1,003 research outputs found

    Totally corrective boosting algorithm and application to face recognition

    Get PDF
    Boosting is one of the most well-known learning methods for building highly accurate classifiers or regressors from a set of weak classifiers. Much effort has been devoted to the understanding of boosting algorithms. However, questions remain unclear about the success of boosting. In this thesis, we study boosting algorithms from a new perspective. We started our research by empirically comparing the LPBoost and AdaBoost algorithms. The result and the corresponding analysis show that, besides the minimum margin, which is directly and globally optimized in LPBoost, the margin distribution plays a more important role. Inspired by this observation, we theoretically prove that the Lagrange dual problems of AdaBoost, LogitBoost and soft-margin LPBoost with generalized hinge loss are all entropy maximization problems. By looking at the dual problems of these boosting algorithms, we show that the success of boosting algorithms can be understood in terms of maintaining a better margin distribution by maximizing margins and at the same time controlling the margin variance. We further point out that AdaBoost approximately maximizes the average margin, instead of the minimum margin. The duality formulation also enables us to develop column-generation based optimization algorithms, which are totally corrective. The new algorithm, which is termed AdaBoost-CG, exhibits almost identical classification results to those of standard stage-wise additive boosting algorithms, but with much faster convergence rates. Therefore, fewer weak classifiers are needed to build the ensemble using our proposed optimization technique. The significance of margin distribution motivates us to design a new column-generation based algorithm that directly maximizes the average margin while minimizes the margin variance at the same time. We term this novel method MDBoost and show its superiority over other boosting-like algorithms. Moreover, consideration of the primal and dual problems together leads to important new insights into the characteristics of boosting algorithms. We then propose a general framework that can be used to design new boosting algorithms. A wide variety of machine learning problems essentially minimize a regularized risk functional. We show that the proposed boosting framework, termed AnyBoostTc, can accommodate various loss functions and different regularizers in a totally corrective optimization way. A large body of totally corrective boosting algorithms can actually be solved very efficiently, and no sophisticated convex optimization solvers are needed, by solving the primal rather than the dual. We also demonstrate that some boosting algorithms like AdaBoost can be interpreted in our framework, even their optimization is not totally corrective, . We conclude our study by applying the totally corrective boosting algorithm to a long-standing computer vision problem-face recognition. Linear regression face recognizers, constrained by two categories of locality, are selected and combined within both the traditional and totally corrective boosting framework. To our knowledge, it is the first time that linear-representation classifiers are boosted for face recognition. The instance-based weak classifiers bring some advantages, which are theoretically or empirically proved in our work. Benefiting from the robust weak learner and the advanced learning framework, our algorithms achieve the best reported recognition rates on face recognition benchmark datasets

    Improved Multi-Class Cost-Sensitive Boosting via Estimation of the Minimum-Risk Class

    Get PDF
    We present a simple unified framework for multi-class cost-sensitive boosting. The minimum-risk class is estimated directly, rather than via an approximation of the posterior distribution. Our method jointly optimizes binary weak learners and their corresponding output vectors, requiring classes to share features at each iteration. By training in a cost-sensitive manner, weak learners are invested in separating classes whose discrimination is important, at the expense of less relevant classification boundaries. Additional contributions are a family of loss functions along with proof that our algorithm is Boostable in the theoretical sense, as well as an efficient procedure for growing decision trees for use as weak learners. We evaluate our method on a variety of datasets: a collection of synthetic planar data, common UCI datasets, MNIST digits, SUN scenes, and CUB-200 birds. Results show state-of-the-art performance across all datasets against several strong baselines, including non-boosting multi-class approaches

    Using machine learning to predict gene expression and discover sequence motifs

    Get PDF
    Recently, large amounts of experimental data for complex biological systems have become available. We use tools and algorithms from machine learning to build data-driven predictive models. We first present a novel algorithm to discover gene sequence motifs associated with temporal expression patterns of genes. Our algorithm, which is based on partial least squares (PLS) regression, is able to directly model the flow of information, from gene sequence to gene expression, to learn cis regulatory motifs and characterize associated gene expression patterns. Our algorithm outperforms traditional computational methods e.g. clustering in motif discovery. We then present a study of extending a machine learning model for transcriptional regulation predictive of genetic regulatory response to Caenorhabditis elegans. We show meaningful results both in terms of prediction accuracy on the test experiments and biological information extracted from the regulatory program. The model discovers DNA binding sites ab intio. We also present a case study where we detect a signal of lineage-specific regulation. Finally we present a comparative study on learning predictive models for motif discovery, based on different boosting algorithms: Adaptive Boosting (AdaBoost), Linear Programming Boosting (LPBoost) and Totally Corrective Boosting (TotalBoost). We evaluate and compare the performance of the three boosting algorithms via both statistical and biological validation, for hypoxia response in Saccharomyces cerevisiae

    Fully corrective boosting with arbitrary loss and regularization

    Get PDF
    We propose a general framework for analyzing and developing fully corrective boosting-based classifiers. The framework accepts any convex objective function, and allows any convex (for example, lp-norm, p ≥ 1) regularization term. By placing the wide variety of existing fully corrective boosting-based classifiers on a common footing, and considering the primal and dual problems together, the framework allows direct com- parison between apparently disparate methods. By solving the primal rather than the dual the framework is capable of generating efficient fully-corrective boosting algorithms without recourse to sophisticated convex optimization processes. We show that a range of additional boosting-based algorithms can be incorporated into the framework despite not being fully corrective. Finally, we provide an empirical analysis of the per- formance of a variety of the most significant boosting-based classifiers on a few machine learning benchmark datasets.Chunhua Shen, Hanxi Li, Anton van den Henge

    Improved Multi-Class Cost-Sensitive Boosting via Estimation of the Minimum-Risk Class

    Get PDF
    We present a simple unified framework for multi-class cost-sensitive boosting. The minimum-risk class is estimated directly, rather than via an approximation of the posterior distribution. Our method jointly optimizes binary weak learners and their corresponding output vectors, requiring classes to share features at each iteration. By training in a cost-sensitive manner, weak learners are invested in separating classes whose discrimination is important, at the expense of less relevant classification boundaries. Additional contributions are a family of loss functions along with proof that our algorithm is Boostable in the theoretical sense, as well as an efficient procedure for growing decision trees for use as weak learners. We evaluate our method on a variety of datasets: a collection of synthetic planar data, common UCI datasets, MNIST digits, SUN scenes, and CUB-200 birds. Results show state-of-the-art performance across all datasets against several strong baselines, including non-boosting multi-class approaches

    Boosting Boosting

    Get PDF
    Machine learning is becoming prevalent in all aspects of our lives. For some applications, there is a need for simple but accurate white-box systems that are able to train efficiently and with little data. "Boosting" is an intuitive method, combining many simple (possibly inaccurate) predictors to form a powerful, accurate classifier. Boosted classifiers are intuitive, easy to use, and exhibit the fastest speeds at test-time when implemented as a cascade. However, they have a few drawbacks: training decision trees is a relatively slow procedure, and from a theoretical standpoint, no simple unified framework for cost-sensitive multi-class boosting exists. Furthermore, (axis-aligned) decision trees may be inadequate in some situations, thereby stalling training; and even in cases where they are sufficiently useful, they don't capture the intrinsic nature of the data, as they tend to form boundaries that overfit. My thesis focuses on remedying these three drawbacks of boosting. Ch.III outlines a method (called QuickBoost) that trains identical classifiers at an order of magnitude faster than before, based on a proof of a bound. In Ch.IV, a unified framework for cost-sensitive multi-class boosting (called REBEL) is proposed, both advancing theory and demonstrating empirical gains. Finally, Ch.V describes a novel family of weak learners (called Localized Similarities) that guarantee theoretical bounds and outperform decision trees and Neural Nets (as well as several other commonly used classification methods) on a range of datasets. The culmination of my work is an easy-to-use, fast-training, cost-sensitive multi-class boosting framework whose functionality is interpretable (since each weak learner is a simple comparison of similarity), and whose performance is better than Neural Networks and other competing methods. It is the tool that everyone should have in their toolbox and the first one they try.</p

    Responsible AI (RAI) Games and Ensembles

    Full text link
    Several recent works have studied the societal effects of AI; these include issues such as fairness, robustness, and safety. In many of these objectives, a learner seeks to minimize its worst-case loss over a set of predefined distributions (known as uncertainty sets), with usual examples being perturbed versions of the empirical distribution. In other words, aforementioned problems can be written as min-max problems over these uncertainty sets. In this work, we provide a general framework for studying these problems, which we refer to as Responsible AI (RAI) games. We provide two classes of algorithms for solving these games: (a) game-play based algorithms, and (b) greedy stagewise estimation algorithms. The former class is motivated by online learning and game theory, whereas the latter class is motivated by the classical statistical literature on boosting, and regression. We empirically demonstrate the applicability and competitive performance of our techniques for solving several RAI problems, particularly around subpopulation shift

    Object detection and segmentation using discriminative learning

    Get PDF
    Object detection and segmentation algorithms need to use prior knowledge of objects' shape and appearance to guide solutions to correct ones. A promising way of obtaining prior knowledge is to learn it directly from expert annotations by using machine learning techniques. Previous approaches commonly use generative learning approaches to achieve this goal. In this dissertation, I propose a series of discriminative learning algorithms based on boosting principles to learn prior knowledge from image databases with expert annotations. The learned knowledge improves the performance of detection and segmentation, leading to fast and accurate solutions. For object detection, I present a learning procedure called a Probabilistic Boosting Network (PBN) suitable for real-time object detection and pose estimation. Based on the law of total probability, PBN integrates evidence from two building blocks, namely a multiclass classifier for pose estimation and a detection cascade for object detection. Both the classifier and detection cascade employ boosting. By inferring the pose parameter, I avoid the exhaustive scan over pose parameters, which hampers real-time detection. I implement PBN using a graph-structured network that alternates the two tasks of object detection and pose estimation in an effort to reject negative cases as quickly as possible. Compared with previous approaches, PBN has higher accuracy in object localization and pose estimation with noticeable reduced computation. For object segmentation, I cast deformable object segmentation as optimizing the conditional probability density function p(C|I), where I is an image and C is a vector of model parameters describing the object shape. I propose a regression approach to learn the density p(C|I) discriminatively based on boosting principles. The learned density p(C|I) possesses a desired unimodal, smooth shape, which can be used by optimization algorithms to efficiently estimate a solution. To handle the high-dimensional learning challenges, I propose a multi-level approach and a gradient-based sampling strategy to learn regression functions efficiently. I show that the regression approach consistently outperforms state-of-the-art methods on a variety of testing datasets. Finally, I present a comparative study on how to apply three discriminative learning approaches - classification, regression, and ranking - to deformable shape segmentation. I discuss how to extend the idea of the regression approach to build discriminative models using classification and ranking. I propose sampling strategies to collect training examples from a high-dimensional model space for the classification and the ranking approach. I also propose a ranking algorithm based on Rankboost to learn a discriminative model for segmentation. Experimental results on left ventricle and left atrium segmentation from ultrasound images and facial feature localization demonstrate that the discriminative models outperform generative models and energy minimization methods by a large margin

    An Inquiry into Effective Written Feedback from EFL Teachers’ and Students’ Perspectives at a Saudi University

    Get PDF
    Abstract The aim of this study was to investigate L2 teachers’ and students’ perceptions toward the importance of written feedback and the elements of effective written feedback in an EFL context; the Preparatory-Year College (PY) at King Saud University, Saudi Arabia. The methodological approach used in the study was Mixed Methods by means of explanatory sequential design. In the quantitative phase, 150 L2 university male students from the science stream and 88 L2 teachers from the PY College completed the assigned questionnaire. The students’ proficiency level was upper-intermediate equivalent to B2 (CEFR). The participants were selected through convenience sampling. In the qualitative phase, 4 male students and 4 teachers volunteered to attend the semi-structured interviews. The results showed that both the teachers and the students valued the importance of written feedback as it reinforces learning, enhances confidence, autonomous learning, and promotes interaction between the teachers and their students inside the English writing classroom. The results indicated that providing the students with user-friendly feedback and the feedback that informs the learners about their progress, where to go, and what to do next are the preferred features of effective written feedback. In addition, the findings revealed that both written corrective feedback and written commentary feedback are the preferred types of written feedback but the teachers need to adapt the best form of the written corrective feedback that matches their learners’ proficiency level. The participants of this study preferred positive comments as the strategy of effective written feedback while the qualitative data suggested L2 teachers to use this strategy appropriately. Additionally, the findings indicated that L2 teachers need to respond more to accuracy issues (i.e. grammar, vocabulary, and mechanics) as they are problematic and challenging for the learners. Both the teacher and the student participants perceived the teacher as the best source to receive the written feedback from. Procedural knowledge and intentionality are the preferred features in the feedback provider. In addition, the findings show that the students’ absence and institutional authorities make the teachers respond to their learners’ texts as final; whereas, the student participants like to receive feedback on multiple drafts. This study contributes to the knowledge of effective written feedback and provides some implications for L2 writing teachers and policy makers
    • …
    corecore