirac’s result by adding a distance condition.

Theorem 1.9 (Fan, 1984, [9]): Let G be a 2-connected graph of order n.  If for all nodes

u,v with d(u,v) = 2 we have max {deg (u), deg (v)} ≥ n/2, then G is Hamiltonian.

Figure 1.9

In Figure1.9 above, nodes u and v have distance 2.

5
max{deg( ),deg( )} max{3, 2}

2
u v = ≥ .
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Thus, G is Hamiltonian.

We can consider Dirac’s Theorem as a neighborhood condition on one node.  By

requiring the connectivity to be 2, Fraudee, Gould, Jacobsen, and Schelp were able to

consider the neighborhood union of 2 nodes.

Theorem 1.10 (Fraudee, Gould, Jacobsen, Schelp, 1989, [11]): If G is a 2-connected

graph such that for every pair of nonadjacent nodes u and v,

N (u ) ∪ N (v)  ≥  (2n-1) /3,

then G is Hamiltonian.

Figure 1.10

In Figure 1.10 above,

2 1 11
( ) ( ) 4

3 3

n
N u N v

−
∪ = ≥ =

Similarly, every pair of nonadjacent nodes satisfies the conditions of Theorem 1.11and G

is Hamiltonian.

Fraisse further expanded the set of nonadjacent nodes by requiring a higher

connectivity.

Theorem 1.11 (Fraisse, 1986, [10]): Let G be a k-connected graph of order n ≥ 3.  If

there exists some t ≤ k such that for every set S of t mutually nonadjacent nodes,

N (S) >  t (n-1) / (t+1),

then G is Hamiltonian.
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Figure 1.11

In Figure 1.11 above, k = 3.  Let t = 1.  Then,

( 1) 5
( ) 3

( 1) 2

t n
N S

t

−
= ≥ =

+

Thus, G is Hamiltonian.

Closely related to neighborhood unions are degree sum conditions.  These often

lead to less strict conditions since the degree sum counts certain nodes twice, unlike the

neighborhood conditions.  For k ≥ 2, we define [3]

To demonstrate this, consider the following graph (Figure 1.12).

Figure 1.12

Consider σ2 using nodes c and d.  In this case,

deg( ) deg( ) 8.c d+ =

Is this the minimum, however?  If we consider nodes a and b, then

deg( ) deg( ) 6.a b+ =

We find that 6 is the minimum.  Thus,

2 6σ = .

1
1

min deg( ) ,...,
k

k i k
i

v v v is an independent set of nodesσ
=

 
=  

 
∑



DeLeon 10

Theorem 1.12 (Jung, 1978, [20]): Let G be a 1-tough graph of order n ≥ 11 with

σ2 (G) ≥ n – 4.  Then G is Hamiltonian.

Figure 1.13

In Figure 1.13 above,

2 8 4 8.nσ = ≥ − =

Thus, G is Hamiltonian.

A year later Bigalke and Jung proved a result linking independence and minimum

degree on 1-tough graphs.

Theorem 1.13(Bigalke and Jung, 1979, [4]): Let G be a 1-tough graph of order n ≥ 3

with δ ≥ max{n/3, β -1}.  Then G is Hamiltonian.

Figure 1.14

Consider Figure 1.14 above.  This graph contains 12 nodes, δ=5, and β(G)=3.  Therefore,
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{ }

{ }

max , ( ) 1 max 4, 2
3

5 max 4, 2 .

n
Gβ

δ

 − = 
 

= ≥

Thus, G is Hamiltonian.

3.  Hamiltonicity in 4-regular, 1-tough Graphs

Statement

Bauer, Broersma, and Veldman in [1] consider the problem of finding the

minimum order of a non-Hamiltonian, k-regular, 1-tough graph.  We will attempt to

prove the following conjecture:

Conjecture 2.1: Let G be a 1-tough, 2-connected, 4-regular graph of order ≤ 17.  Then G

is Hamiltonian.

Define an (n, k)-graph to be a non-Hamiltonian, k-regular, 1-tough graph on n nodes.

By f(k) we denote the minimum value of n for which there exists an (n, k)-graph.

Conjecture 2.1 is best possible for n = 17, since there exists an (18, 4)-graph (see Figure

2.1).

Figure 2.1:  An (18, 4)-graph

Thus, we can restate Conjecture 2.1 as:

Conjecture 2.1 (Bauer, Broersma, and Veldman, 1990, [1]): f(k) = 18.
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Bauer, Broersma, and Veldman investigated this conjecture in [1].  They

convinced themselves, through a lengthy distinction of classes, that the conjecture holds.

No formal proof exists, however.

In our attempt to prove this conjecture, we shall divide the graphs into subcases

based on the number of nodes.

Case 1: 5 ≤  n ≤ 8

Note that the first simple class of graphs, which satisfies the conditions of the

conjecture, is of order 5.  More specifically, G is K5.  Thus we must consider graphs

where 5 ≤ n ≤ 8.

Dirac’s Theorem (Theorem 1.1) proves this case.  Since G is 4-regular,

δ = 4.  Thus, if n ≤ 8, G is Hamiltonian.

Case 2: 8 ≤  n ≤ 12

Several results prove the existence of Hamiltonian cycles in this class of graphs.

The following three theorems prove the conjecture for graphs on exactly 9, exactly 12,

and up to 9 nodes, respectively.

Theorem 2.2 (Nash-Williams, 1969, [23]): Let G be a k-regular graph on 2k + 1 nodes.

Then G is Hamiltonian.

Theorem 2.3 (Erdos and Hobbs, 1978, [8]): Let G be a 2-connected, k-regular graph on

2k + 4 nodes, where k ≥ 4.  Then G is Hamiltonian.

Theorem 2.4 (Bollobas and Hobbs, 1978, [5]):  Let G be a 2-connected, k-regular graph

on n nodes, where 9k/4 ≥ n.  Then G is Hamiltonian.

Note that Theorem 2.2 and Theorem 2.3 solve our problem only for graphs on exactly 9

and 12 nodes respectively.  Thus we need to consider graphs on 10 or 11 nodes.  In 1980,

the most inclusive result appeared.  Jackson’s result satisfies our problem for graphs

where n ≤ 12.
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Theorem 2.5 (Jackson, 1980, [18]): Let G be a 2-connected, k-regular graph on at most

3k nodes.  Then G is Hamiltonian.

In our problem, all the graphs are 2-connected and 4-regular.  Thus 3(4) = 12 is the

maximum number of nodes for which the result holds.

Case 3: 12 ≤  n ≤ 15

Case 3 of the conjecture is proven by a 1986 result of Hilbig.

Theorem 2.6 (Hilbig, 1986, [17]): Let G be a 2-connected, k-regular graph on at most

3k+3 nodes.  Then G satisfies one of the following properties:

1) G is Hamiltonian;

2) G is the Petersen graph, P (Figure 1.6);

3) G is P′—the graph obtained by replacing one node of P by a triangle.

For our problem 3(4) + 3 = 15, so all graphs up to those on 15 nodes (1-tough, 4-regular,

2-connected) are Hamiltonian by Hilbig’s result.

Case 4: n = 16, 17

This leads us to the consideration of 4-regular, 1-tough, 2-connected graphs on 16

and 17 nodes.  We began our investigation of this case by generating graphs of this type

and separating them into six cases.  For ease of notation, we define [v,k]-graphs to be all

Hamiltonian, 1-tough, 4-regular graphs on v nodes that are strictly k-connected.

Appendix A contains examples of graphs of each of the six types:  [16,2], [16,3], [16,4],

[17,2], [17,3], and [17,4].

We continued our investigation by examining the topology of the generated

graphs.  Independence number, planarity, and toughness were all considered.  These

results are enumerated in Appendix B.
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All planar [16,4] and [17,4]-graphs are Hamiltonian by the following result of

Tutte.

Theorem 2.7 (Tutte, 1956, [25]): Every 4-connected planar graph has a Hamiltonian

cycle.

Consider the following graphs:

Figure 2.2:  A [16,4]-graph and a [17,4]-graph

Both these graphs are 4-connected (by definition, also 2-connected), 1-tough, and

4-regular.  By Tutte’s Theorem, they are also Hamiltonian.

The following two observations could lead to a constructive method of proof of

Conjecture 2.1.

Observation 1: It is interesting to note that the presence of a K4 subgraph in G prevents

planarity in 4-regular graphs.  See Figure 2.3.

Figure 2.3
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Observation 2: There is a minimum size of the components obtained by the removal of a

κ-set in a [16,2]-graph.

Proposition 2.8: Let G be a [16,2]-graph.  Then ∃  a κ-set of order 2 whose removal

leaves all components of G of at least order 5.

Proof:  By the regularity of G, the minimum order of a component must be 3, so let the

smallest component be a K3, since the removal of one edge makes the component easier

to disconnect.

This gives rise to 2 cases:

Case 1: u and v are adjacent to the same node, w, in G2.

However, w is a cut-point, and thus G is 1-connected, which is a contradiction.

G1

G1

G2
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Case 2: u and v are adjacent to two distinct nodes in G2.

In this case, we can choose our cut set as {t,w} and force the order of G1 to be 5.  If t and

w are adjacent, then we arrive at the same results.

We conclude that G1 and G2 are of order at least 5.n

The research into this problem has led us to believe that a constructive approach

to a proof of Conjecture 2.1 is the direction in which to head.  Further study is needed for

cases [16,2], [16,3], [17,2], and [17,3].  Proposition 2.9 may prove helpful and an

adaptation may exist for [17,2].

If proven, Conjecture 2.1 may aid in proving the following related open problems:

Conjecture 2.9 (Haggkvist, [18]): If G is an m-connected, k-regular graph on at most

(m+1)k nodes, then G is Hamiltonian.

Conjecture 2.10 (Haggkvist, 1976, [15]): If G is 2-connected, k-regular, bipartite graph

on at most 6k nodes, then G is Hamiltonian.

Conjecture 2.11 (Jackson, 1979, [18]): If G is a 2-connected graph on at most 3k + 2

vertices with degree sequence (k, k, …, k +1, k + 1) then G is Hamiltonian.

G1

G2
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Conjecture 2.12 (Jackson and Jung, 1992, [19]): For k≥4, all 3-connected, k-regular

graphs on at most 4k vertices are Hamiltonian.
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