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Abstract 

A new lower bound on the toughness t (G)  of a graph G in terms of its connectivity ~c(G) and 
genus 7(G) is obtained. For 7 > 0, the bound is sharp via an infinite class of extremal graphs 
all of girth 4. For planar graphs, the bound is t (G)  > ~c(G)/2 - 1. For ~c = 1 this bound is not 
sharp, but for each K = 3,4,5 and any e > 0, infinite families of graphs {G(x,~:)} are provided 
with K(G(~c,~:)) -- K, but t(G(t¢,~)) < h'/2 - 1 + ~:. 

Analogous investigations on the torus are carried out, and finally the question of upper bounds 
is discussed. Several unanswered questions are posed. 

1. Introduction 

The concept of  the toughness of  a graph has received considerable attention since its 

introduction in 1973 by Chv~ttal [4] in his investigation o f  hamiltonicity. Aspects of  the 

general theory of  toughness were developed in [4, 12,7]. Relations linking toughness 

to various forms o f  hamiltonicity and to the existence o f  k-factors in graphs have been 

widely investigated and will not be discussed here. Toughness may also be regarded 

as a measure of  the vulnerability of  graphs to disruption caused by the removal of  

vertices, and results linking it to other such measures have been established in [1,7]. 

The problem of  determining whether, for any fixed number k, the toughness is at least 

k has been shown in [2] to be NP-hard. The complexi ty of  toughness in planar graphs 

is unresolved. 

In this paper we consider graphs embedded on surfaces. Recently, Dillencourt [6] 

showed that in a 4-connected planar graph the removal of  any two vertices leaves a 
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graph that is 1-tough. His result and approach is generalized in Theorem 2 below using 
a result of  Schmeichel and Bloom [15]. Harant [9] showed that there is a nonhamil- 
tonian planar graph with toughness 3. This is easily seen to be the maximum it could 

be as a nonhamiltonian planar graph has connectivity at most 3 (by Tutte's theorem). 
Dillencourt [5] also showed that certain planar graphs called (nondegenerate) Delauney 
triangulations are 1-tough. We shall establish sharp lower and upper bounds on the 
toughness of planar graphs and toroidal graphs and briefly consider the extension to 

higher genera. 

2. Definitions and preliminary results 

All graphs considered are finite, undirected, loopless and without multiple edges. 
The terminology and nomenclature of  [3] will be used. Throughout the paper G 
will denote a graph with vertex set V(G), edge set E(G), order p(G), size q(G). 
Further the genus will be denoted 7(G), the minimum degree 6(G), the maximum 
degree A(G), connectivity ~c(G), the independence number fl(G) and the number 
of  components k(G). I f  no ambiguity is possible, the symbols will be used with- 
out reference to G. A cut-set of  G is a proper subset S of V(G) such that 

k(G - S) > 1. 
If  G is not complete, the toughness of G, t(G), is defined by 

t(G) = min{IS I / k (G  - S ) :  S is a cut-set of  G}, 

and any cut-set S for which the minimum is attained is called a tough set of G. For a 
real number c, G is said to be c-tough if t(G)>~c. Chvfital observed that the condition 
that a graph be 1-tough is an old necessary condition for hamiltonicity. He conjectured 
that a sufficiently large value of toughness was a sufficient condition for hamiltonicity; 

this remains unresolved even for claw-free graphs. 
We next list some known results on toughness. 

Proposition 1 (Chv~tal [4]). (a) I f  H is a spanning subgraph of  G, then t(H)<~ t (G) .  

(b) t(G)<~K(G)/2. 

Proposition 2 (Pippert [12]). I f  G is any noncomplete graph, t(G - v ) > ~ t ( G )  I 2" 

Proposition 3 (Goddard and Swart [7]). I f  G is a nonempty graph and m is the 
largest integer such that K(1,m) is an induced subgraph of G, then t(G)>~K(G)/rn. 

Corollary 1. (a) I f  G is noncomplete and claw-free than t(G) = ~c(G)/2 [10]. 
(b) I f  G is a nontrivial tree then t (G)= 1/A(G). 
(c) I f  G is r-regular and r-connected then t(G) >~ 1. 

The following well-known results on genus will be used. 
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Proposition 4. I f  G is a connected graph o f  genus 7, connectivity to, girth g, having 
p vertices, q edges and r regions, then 

(a) q < < . g ( p + 2 7 - 2 ) / ( g - 2 ) ,  K-. .<2g( l+27/p  2 / p ) / ( g - 2 ) ;  

(b))'(Km.,~) = I ( m -  2 ) ( n -  2)/41 [13]; 

(c) 7(K~,)= I ( p - 3 ) ( p - 4 ) / 1 2 1 ,  p>~3 [14]. 

3. Lower bounds 

In this section we establish lower bounds on the toughness of  a graph in terms of  

its connectivity and genus. 
We begin by presenting a theorem due to Schmeichel and Bloom [15]. We present 

a different proof, however, which is shorter than theirs. 

Theorem 1. Let G be a graph with genus 7. I f  G has connectivity ~c, with ~c >~3, then 

k ( G -  X)~< ~- -~([X]  - 2 + 27) fi)r all X C V(G) with IX]>~c. 

Proof. l f X  = V(G) then k ( G - X )  = 0 and the result is clear since the right-hand side 

of  the inequality is at least 2. I f X  is not a cutset, but X ¢ V(G), then k ( G - X )  = 1 

and again, since the right-hand side is at least 2, the result is clear. 

So suppose X is a cutset in G. Let x = ]X I and k ( G -  X )  = k. Now since G is 
N-connected, each component of  G - X has at least ~c vertices of  attachment in X. 

Let H be the graph obtained from G by deleting all edges with both ends in X, 

contracting each set of  vertices constituting a component of  G - X to a single vertex, 

and removing multiple edges (if  any). Then H is a bipartite graph with partite sets X 

and V ( H ) - X ,  and has genus at most 7- 

Since for each vertex w c V ( H ) -  X it hc!ds that degHw~>~c, it follows that 
q(H)>~kK. Since H is bipartite, q (H)< ~ 2(p (H)+  27(H ) - 2 ) ,  by Proposition 4(a). 

Hence, 

kK<~2(x + k + 27 - 2). 

But then solving for k, we have the desired result. 

It is now an easy matter to derive the bounds on the toughness that we seek. 

Theorem 2. I f  G & a connected graph o f  genus 7 and connectivity •, then 

(a) t(G) > ~'/2 - 1, i f 7  = O, and 
(b) t(G) >~ K(~c - 2)/2(~ - 2 + 2~,), ([' 7 >~ 1. 

Proof.  First, note that the inequalities hold trivially if K = 1 or 2. So suppose ~>~ 3. 
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First, suppose that 7 = 0. Let S be a tough set. Then since ISI >- K, by Theorem 1 

we have 

2 
k ( G - S ) = k < ~  ~ -  2(IS I - 2 + 2 ) , ) .  

So 21S I >- k(~c-  2 ) +  4 and, hence, 

~ > t c - 2  2 ~c 
t(G) = ~.. ~ - - -  + ~ > ~ - 1, 

and part (a) is proved. 

So suppose 7 >- 1. Again, let S be a tough set in G. Then 

2 
k ( G - S ) = k < ~  K -  2(Isi- 2 + 27), 

and thus 

~ c - 2 ~ < - -  
21S I 4 - 4), 

k k 

Hence, 

t ¢ - 2 +  - ~ ( ? -  1). 

Now ]SI>-K, so t = ISI/k>-K/k and hence k>-x/t. So 

K - 2 2 ~c - 2 2t(? 
t>- 2 - ~ ( ) , -  1)>- 1). 

2 K 

But then, solving this inequality for t, the desired result is obtained. [] 

As a direct consequence of the above we obtain a simpler bound of 

t > ' K / 2 - 7  for 7>'1, 

but this is poorer for 7 >-2. 
The sharpness of  the above bounds is illustrated by a subset of  the complete bipartite 

graphs. Let K>-3 and ? be integers such that 4), is a multiple of  ~c-2 and 4 7 > - ( x - 2 )  2. 

Then gx,2+a7/(t¢_2) has connectivity x, genus ), and toughness ~c(x- 2 ) / ( 2 ( x -  2 ) +  47) 
(see [4,13]). So the bound in Theorem 2(b) is attained by an infinite class of  graphs, 
all of  girth 4. 

3.1. Planar 9raphs "chievin9 the lower bound 

We next investigate the sharpness of  the bounds provided above if G is a planar 
or toroidal graph. To this end we require the definition of a Kleetope, fiG), of an 
embedding G of a graph. If  G is a graph embedded with regions R1,R2 .. . . .  Rr, then 
r(G) is the graph obtained from G by, for 1 ~< i ~< r, inserting a vertex vi into the interior 
o f  Ri and joining vi to each vertex on the boundary of Ri. Note that the embedding 
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of  G extends naturally to an embedding of  z(G). In particular, if G is a plane graph 
then so is z(G). Kleetopes are sometimes used as examples of  graphs with maximum 
independence number for given genus and connectivity (see [8]). 

The bound in Theorem 2(a) is not sharp for K = 1 and ? = 0. But the following 
examples show that the bound is sharp for 7 = 0 and all possible values of  2 ~< x ~< 5. 
Furthermore, such examples can be obtained with the maximum girth allowed for such 

connectivity. Note that by Proposition 4(a), if  g is the girth, 

~ c < 2 g / ( g - 2 )  for 7 = 0  and ~c<.%2g/(g-2) for 7 =  1. 

Indeed, we can always obtain any girth from 3 up to the maximum allowed. This is 

often done by taking the example with maximum girth and adding an edge incident 
with a vertex in the tough set to create the desired short cycle. 

Example  3.1. (a) For tc = 2 the girth can be arbitrarily large. For n >~ 3 consider the 
graph Gn obtained by taking n disjoint copies of  the path Pn on n vertices and identi- 
fying the corresponding ends into two vertices. This is a planar graph with toughness 
t(Gn) = 2/n --~ 0 + as n ~ + o o  and girth n ~ +cx~. 

(b) For ~ = 3 the girth is at most 5. A generalized Herschel graph Hn (n>~ 1) 
is defined as follows. Form a cyclic chain of  4-cycles by taking n disjoint 4-cycles 
aibicidiai, 1 <~i<~n, and identifying ci and ai+l (including cn and at) .  Then introduce 
vertices b and d and make b adjacent to each bi and make d adjacent to each di. The 
result is a 3-connected planar graph of  girth 4. 

Now, let G~ be obtained by replacing each of  the bi and di by a dodecahedron 
as follows. To make notation simpler we explain how to replace a generic node x 
of  degree 3 with a dodecahedron D. Suppose the outer cycle of  D is vlv2v3v4vsvj in 
clockwise order and the neighbors of  x are Yl, Y2 and Y3 in clockwise order. Then 
replace x and its incident edges by D and the edges vl yl,  v2y2 and v4y3. The resulting 
graph G, is 3-connected (recall that the dodecahedron is 3-connected), planar, and has 
girth 5, see Fig. 1. 

Furthermore, for S = {b,d, al = Cn, a2 = c !  . . . . .  an = cn-1}, 

[S] _ n + 2  n 1 + 
t(G~)<~ k(Gn - S) 2n ~* 5 ' 

1 while l c ( G n ) / 2 -  1 = ~. 
(c) I f K  = 4 then g = 3. Let Hn = C4 × P ,  (n>~2) and G~ = z(Hn), the Kleetope of  

/4,. It follows that G~ is 4-connected. For S = V(H~), if  r(Hn) denotes the number of  
faces of  H. ,  

tS] _ p(H,,) 4n . 
t ( G n ) < ' k ( G . - S )  r(Hn~--  4 n - 2  ~ 1+' 

whereas ~c(Gn)/2- 1 = 1. 
(d) I f  K = 5 then g = 3. For positive integer n the graph D.  is defined inductively as 

follows: D1 is the dodecahedron; and for n/>2, Dn is obtained from D n - 1  by inserting 
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Fig. 2. The pentagonalization D2. 

Fig. 1. Part of the 3-connected planar graph Gn with minimum toughness and maximum girth. 

into the central region of  Dn-1 a dodecahedron and ident i fying its exterior boundary  

with the boundary  of  the central region. The graph D2 is shown in Fig. 2. 

Let Gn = z(D.) .  Then  it can be shown that G.  is 5-connected.  For S = V ( D . )  we 

obtain 

ISI p(D~)  15n + 5 . 3 + 
q - -  t(G.)<<. --  - -  - -  

k (Gn  - S )  r ( D n )  l O n +  2 ~ 2 ' 

whereas K ( G n ) / 2  - 1 = 3/2. 

3.2. T o r o i d a l  9 r a p h s  

We next  consider  toroidal graphs in more  depth. For 3 ~< ~c ~<6 we provide graphs 

with t = K/2 - 1 and m a x i m u m  girth. 
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Fig. 3. The graph 3~. 

Example  3.2. (a) For ? = 1 and ~c = 2 the family of  graphs described in 

Example 3.1(a) for planar graphs shows that 2-connected graphs can have toughness 

arbitrarily close to 0. (Examples specifically with genus 1 can be obtained by adding 

two edges to Gn, for n ~>4.) 
(b) If  ~c = 4 then 9~<4. The graph Hn = C4 × C, for n an even integer has genus 1, 

connectivity 4, toughness 1 (since, for example, its bipartite and hamiltonian) and 

girth 4. 
(c) If  ~c=5 then g = 3 .  Consider the following graph J~ where every region is a pen- 

tagon: Let V( J~) = { ai, bi, ci, di,ei, Ji: i = 0, 1 . . . . .  n - 1 } and E( J~) - { aiai+l,aibi, aici, 
bidi, dibi+~,ciei ,eici . l ,diJi ,  eif i ,  JiJi+~:i = 0, 1 . . . . .  n 1 } where addition is taken mod- 

ulo n. The graph J6 is shown in Fig. 3. 
We note that J,, is toroidal with a pentagonal embedding. Let /4, -- r(Jn). Then 

",'(Hn) = 1, ~c(Hn) = 5 and t(H~) = p(J~) / r (Jn)  = ~ = ~c(H,,)/2 1. 
(d)  If 1¢ - 6 then (j = 3. Consider the cubic bipartite 'honeycomb'  graph J,, on 

12n vertices where every region is a hexagon. Then H,  -- ~(J,,) satisfies 7(H,,) 1, 

~(Hn) ---- 6 and t ( H , )  = p(  J,  )/r( J~ ) = 2 = tc(Hn)/2 - 1. 
(e) If  ~c = 3 then 9~<6. Consider any (3-connected) bipartite graph H which has 

partite sets A and B where every vertex in A has degree 3 and every vertex in B has 

degree 6 and is embedded in the torus with every region a quadrilateral. For example, 

K3,6. Such an H,, can also be obtained by modifying the honeycomb graph J, depicted 

in Fig. 4 as follows: If the bipartite sets for J,, are A and B, then add in each region 

a new vertex and join it to the three vertices of  A on the boundary of  the region; the 

new vertices are added to B. 
Now form Gn by taking H,, and replacing every vertex of  degree 3 by a dodecahedron 

as described in Example 3.1(b). The resulting graph H~ satisfies 7(H~) = 1, K(H,,) 3 
1 = vc(H,,)/2 1. and t(H~ ) 

The graph G,, constructed in Example 3.2(e) has girth # = 5. The lower bound given 

in Theorem 2(b) cannot be obtained if  7 =: 1, 1, = 3 and ,q = 6 as is shown next. 

Lemma 1. I f  G is a ,qraph with 7(G) = 1, ~'(G) = 3 and ,q(G) = 6, then t(G)>~ 1. 
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Fig. 4. A toroidal honeycomb graph. 

Proof. Let G be a toroidal graph satisfying the hypothesis of the lemma. Then Euler's 
formula (or Proposition 4(a)) shows that the graph is 3-regular. So by Corollary l(c) 
the toughness is at least 1. [] 

The honeycomb graph J, is bipartite and hence has toughness exactly 1. However, 
we do not know the answer to the following question: Do all graphs which satisfy the 
hypotheses of the lemma have toughness exactly 17 

4. Upper bounds 

In this section we investigate upper bounds on the toughness of a graph embedded 
in the plane and other surfaces. The simple upper bound of t¢/2 is the best we know. 
Matthews and Sumner [10] showed that equality is attained for claw-free graphs (see 
also Proposition 3). 

Let us begin with x ~< 2. Any graph with x = 0 has toughness 0. For x = 1 consider 
the path and for x = 2 consider the cycle. These have toughness ½ and 1, respectively. 
One can also find graphs with specified girth and genus which have these properties. 

We consider next 3-connected graphs with t (G)  = x(G)/2. To this end we require 
the following definition. The inflation I ( H )  of a graph H with vertex set V ( H )  = 

{ v l , . . . , V p }  is the graph obtained by replacing each vertex vi by a clique Gi of order 
deg H vi, and replacing each edge vivj of H by an edge joining a vertex of Gi to a 
vertex of Gj so that each vertex x of each Gi has degi(H)x = deg,q vi. Note that, if H 
is cubic, then 7(I(H))  = 7(H). The inflation of H may also be thought of as the line 
graph of the subdivision graph of H. Thus, I ( H )  is claw-free. 

Example 4.1. Let A1 --- K4 and Ai+l = I(Ai) for if> 1. For i~>2 Ai is a 3-connected 
planar graph with t(Ai)  - 3 

(Harant [9] showed that if one starts with a 3-connected cubic nonhamiltonian planar 
graph and repeatedly inflates, one obtains an infinite family of cubic nonhamiltonian 
planar graphs with toughness 3.) 
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Fig. 5. A 4-connected planar graph with maximum toughness. 

This and other examples suggest the question: Do there exist 3-connected planar 
3 9 graphs G with g(G)/>4 that are utough. A similar question can be asked for toroidal 

graphs. 

Example 4.2. For K = 4. For n ~> 3 let G, be the graph formed from C, x K2 with 

vertices (vi, wj), i=  0 . . . . .  n -  1 and j = 1,2, by joining (vi, wl) to (vi+l,w2) for i = 
0, 1 . . . . .  n - 1 (addition modulo n). Then Gn is planar and 4-connected and claw-free; 

so t(Gn) = to(G)/2. The graph G10 is depicted in Fig. 5. 

(This example also suffices to handle the case of • < 4 by the removal of the 

appropriate number of members of a minimum cut-set.) 

For K = 5 one planar graph that is 5-connected with toughness equal to ~ is the 
icosahedron. Unfortunately, the icosahedron is the only claw-free 5-connected planar 

5 but graph. We have constructed several examples of planar graphs with toughness 

have not been able to obtain an infinite family. One such graph is depicted in Fig. 6. 

The proof of toughness is straightforward if tedious. One approach is that an exami- 

nation of the proof of Proposition 3 shows that if a graph has toughness less than K/2 

then there must exist a vertex v in the tough set S which is adjacent to vertices in at 
least three components of G - S. There is only one choice for v up to automorphism 

in the graph G and this forces two of its neighbors into S while the other three must 

be in separate components of G - S. By inspection one can then argue that to create 
3 components a total of 8 vertices must be removed, and to create 4 components at 

least 10 vertices removed; hence, the toughness is as claimed. 

This leaves the following question. 

Question 1. What, asymptotically, & the maximum value of  toughness in the plane? 

On the torus the maximum value of connectivity is 6 (and this is obtained if and 
only if the graph is 6-regular (cf. [11])). There is an infinite number of toroidal graphs 
with toughness 3. One such family consists of the powers C 3 for p>~7. These are 
claw-free. But there are also examples which have toughness 3 and contain claws: one 
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Fig. 6. A 5-connected planar graph with maximum toughness. 

example is the circulant C13(1,3,4). That these graphs embed on the torus was shown 

by Negami [11]; indeed Negami produced a construction which can be used to derive 

all 6-regular toroidal graphs. 

For completeness let us construct the embedding o f  the circulant Cp(1, k, k + 1 ) on 

the torus (the case k = 2  is the third power of  the cycle).  Start with a rectangular sheet 

o f  paper and on the left and right sides place p + 1 evenly spaced vertices (using 

the comers) .  Add  all horizontal, vertical and slope-1 lines through the vertices. Then 

identify the top and bottom sides o f  the rectangle to form an annulus (with a 4-regular 

graph on 2 p  vertices embedded on it in which vertex i on the left is adjacent to vertices 

i -  1 and i + 1 on the left and to vertices i and i + 1 on the right). Finally, stick the 

sides of  the annulus together with a twist so that vertex i on the left is identified with 

vertex i -  k on the right for all i (arithmetic modulo p) .  

An infinite family o f  5-connected toroidal graphs which are ~-tough is obtained by 

deleting one vertex from the powers Cp 3 for p>~7 (by Proposition 2). 
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