Using machine learning to predict gene

expression and discover sequence motifs

Xuejing Li

Submitted in partial fulfillment of the
requirements for the degree
of Doctor of Philosophy

of the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2012

©2012
Xuejing Li

All Rights Reserved

ABSTRACT

Using machine learning to predict gene

expression and discover sequence motifs

Xuejing Li

Recently, large amounts of experimental data for complex biological systems have
become available. We use tools and algorithms from machine learning to build
data-driven predictive models. We first present a novel algorithm to discover gene
sequence motifs associated with temporal expression patterns of genes. Our algo-
rithm, which is based on partial least squares (PLS) regression, is able to directly
model the flow of information, from gene sequence to gene expression, to learn
cis regulatory motifs and characterize associated gene expression patterns. Our
algorithm outperforms traditional computational methods e.g. clustering in motif
discovery.

We then present a study of extending a machine learning model for tran-
scriptional regulation predictive of genetic regulatory response to Caenorhabditis
elegans. We show meaningful results both in terms of prediction accuracy on the
test experiments and biological information extracted from the regulatory program.
The model discovers DNA binding sites ab intio. We also present a case study where

we detect a signal of lineage-specific regulation.

Finally we present a comparative study on learning predictive models for
motif discovery, based on different boosting algorithms: Adaptive Boosting (Ad-
aBoost), Linear Programming Boosting (LPBoost) and Totally Corrective Boost-
ing (TotalBoost). We evaluate and compare the performance of the three boosting
algorithms via both statistical and biological validation, for hypoxia response in

Saccharomyces cerevisiae.

Contents

List of Tables iv

List of Figures v

Acknowledgments XV

Chapter 1 Introduction 1

Chapter 2 Background 5

2.1 Learning fromdata)

2.1.1 Introduction to Machine Learning)

2.1.2 Model Selection 8

2.1.3 Partial Least Squares Regression 14

2.1.4 Boosting 27

2.2 Biology of gene regulation 48

2.2.1 From DNA to Protein 48

2.2.2 Modeling of transcription factor binding sites 49

2.2.3 Experimental Data 51
Chapter 3 Learning “graph-mer” motifs that predict gene expression

trajectories 54

3.1

Introduction 54

3.2 Data Sets s, H6

3.2.1 Microarray Data 0oL 56
3.2.2 Promoter Sequences o7
3.3 Methods o7
34 Results. 67
3.4.1 Statistical Validation L. 67
3.4.2 Biological Validation 69
3.5 Conclusions and Discussion, 92

Chapter 4 A Predictive Approach to Learning Regulatory Motifs

and Control in Caenorhabditis elegans 94
4.1 Introduction 94
4.2 Methods 98
4.3 DataSet 99
44 Results 101

4.4.1 Statistical Validation 101

4.4.2 Biological Validation 103
4.5 Conclusions and Discussion, 105

Chapter 5 A comparative study on boosting algorithms for motif

discovery in Saccharomyces cerevisiae 109
5.1 Imtroduction 109
5.2 Methods 112
5.2.1 Boosting in MEDUSA 112
5.22 LPBoost 114
5.2.3 TotalBoost. 116
5.3 Dataset 118
54 Resultso 119

i

5.4.1 Comparison of boosting algorithms in generalization perfor-

5.4.2 MEDUSA TotalBoost retrieves a greater number of biologi-

cally meaningful motifso 126

5,5 Conclusion 136
Chapter 6 Conclusions and Outlook 139
Bibliography 140
Appendix A Proof for Dg; on PSSMs 152
Appendix B Quadratic approximation of relative entropy 154

Appendix C Glossary 156

iii

3.1

4.1

List of Tables

In situ analysis of genes enriched with CG-rich motifs. For
each graph-mer derived motif, we identified the set of genes associ-
ated to the motif based on latent factor analysis (see Methods). Each
gene list was further split into two sets: genes that had been previ-
ously identified as oocyte genes based on mutant expression data and
those not identified as oocyte genes by this previous analysis. The
table shows the number of genes associated to the motif; the num-
ber of genes having an in situ pattern in the NEXTDB database;
and genes expressed in germline tissues only, in both germline and
somatic tissues, and somatic tissues only as a percentage of genes
with an in situ pattern. The results show that even among genes
not previously identified as oocyte genes, more than 70% of genes
examined were dominantly expressed in germline tissues rather than
somatic tissues. This percentage is much higher than seen overall
for genes that were not previously called oocyte or sperm without
considering motif information (20%), suggesting a functional role of
CG-rich motifs in germline expression.

Assessing statistical significance of accuracy of predictions
on held out experimental data.

v

List of Figures

2.1 Fitting a data set to different orders of polynomials (Bishop, “Pattern
Recognition and Machine learning”). 10

2.2 Behavior of prediction error as a function of model com-

plexity. (Dr. Frank Dieterle, Ph.D. thesis) 12
2.3 Pseudocode for PLS1. 0L 22
2.4 Pseudocode for SIMPLS. 25
2.5 Schematic illustration of Boosting Method. 29
2.6 Pseudocode for AdaBoost. 33

2.7 Pseudocode for the alternating decision tree algorithm Fre-
und and Mason (1999a). 36

2.8 Example of an alternating decision tree. 37

2.9 Pseudocode for LPBoost combined with alternating deci-
sion tree algorithm., 42

2.10 Pseudocode for TotalBoost combined with alternating de-
cision tree algorithm. 47

2.11 DNA molecule has a double-helix structure. The nucleotides
A, C, G, T form complementary base pairs (AT) and (CG). 49

2.12 Example of microarray gene expression data. Every row is a

3.1

3.2

3.3

gene and every column corresponds to a sample in a specific con-
dition. Red color indicates over-expression of gene (induction) and
green under-expression of gene (repression).

Pseudocode for graph-regularized PLS. A pseudocode descrip-
tion of the iterative PLS procedure, enforcing sparsity and Laplacian
constraints on motif weight vectors.

Normalized mean squared error on cross-validation test data.

Normalized mean squared error versus number of latent factors for
standard PLS and graph-regularized PLS on real and randomized
data. For the real cross-validation data, standard PLS overfits after
the 4th factor; graph-regularized PLS is more resistant to overfitting
than standard PLS. As expected, when trained and tested on ran-
domized data, both standard and graph-regularized PLS overfit with
the very first factor.o oo

Mapping between motif weight vectors and experiment weight

vectors. At each iteration i of the modified PLS algorithm, i =
1... K, weight vectors w; and c; are derived by finding latent fac-
tors t; and u; with maximal covariance. For clarity, subscripts ¢
are omitted in the diagram and in the rest of the description. Each
weight vector w is a vector in R, where M is the number of k-mers
used as input to the algorithm. Due to graph-regularization, each
weight vector is sparse, i.e. most k-mers have weight 0, and smooth
over a graph connecting sequence-similar k-mers, i.e. similar k-mers
get assigned similar weights. Therefore, we can visualize the weight
vector as a “graph-mer”, a graph where nodes correspond to k-mers
with high positive weights and edges connect sequence-similar k-mers
(bottom left). At each iteration, the PLS procedure sets up a cor-
respondence between the motif weight vector w and a weight vector
over expression experiments represented by vector c. In our setting,
the series of expression experiments is a time course, and the vector c
can be viewed as an expression pattern or trajectory (bottom right).
Intuitively, we can think of the set of k-mers shown in the graph-mer
as driving the expression patternc.

vi

3.4

3.5

3.6

3.7

Normalized mean squared error on cross-validation test data.

Normalized mean squared error versus number of latent factors for
standard PLS and graph-regularized PLS on real and randomized
data. The mean squared error obtained with zero latent factor is
normalized to 1. Computed standard deviations of squared error
across cross-validation sets are plotted as error bars. For the real
cross-validation data, standard PLS overfits after the 4th factor;
graph-regularized PLS is more resistant to overfitting than standard
PLS. As expected, when trained and tested on randomized data,
both standard and graph-regularized PLS overfit with the very first
factor. L

Correlation of germ cell expression patterns and PLS ex-
pression weight vectors. Oocyte and sperm gene expression pat-
terns are strongly correlated with ¢; and ¢y, respectively. (a) Oocyte
gene expression versus ¢;. (b) Sperm gene expression versus c. . . .

Correspondence between first and second latent factors and
sperm and oocyte genes. (a,b) The set of all genes is split into
oocyte and non-oocyte genes, or sperm and non-sperm genes, and
the empirical cumulative distribution of correlation with c;, i = 1,2
is plotted. Oocyte and sperm genes are enriched towards the top of
the gene expression correlation distribution. (c,d) The set of all genes
is split into oocyte and non-oocyte genes, or sperm and non-sperm
genes, and the corresponding empirical cumulative distributions of
hits of top 50 k-mers in w;, ¢ = 1,2 are plotted. Oocyte and sperm
genes are enriched in k-mer hits corresponding to the 1st and 2nd
weight vectors. oo

Sperm motifs determined by graph-mer analysis and posi-
tional bias of motif ACGTG. Sperm motifs extracted from graph-
mer output. The graph-mer consisting of the top 50 k-mers ranked
by ws. Graph motif patterns identified in the form of k-mer clusters
using the MCODE plug-in Bader and Hogue (2003) in Cytoscape
are shown in different colors, with each subgraph summarized by a
PSSM generated through hierarchical sequence agglomeration of the
corresponding k-mers. Both the ELT-1 motif GATAA and the bHLH
motif ACGTG are found in thisway.

vil

74

3.8

3.9

3.10

Oocyte motifs determined by graph-mer analysis and con-
servation of graph-mer derived oocyte and sperm motifs.
Top 50 k-mers ranked by the weight vector wy, depicted as a graph-
mer, which are associated by the PLS procedure to the expression
pattern of oocyte genes. Graph motif patterns were identified in
the form of k-mer clusters using the MCODE plug-in in Cytoscape.
PSSMs generated through hierarchical sequence agglomeration of the
corresponding k-mer sets are indicated, revealing several CG-rich
motifs. . ..

Correlation of weights with significance of enrichment in
oocyte and sperm genes for the k-mers from 1st and 2nd
graph-mer respectively. We plot the weights of k-mers in the first
motif weight vector versus the —logio(p-value) for the enrichment
of these k-mers in oocyte and sperm genes, as computed by the
hypergeometric distribution. (a) For oocyte genes, —logio(p-value)
is moderately correlated with w; (Pearson coefficient = 0.65), and
k-mers highly ranked by w; had p-values between 10716 and 10~
This enrichment supports the functional relevance of PLS-derived
k-mers from the first factor in oocyte genes. (b) For sperm genes,
—logyo(p-value) is somewhat correlated with wo (Pearson coefficient
= 0.35), though the correlation is weaker than that of oocyte genes.

Sperm motifs determined by graph-mer analysis and posi-
tional bias of motif ACGTG. Distribution of distance of motif
ACGTG to TSS (measured in base pairs) in sperm genes versus non-
sperm genes. Motif ACGTG occurs more frequently within 200bp
upstream of the TSS in sperm genes relative to non-sperm genes,

78

giving us more confidence in its contribution to sperm gene expression. 80

viii

3.11

3.12

3.13

Conservation of graph-mer derived oocyte and sperm mo-
tifs. (a) Analysis of oocyte k-mer conservation using the motif con-
servation score (MCS). The plot shows the distribution of (oocyte
MCS—non-oocyte MCS) for top 50 k-mers versus remaining k-mers
in wy. The score distribution for the top 50 k-mers has a heavy
right tail, showing that as a distribution, the top 50 k-mers have
higher oocyte-specific conservation scores as compared to other k-
mers (p < 3.0e-13 by a one-sided KS statistic). Significantly con-
served k-mers are annotated, including CG-rich k-mers for oocyte
genes. (b) Distribution of (sperm MCS—non-sperm MCS) for top
50 k-mers versus remaining k-mers in wy. The score distribution for
the top 50 k-mers has a heavy right tail, showing that the top 50
k-mers have higher distribution of sperm-spefic conservation scores
than other k-mers (p < 1.9e-5, one-sided KS statistic). Significantly
conserved k-mers are annotated, including ACGTG motif for sperm
GENES. + o i e e e e

Comparison of PCA components and PLS expression weight
vectors in gene expression space. The first and second principal
components bear some similarity to corresponding PLS weight vec-
tors c;, i = 1,2, but all principal components are less smooth than in
PLS. (a) PCA identifies the first four directions (PC;, PCy, PC3 and
PC,) that have maximal variance in gene expression space. Principal
components are plotted v.s. time. (b) Graph-regularized PLS learns
weight vectors (cj, c2, c3 and c4) based on a linear mapping from

Motifs found by AlignACE in genes correlated with PC,
and PC,. (a) Top 40 AlignACE motifs in genes correlated with
PC; sorted by MAP score. Top ranked AA-rich and GG-rich motifs
may result from low complexity regions, and several PCA motifs
with relatively low MAP scores (e.g. MAP = 147.05, 90.77, 80.93)
are similar to PLS 1st factor motifs. (b) Top 40 AlignACE motifs in
genes correlated with PCy. Only one motif (MAP score = 101.03)
is similar to our PLS sperm gene motif ACGTG from 2nd weight
vector. None of the other PCA motifs matched any of the PLS 2nd
factor motifs.

X

3.14 Motifs found by AlignACE in different gene clusters. (a)
Expression patterns of genes in Cluster 1. (b) Expression patterns
of genes in Cluster 2. (c¢) Expression patterns of genes in Cluster
3. (d) Top 40 AlignACE motifs found in Cluster 1 genes. (e) Top
40 AlignACE motifs found in Cluster 2 genes. (f) All 35 AlignACE

motifs found in Cluster 3 genes.

3.15 Normalized mean squared prediction error on cross-validation
test data. (a) Normalized mean squared error versus number of PLS
iterations for standard univariate and multivariate PLS. At each it-
eration, standard univariate PLS learns twelve latent factors, cor-
responding to the twelve individual time points, while multivariate
PLS learns one latent factor for all time points. Univariate PLS
yielded a slightly lower test error than that of standard multivariate
PLS after the 1st iteration; however, after one iteration, the univari-
ate PLS corresponds to a collection of motif sets, each predicting a
single experiment’s gene expression changes, while multivariate PLS
uses a single motif set to predict full gene expression trajectories. (b)
Normalized mean squared error on test data by time point after the
1st univariate PLS iteration. Normalized mean squared error ver-
sus time point on all genes, oocyte and sperm gene sets. Univariate
PLS reaches lowest prediction error on oocyte gene set at late time
points when oocyte gene expression peaks. Similarly, prediction er-
ror on sperm gene set is small at middle time points when sperm
gene expression peaks. Each time-specific univariate PLS models
the motif-expression correspondence for the gene set differentially
expressed at the given time point.

4.1

4.2

4.3

MEDUSA learns genome-wide, context-specific regulation programs.
A schematic example shows how MEDUSA regulatory programs predict differ-
ential target gene expression. (A) In the data representation, rows represent
genes and columns represent experiments. Genes are divided into regulators
(transcriptional regulators and signal transducers) and targets. The expression
levels of regulators, along with the promoter sequences of target genes, are used
to predict up/down expression of the targets. Individual weak rules in MEDUSA
depend on a pairing of a particular regulator state and a motif. For example, the
rule illustrated suggests that a certain regulator is in a down state (low expres-
sion level), targets genes containing the motif “GAAGCT” in their promoters
tend to be upregulated; while a single gene-experiment example is highlighted,
the weak rule must be predictive across the (weighted) training data in order to
be chosen. (B) The MEDUSA regulatory program is described by an alternating
decision tree that asks questions about the expression level of regulators in the
experimental condition and the presence of motifs in the gene’s promoter. Using
boosting, weak rules are iteratively added as nodes in the ADT; the scores in
each round node indicate the contribution to the overall prediction score when
the corresponding weak rule applies. The ADT can be applied to a new gene-
experiment example to obtain a real-valued prediction score. The sign of the
score gives the up/down prediction, while the size of the score is a measure of

its confidence.

Prediction accuracy on unseen experimental data. Training and test set
error rates for the first 500 rounds of boosting, showing MEDUSA’s accurate
prediction on test data (red line) as well as agreement with training data (blue

line).

Significant TF binding site motifs learned by MEDUSA for the worm
data set. The table shows some of the PSSMs found by MEDUSA that most
significantly match experimentally verified TF binding sites compiled from the
TRANSFAC and WormBase databases. The significance of the match is re-
ported as a p-value for the average log likelihood ratio (uncorrected for multiple

hypothesis testing).

x1

100

102

103

4.4

5.1

5.2

5.3

5.4

Context-specific regulation for target genes relevant to touch cell dif-
ferentiation. (a) Patterns of up (red), down (green), and baseline (black) ex-
pression levels for the statistically significant regulators controlling target genes
regulated by MEC-3 across the time points after 4-cell stage. At the left of each
row, the number of target genes affected by the regulator in these experiments is
given. (b) The top-ranked sequence features learned by MEDUSA, as determined
by a margin-based score, and their hits across the set of target gene promoters.
The PSSMs learned by MEDUSA are represented by their consensus sequences.
At the bottom of each column, the number of target genes containing the motif
is given. (c) Patterns of discretized gene expression levels for the target genes
regulated by MEC-3 across the time points after 4-cell stage.

Pseudocode for boosting algorithm implementation. A pseu-

docode description of LPBoost and TotalBoost algorithm in MEDUSA 120

Comparison of generalization performance of MEDUSA soft-
margin LPBoost, hard-margin LPBoost and AdaBoost. (a)
Test errors for hard-margin LPBoost, soft-margin LPBoost and Ad-
aBoost for the hypoxia dataset as a function of the number of boost-
ing rounds. AdaBoost performs better than both soft-margin and
hard-margin LPBoost on test data. (b) Cumulative margin distribu-
tions for hard-margin LPBoost, soft-margin LPBoost and AdaBoost
after 500 boosting rounds. AdaBoost has the best margin distribu-
tion and hence best prediction accuracy.

Soft-margin LPBoost’s weak rule learning overly focuses on
predicting examples with negative margin. We compare av-
erage weights of correctly classified and misclassified examples for
soft-margin LPBoost and AdaBoost. LPBoost’s weight extremely
concentrates on misclassified examples, leaving weight of correctly
classified ones almost zero. In contrast, for AdaBoost the average
weight of the misclassified examples is only slightly higher than that
of correctly classified ones.

Comparison of generalization performance of MEDUSA soft-
margin TotalBoost and AdaBoost. (a) The two boosting algo-
rithms are run for 500 iterations and 5-fold cross-validation test er-
rors are plotted. (b) Cumulative margin distributions of TotalBoost
and AdaBoost.

xii

5.9

5.6

5.7

5.8

Average weights of correctly and misclassified examples for

soft-margin TotalBoost, soft-margin LPBoost and AdaBoost.

TotalBoost’s average weight of the misclassified examples is only
slightly higher than AdaBoost but significantly lower than LPBoost.
Totalboost has a smoother weight distribution and thus does not
completely “ignore” certain examples like LPBoost does.

Distribution of log10(p-value) for ALLR measuring the dis-
tance between MEDUSA motifs and database binding sites.
p-values for all pairs of MEDUSA motifs and database binding sites
are estimated and a p-value cutoff of 1.0e — 5 for a real motif match
to database binding site isset. oL

Significant TF binding site motifs identified by MEDUSA
AdaBoost and TotalBoost in the first 50 boosting iterations.
Each row in the table represents a motif found by either MEDUSA
AdaBoost or TotalBoost that significantly matches a known tran-
scription factor binding site from TRANSFAC and SCPD databases.
The significance of the match is reported as a p-value for the average
log likelihood ratio calculated by Matalign . The columns are tran-
scription factor names, logos of transcription factor binding sites,
logos of MEDUSA motifs, iteration scores (number of iteration at
which MEDUSA motif is learned), average log likelihood ratios and
corresponding p-values. (a) MEDUSA AdaBoost motifs that match
database transcription factor binding sites (p-value < 1.0e — 05).
(b)MEDUSA TotalBoost motifs that match database transcription
factor binding sites (p-value < 1.0e —05).

Comparison of TF binding site motifs learned by MEDUSA
AdaBoost and TotalBoost. Each row in the table represents a motif
found by both MEDUSA AdaBoost and TotalBoost (left section), by
MEDUSA TotalBoost only (middle section), or by MEDUSA AdaBoost
only (right section). The first column describes the motif by the name of
the corresponding transcription factor, second column logo of TF binding
site motif, third column the iteration score of the motif. In the left table,
two iteration scores are reported and compared for both AdaBoost and
TotalBoost.

xiii

5.9 TotalBoost vs. AdaBoost: iteration scores of motifs. Every
motif among the 58 found by both MEDUSA TotalBoost and Ad-
aBoost is assigned both an AdaBoost and TotalBoost iteration score.
We compare the iteration scores and find that 44 motifs have lower
scores in TotalBoost, suggesting that TotalBoost retrieves more mo-
tifs at earlier boosting rounds.

X1v

Acknowledgments

First, I would like to express my deep and sincere gratitude to my thesis advisor
Chris Wiggins. I have benefited incredibly from his invaluable support and encour-
agement in my research projects. I am also deeply grateful to Professor Christina
Leslie for her broad and deep views in the field of machine learning and her generos-
ity in sharing research ideas. I would also like to thank my other co-workers Anshul
Kundaje, Steve Lianoglou, Valerie Reinke, Casandra Panea and Marta Arias.

I would like to thank all professors in the physics department teaching physics
classes during my first two years at Columbia. They are Aleiner Igor, Blaer Allan,
Gyulassy Miklos, Hui Lam, Mawhinney Robert, Mueller Alfred, Pinczuk Aron,
Millis Andrew. I also appreciate the invaluable help from our physics department
staff Lalla Grimes, Nicole Griggs and Joey Cambareri. I would like to thank my
graduate friends at Columbia including Hui Zhou, Yue Zhao, Jie Lin, Min Li,
Jiaming Jing, Xiao Wei, Daohua Song, Yang Wu, Shu Li, Sheng Wang, Qongying
Hu and Dora Tan. They all have contributed to my meaningful life at Columbia.

Last and most importantly, I want to thank my family. I am deeply indebted
to my parents for their love and care. Without their endless support I could not
have gone this far. I owe my special thanks to my husband Si Li. He has always

been encouraging me during my academic education and pursuit of career.

XV

Xvi

Chapter 1

Introduction

Scientific modeling centers on testing theory against experimental observations.
Therefore experimental data plays an important role in constructing and testing
theories in fields including astrophysics, high energy physics, biology and medicine.
With the advent of computers and information age, huge amounts of data are
being generated that change the way scientists perform research. The easy access
to experimental data makes the data issue no longer the limit factor for research.
Instead, the challenge now is how to extract the right information and understand
“what the data says”. This is called learning from data.

Given vast amounts of experimental data, research scientists could try to
study and understand how complex systems behave as a whole rather than to focus
on isolated components. Scientists can now simultaneously monitor interaction be-
tween individual components from experimental data. For example, microarrays in
biology can measure the expression levels of thousands of genes at once in the tissue
samples. And the gene expression data can be used to model the transcriptional
regulatory network, which is characterized by interactions between thousands of
genes and proteins.

Machine learning is a young scientific discipline concerned with the genera-

tion of computer algorithms based on statistical models learned from data. Those
computer algorithms perform tasks of pattern recognition, classification, and pre-
diction based on information from data.

Machine learning is data driven. However, it is more than traditional data
analysis. The focus is on generating hypotheses and making accurate predictions
for new data instead of simply describing existing data. In machine learning, every
model has a certain prediction accuracy. The higher the prediction accuracy, the
better the model is.

Like traditional scientific models, machine learning algorithms also aim to
achieve the following two goals: first, it accurately describes existing experimen-
tal observations. second, it can make predictions for future observations. However,
machine learning focuses more on the predictive modeling part. For example, many
of the computational algorithms learn mathematical models by optimizing perfor-
mance on unseen data.

Machine learning algorithms usually generate empirical hypotheses rather
than theories of physical laws. In traditional scientific modeling approaches, scien-
tists compare experimental data with a theory based on a fundamental and math-
ematical description of physical laws. The comparison validates the theory in the
form of a mathematical formula given experimental data. Or the data can be used
to fit a mathematical model by determining physical parameters. In contrast, ma-
chine learning algorithms do not lead to general fundamental theories. However it
is very valuable if there are large amounts of data with noisy patterns. Its goal is
to obtain a theoretical generalization from the data by building empirical models
and learning from examples. The results may not give a fundamental description
of the natural phenomenon, but it is able to give a good understanding of the phe-
nomenon under study by accurately predicting for future experiments. For example,

in astrophysics astronomical surveys of the night sky are taken using thousands of

photographic plates, which contain about millions of objects. After the attributes
of each object are measured, the scientific problem is to classify each object as a
type of star galaxy. Since there are both a huge number of objects and features
of objects, traditional scientific models are inapplicable. The decision-tree learn-
ing algorithms in machine learning have been successfully used to learn predictive
models classifying objects.

This thesis presents three case studies of machine learning applications in
biophysical modeling. First in Chapter 2 we give an introduction to machine learn-
ing, computational algorithms used for the work in this thesis and basic biological
terminology.

In Chapter 3 we then present a novel algorithm to discover gene sequence
motifs associated with temporal expression patterns of genes. Traditional com-
putational methods have focused on clustering genes by expression first and then
applying motif discovery algorithms to gene sequences of each cluster. However
the clustering approach is based on the assumption that correlation of expression
implies coregulation, which oversimplifies the biology of transcriptional regulation.
Our algorithm, which is based on partial least squares (PLS) regression, is able
to directly model the flow of information, from gene sequence to gene expression,
to learn cis regulatory motifs and characterize associated gene expression patterns.
To evaluate the performance of our algorithm, we use the mRNA profiling exper-
iments from developmental time courses for worm Caenorhabditis elegans, a key
model organism in developmental biology. This work has been published in Li
et al. (2010).

In Chapter 4 we present the MEDUSA algorithm for learning regulatory
programs that accurately predict gene expression, which was published in Kundaje
et al. (2007). In Chapter 4 we extend the machine learning algorithm to Caenorhab-

ditis elegans and we show meaningful results both in terms of prediction accuracy

on the test experiments and biological information extracted from the regulatory
program. The model discovers DNA binding sites ab intio. And despite the fact
that the expression data comes from the whole embryo samples, we show that it
reveals context-specific regulation by presenting a case study where we detect a
signal of lineage-specific regulation.

In Chapter 5 we present how to learn predictive models for motif discovery
based on different boosting algorithms: Adaptive Boosting (AdaBoost), Linear
Programming Boosting (LPBoost) and Totally Corrective Boosting (TotalBoost).
We evaluate and compare the performance of the three boosting algorithms via
both statistical and biological validation, for hypoxia response in Saccharomyces

cerevisiae.

Chapter 2

Background

2.1 Learning from data

2.1.1 Introduction to Machine Learning

Machine learning is a scientific discipline that studies algorithms capable of auto-
matically extracting information from empirical data. Machine learning answers
the question of how to build learning algorithms that automatically improve with
experience or information, and performs tasks of gaining knowledge, making pre-
dictions, making decisions or building models based on given input data. A learner
in a machine learning algorithm takes advantage of the data to reveal characteris-
tics of certain unknown underlying probability distributions. Data could be seen as
examples that contain information for relations between variables of interest. For
example, a machine learning algorithm could focus on automatically recognizing
complex patterns from observed examples also known as training data and making
predictions on new examples. The challenge is that the complete set of all possible
behaviors could be too large to be covered by the information in the training data.
Hence the difficulty for a learning task is to have good generalization from the

observed examples, in order to be able to produce a useful model for new examples.

Machine learning is the scientific field at the intersection of Computer Science
and Statistics. Computer Science seeks to answer the question like “How can we
build programs that solve problems in an automated way”. While Statistics looks
at the problem of statistical inference from data and modeling of data given certain
assumptions. Machine learning is closely related to statistical inference, data min-
ing and pattern recognition. Many of the machine learning algorithms have been
successfully applied to a broad range of scientific and engineering problems, such
as the tasks of building customized search engines, recognizing handwritten digits,
designing mobile robots, predicting stock price moves and classifying cancel tissues.
In a typical scenario, the outcome measurements could be quantitative (e.g. stock
price) or categorical (e.g. cancer or not cancer), which we want to predict based
on a set of predictors (e.g. clinical measurements) for examples (e.g. people).

One application of machine learning algorithms in physics is for particle
event selection in High Energy Physics (HEP). Experimental high energy physicists
use modern accelerators, which collide protons and/or anti-protons to create new
particles. The majority of accelerator events do not produce particles of interest,
e.g. quark or Higgs boson. Therefore good data analysis is needed for effective
event selection to separate events producing particles of interest (signal) from those
producing other particles (background). Several supervised learning methods have
been used to train classifiers that separate signal from background. Neural network
was first brought to applications in HEP. For example, DO collaboration uses neural
networks to search for single top quark production Hopfield (1982); Abazov et al.
(2001). More recently, new machine learning algorithms such as support vector
machines and boosting are introduced for HEP analysis. For example, Whiteson
and Naumann (2003) presents examples of applying support vector regression to
the search for a computationally predicted particle and to the classification of heavy

quark jets. It also compared the performance of the support vector machine with

that of neural network. A variant of Boosting called Boosted Decision Tree was
first introduced for data analysis in the MiniBooNE experiment at Fermi National
Accelerator Laboratory, which was designed to detect signal for v, — v, oscillations
Roe et al. (2005). The study showed that particle identification with the boosting
algorithm is 20-80% better than standard neural network technique.

Learning problems come in two categories: supervised and unsupervised. In
supervised learning (also known as directed data mining), the variables of interest
are split into two groups: explanatory variables and dependent variables. The goal
of the supervised learning is to identify a relationship between the explanatory vari-
ables (inputs) and the response variables (outputs), and generates a function that
maps inputs to outputs. For example, there are algorithms for supervised learning
of classification and regression functions. In these cases we have the labeled training
examples in pairs {(x;,y;),? = 1,...,n} of inputs x; and outputs y,. Outputs y, are
quantitative for regression problems and categorical for classification problems. A
predictive function f which maps from x; to y; is to be learned and we can compare
f(x;) with y, to estimate the error rate of the prediction function. For example,
x; may be a image vector and y,; the qualitative label of the object in the image
for training an image recognition program. Supervised learning algorithms such as
support vector machines for classification may be used to estimate the predictive
function f from the data.

In unsupervised learning problems there are response variables to be pre-
dicted. All training examples only have x; and the target of the analysis could
vary from reducing the data dimension to finding patterns in the distribution of
x;. Since the examples are unlabeled, there is no direct error function to evaluate
the learning performance. An example of unsupervised learning is clustering, e.g.,
cluster genes based on their time series expression. Clustering analysis groups a

set of examples into subsets (called clusters) so that examples in the same cluster

are similar based on a predefined distance measure. Principal component analysis
(PCA) is another example of unsupervised learning. PCA find a small set of factors
that explain the significant variance of x; and can also be combined to reconstruct
the data.

In summary, supervised learning algorithms have the response variables to
guide the learning procedure and evaluate the learning performance. While in the
unsupervised learning problems, without variables to predict task of the analysis
is to find the hidden structure of the data or cluster the data given a predefined
measure. In our work we will apply and extend two supervised learning algorithms:
partial least squares regression for regression problems and boosting for classifica-

tion problems.

2.1.2 Model Selection

The problem of model selection is an essential part of every learning problem. Given
some data, machine learning algorithms could learn a number of models that fit the
data well and one may have no preference for one model over another before certain
assumptions are made. Model selection involves choosing a model that best selects
features and parameters to create a model of optimal complexity for data. One
basic rule is that if models fit the data equally well, a simpler model is preferred
Zellner and Keuzenkamp (2001). For example, Occam’s razor suggests that when
theories have equal predictive power, one should choose the theory with the fewest
assumptions Hoffmann et al. (1997) .

We now illustrate the problem of model selection, which is important to every
learning task, using the example of classical polynomial curve fitting. We assume
our data points are sampled from a distribution of polynomial order of three with
Gaussian noise as shown in Figure 2.1. There are ten data points. Because it is a

Gaussian distribution, maximizing the likelihood of those data points is equivalent

to minimizing mean squared error. We try to fit polynomials of different degrees
(M). Curves fitted for polynomial order M = 0,1, 3,9 are shown in the Figure 2.1.
Mean squared error decreases with higher polynomial degree M and polynomial
order of M = 9 fits the training dat best. Generally as we use more and more
complex and flexible models, the mean squared error will get smaller and model
better fits the training data. However, the problem is to choose the best order M for
the polynomial function that not only fits the observed data, but also generalizes
well to new data. For a polynomial fitting of order M = 9, we see significant
fluctuations in the values fitted. The reason is that the higher-order polynomial
model, with more parameters, is fitting the noise in the data which will not be
repeated in new data sampled from the distribution. In other words, the more
complicated models overfit the data. We also note that polynomial order of M = 0
and M = 1 also perform worse the M = 3. The problem is not overfitting but
underfitting. In other words, the model is not complicated enough to capture the
patterns in the data. Therefore the problem of model selection accompanies every
learning task: find the model of optimal complexity if we have a choice of models.

Figure 2.2 illustrates an important aspect of model performance evaluation
and selection. We first consider a continuous response variable Y and inputs X
for a regression problem. If we assume that Y = f(X) + ¢, where E(e) = 0 and
Var(e) = 02. We obtain a predictive model f(X) learning from training examples.
A typical loss function is squared error (Y — f(X))2 and training error is the average

loss over training examples

1 & A
Errivaining = N Z((yz — f(x:)%)
i=1

The best measure for the generalization capability of the estimated model f
is error of prediction, also known as test error. Prediction error is the expected loss

over new test examples.

10

] o W =0 | L M=1
o L 0 L
o o
oY e . on-a
]] —
- ¥ . e
=] L]
=] =]
1] L i
1
\ i,
_/'j = @ tﬁ
Fy iy I| i I'._.
3 \ 2 LW I‘".\, Fa'
O O P o -_3& f Q
i} \ S/ L1} \ .'I | |
. O / [
~ & sl
a | |
=1 =] q_-' |
]

Figure 2.1:

Fitting a data set to different orders of polynomials
(Bishop,“Pattern Recognition and Machine learning”).

ETTtest == Etest((Y - f(X)Q)

o2 + [Ef(X) — f(X)]* + E[f(X) — Ef(X)]?
o? + Bias*(f(X)) + Var(f(X))

(2.1)
The first term is variance around its true mean f(X), which can not be
avoided. The second term measures the difference between the average of our

estimate and the true mean, which is often referred to as the bias term. The last

one is variance, average deviation of f(X) around its own mean. Therefore, the

11

error of prediction that we can control is composed of two main parts: bias and
variance Martens and Naes (1992). Bias is high as the estimated model is not
complex enough to capture all the relationships between responses and predictors.
High variance is caused by modeling random noise in the data. As the model
becomes more complex, it is able to capture more complicated structures in the
data leading to a decrease in bias. However the variance could increase. Increasing
prediction error due to a too complex model is called overfitting or overtraining
while increasing prediction error due to a too simple model is called underfitting.
Therefore bias and variance need to balance each other to obtain an low prediction
error (arrow in figure 2.2). In other words, there exists a model with optimal
complexity that gives minimum test error.

There are a number of methods for estimating how accurately a predictive
model will perform. Typically the model has one or a set of parameters, which
vary with the complexity of the model. We hope to find the parameter values
that minimize test error giving the optimal model complexity in figure 2.2. One
simple and popular method for estimating minimum test error is cross-validation.
Cross-validation is particularly useful for small data sets, because if we have enough
data we could easily have a validation set to assess the prediction performance. If
there is insufficient data to split data into one training set and one validation set,
K-fold cross-validation repeats the process of training and validation K times and
combines the K estimates of test error. More specifically, all data is randomly
divided into K equally-sized subsamples and of the K subsamples, one subsample
is set aside as the validation data and the remaining K-1 subsamples are used as
training data. This cross-validation process is then repeated K times (the folds)
and each of the K subsamples used exactly once as the validation set. The K results
from the K folds are then averaged to produce a single estimation of test error. 10-

fold or 5-fold cross-validation are commonly used. The case in which K equals the

12

Underfitting Owerfitting

Optimum

Ermor of Prediction

Complexity of Model

Figure 2.2: Behavior of prediction error as a function of model complexity.
(Dr. Frank Dieterle, Ph.D. thesis)

number of examples is known as leave-one-out cross-validation. In leave-one-out
cross-validation, for the ith observation the model is fit to all the data except the
1th subsample.

We often assume a type of underlying distribution of the data for regression

13

problems, e.g. Gaussian noise. For classification problems in which the prediction
is in {—1,41}, a “distribution-free” framework for learn has been introduced in
the field of computational learning theory Valiant (1984). The labels —1 and +1
define two classes for the classifier to predict. The “distribution-free” framework
considers a domain X and a set C' of functions (or concepts) ¢: X — {—1,+1}. The
data is sampled from an unknown probability distribution p(x. A machine learning
algorithm outputs a hypothesis h: X — {—1,4+1} from a set H of candidate
hypotheses.

We call the concept set learnable, if there exists an algorithm B and a poly-
nomial function m(.,.) such that for any ¢ in C, any distribution p(x), any € > 0
and 0 > 0, algorithm B takes more than m(%, %) training examples to produce a
hypothesis for which the probability of generalization error greater than e is smaller
than 6. The framework is also called PAC learnable for Probably Approximately
Correct (PAC) learning Kearns and Valiant (1988). In the PAC framework, we ob-
tain a bound on the generalization error. In Vapnik’s theory work Vapnik (1995),

it is shown that with probability 1 —7 the generalization error has an upper bound:

d(log(2N/d) + 1) — log(n/4)

- (2.2)

generalization error < training error + \/

N is number of data points and d is called the VC dimension Vapnik (1995),
which is a measure of complexity of the hypothesis space. Training error will
decrease as the model complexity increases. However the term related to VC di-
mension will increase, which offsets the smaller training error for the upper bound
on generalization error. This upper bound is also used for the purpose of model
selection. In other words, choose a model that minimizes the bound. This method

for model selection is known as structural risk minimization.

14

2.1.3 Partial Least Squares Regression
2.1.3.1 Introduction to Partial Least Square Regression

Scientific research often uses controllable continuous variables (factors or predictors)
to explain and predict the behavior of other continuous variables (responses). If
the relationship between predictor variables and response variables is known to be

linear, a linear regression model is constructed to predict responses:

Y1 = buxy+biaxo + ...+ 01X,

yq = bqlxl + bq2X2 4+ ...+ bqup

where Xy, ..., X, are predictor variables and y;, ..., y, are response variables.
The derived by;(i = 1,...,q,j = 1,...,p) are regression coefficients. Note that the
emphasis is on accurate prediction of responses and thus linear regression tech-
niques used for this purpose are in the category of machine learning. We refer to
it as ‘learning’ because we would like to ‘learn from data’ to discover the linear
relationship between the set of response variables we want to predict and other
independent predictor variables. We use our ‘data’ to train a machine learning
algorithm and then use the learned statistical model to predict future observations.

When the predictors are only a few and have a known relationship with
the responses, ordinary multiple regression can be easily used to build a predictive
model. However, if the number of predictors gets too large, ordinary multiple
regression is can be inefficient or infeasible. For example, it is likely to yield a
model that fits the samples perfectly but is unable to predict new data well. This
is known as over-fitting. Although there are many factors learned, they may be
poorly related to response variables and thus do not account for the variation in

the responses. poreover, when there are more predictors than observations, ordinary

15

multiple regression may not work if predictor variables are highly correlated. This is
known as multicollinearity and can make it difficult to perform the matrix inversion
required in ordinary multiple regression.

To address those data analysis problems, the ordinary multiple regression
model has been extended in a few ways. The ordinary multiple regression model
serves as a foundation for a number of other multivariate methods. For example,
principal components regression predicts responses on the dependent variables from
factors underlying the levels of predictor variables. Canonical correlation predicts
factors underlying responses on the dependent variables from factors underlying
the levels of the predictor variables. One common feature of those multivariate
regression methods is that they extract factors underlying Y and X variables from
Y'Y and X”X respectively. Those factors are selected to explain the variation in
Y and X separately instead of cross-product matrices containing both the Y and
X variables. Therefore factors underlying predictor variables are not necessarily
relevant for response variables. In this section, we present a popular regression
technique known as partial least squares (PLS) regression that addresses this is-
sue. The general idea of PLS regression is to try to extract latent factors that
account for predictor variation and model the responses well as well. Specifically,
PLS regression is a method of dimension reduction combined with ordinary multi-
ple regression. In PLS regression, the prediction of response variables can be first
achieved by learning a set of orthogonal factors called latent factors from given pre-
dictors. The latent factors are chosen such that the covariance between response
variables and predictor variables is maximal. In short, factors in PLS regression
are selected to reflect the covariance structure between the predictor and response
variables, while other regression methods like principal components regression pro-
duces factors reflecting the covariance structure between the predictor variables.

Therefore different from those regression methods, PLS regression extracts latent

16

factors with the best predict power for response variables.

The PLS regression was first proposed by Herman Wold in the 1960s and
1970s to solve problems in the econometric path modeling in the social sciences
Wold (1966; 1975) and was later applied to regression problems in chemometrics
by his son Svante Wold Wold et al. (1984). PLS started to get popular in the
statistics field about 15 years ago because the method was found to work very well
for data with small sample sizes and a very large set of predictors. Since then there
have been successful applications of PLS regression in scientific areas including
bioinformatics, physiology and medicine Nguyen and Rocke (2002; 2004).

PLS regression is a powerful analysis tool for high-dimensional data with
many continuous response variables. PLS regression works particularly well for
a small number of samples with a large set of non-independent predictors Jong
(1993); ter Braak and de Jong (1998). It is computationally efficient and it reveals
meaningful structures in both predictors and responses via selection of latent fac-
tors. However, there exists a large number of variants of PLS algorithms, which
makes it very difficult to understand the principles behind PLS regression. Here
we give a overview of known PLS methods and their underlying mathematics.

The remainder of this section is organized as follows. In ‘Mathematical Foun-
dations of PLS Regression’ subsection, we explain the general methodology of PLS
regression. In ‘Univariate Response: PLS1’ subsection, we review the mathematics
of the PLS variant PLS1 for the case of univariate response variables. ‘Multivariate
Response: SIMPLS’ subsection is devoted to the PLS variant SIMPLS for multi-

variate responses.

2.1.3.2 Mathematical Foundations of PLS Regression

Partial least squares (PLS) is a method for constructing predictive models when

there are many highly correlated predictors. In this section, we give a brief overview

17

of how PLS regression works and compare it with other regression techniques such
as principal components regression. Suppose we have independent variables (pre-
dictors) in the matrix form as X (dimension n x p), where n is number of observa-
tions and p is number of predictors. And we have response variables in the matrix
form as Y (dimension n X ¢), where ¢ is number of response variables. We call
X the input matrix and Y the output matrix. qach column in X is a predictor

2; = (214, ..., 70;)7 and Y is a response variable y; = (Y14, -, Yni)* :

X = (x1,.... 7p)

Y = (y1,--,Yq)

The goal of PLS regression is to identify a mathematical mapping from X to
Y and then predict Y from X . When there are more predictors than observations
(n < p), ordinary multiple regression is not feasible because of multicollinearity
in X. Several regression methods have been proposed to address this problem.
For example, a regression analysis known as principal components regression first
reduces number of predictors by running a principal components analysis of the X
matrix. The analysis selects principal components that best explain the variance

in X matrix.

T =XW

where columns of T are known as principal components and those of W as
principal component loadings. The next step is to run ordinary multiple regression

on the new principal components instead of the original predictors.

Y=TQ+F

18

Finally the regression coefficients are used to predict Y from principal com-
ponents, which are simply linear combinations of columns in X matrix. Principal
components regression does resolve the multilinearity problem in the data by reduc-
ing the original predictors to a set of orthogonal principal components. However,
those principal components are chosen to explain X rather Y. So there is no evi-
dence that the selected principal components are relevant for Y and ideal variables
to predict Y. In contrast, PLS regression aims to extract factors in X that could
explain as much as possible of the covariance between X and Y in the dimension
reduction step. Therefore unlike principal components regression, the latent factors
obtained by PLS regression are chosen given the input of response variables. To
do this, PLS regression searches for a set of components called latent factors by
performing a decomposition of X and Y simultaneously. By combining the infor-
mation in both the predictors and response variables, PLS regression eliminates
more irrelevant predictors for Y. Similar to principal component regression, the
dimension reduction step is followed by a regression step where latent factors of X
are used to predict Y.

PLS regression first scales X and Y so that each column of the input and
output matrices x; and y; has zero mean and unit variance. When predictors
outnumber observations n < p, the ordinary regression can not be applied because
the covariance matrix of X is singular. In contrast, PLS regression may be feasible

as it performs the following decomposition of both X and Y matrices.

Y=TQ"+F (2.3)
X =TP" +E (2.4)
where T is a n x K matrix giving K latent factors for the n observations,

P (dimension p x K) and Q (dimension ¢ x K) are coefficient matrices and E

(dimension n X p) and F (dimension n X ¢) are matrices of random errors. PLS

19

regression constructs the matrix of latent factors T, which is a linear transformation

of X:

T = XW (2.5)

where W is a weight matrix (dimension px K). Each column t; = (t14, ..., tp;) 7
in T is a linear combination of columns z; = (21, ..., ¥p;)” in X and the linear co-

efficients are provide by W.

tl = wnXi+...+ Wp1Xp,

t, = WX+ ..+ wmX,

(2.6)

The latent factors in T then replace the original variables in X to predict

Y. Once T is found, we obtain Q by running ordinary least squares regression.
Q=Y'T(T'T)™!

Finally, for PLS regression model Y=XB+F the matrix of regression coef-

ficients B is derived

B=WQ' =w(T'T)"'T"Y
and the fitted response matrix Y is written as

Y = T(T'T)"'T7Y

20

PLS regression outputs the matrix of regression coefficients B as well as
matrices W, T, P and Q. And P and Q are denoted as ‘X loadings’ and ‘Y loadings’,
respectively. PLS regression takes into account the response Y when constructing
T because decomposition of X and Y are performed simultaneously. T is learned
such that it has high covariance with Y. In this aspect PLS regression is a supervised
learning method while principal components regression is not since it does not use
the response variables for the construction of principal components. Therefore
PLS regression usually performs better than principal components regression for

prediction problems.

2.1.3.3 Univariate Response: PLS1

There are a number of variants of PLS, each of which defines and solves an opti-
mization problem for constructing the weight matrix W. Two important variants
of PLS are PLS1 for one-dimensional response variables and SIMPLS for multi-
dimensionl response. We first consider univariate response variables (q=1). y is
a n X 1 matrix or a vector of length n. Since data in matrices X and y are al-
ready centered, the covariance between the response variable y and latent factor

t; = wi; X1 + ... + wp;X, is computed as

1
Cov(y,t;) = —WZ.TXTy
n

where w; = (wy;, ..., wpl-)T is a column in W. Similarly, the variance of latent

factor t; is

VaR(t;) = w] X" Xw;
and the covariance between t; and t; (i # j) is

1
Cov(t;, t;) = —wi X' Xw;
n

21

In PLS1, weight matrix W = (wy, ..., wg) is defined such that the covari-
ances between y and latent factors t; are maximal. For i=1,.... K, univariate PLS1

optimizes the following objective function:

w; = argmary,Cov(y,Xw)?
= argmazew! X yyT' Xw
st. wiw; =1

ti't; =w] X" Xw; =0, for j=1,...,i—1 (2.7)

The latent factors t; and weight vectors w; are sequentially built by maxi-
mizing the covariance between the latent factors and the response subject to two
constraints: first, the latent factors Xwy, ..., Xwg are mutually uncorrelated; sec-
ond, the weight vectors wy, ..., wx have unit length. From a practical point of
view, maximal covariance with the response indicates high predictive power and
zero correlation means no redundancy in latent factors.

Using Lagrange’s method, we first obtain wy
w1 =X"Y/||X"y]] (2.8)

PLS1 features ‘deflation’ of the matrix X for computing subsequent weight vectors

Wo, ..., WK
wi =X y/|[X7yll (2.9)

where X; = X;_; — ti_ltinlXi_l. A pseudocode description of PLS1 algorithm is

given in Figure 2.3.

22

INPUT:
X (n x p, column normalized): matrix of predictors
y (n x 1, normalized): 1d response variables
K: number of latent factors

Algorithm:
X1 — X
w; «— XTy/||X"y||, an initial estimate of w.
t; «+ XXy /||X"y||, an initial estimate of t.

Loop over latent factors: fori =1 to K
normt «— t;’'t;
t; <« t;/normt, normalize latent factor t;.
w; <« w;/normt, adapt weights w; accordingly.
p; — X;t;, get X loadings.
q; < y't;, get y loadings.

If q;=0
K « i, break the for loop.
If] < K, deflate X
Xit1 — X; — litipz‘T
Wit1 < Xz’+1Ty
tipr — X1 Wi
End for

OUTPUT:
Define W to be the matrix with columns wy, ..., wg. Similarly define P,Q.
B — WQT =, regression coefficients.
Return B.

Figure 2.3: Pseudocode for PLS1.

2.1.3.4 Multivariate Response: SIMPLS

The multivariate response is more difficult as the latent factors have to explain all
the responses yy,...,y, in matrix Y simultaneously. Since the original ideas be-

hind the PLS decomposition were heuristic, a variety of PLS regression algorithms

23

have been proposed Martens (2001). An important multivariate PLS regression
algorithm is known as Statistically Inspired Modification of PLS (SIMPLS) Jong
(1993). We suggest using the SIMPLS because it optimizes the same simple statis-
tical criterion as PLS1. For i=1,... K,

w, = ar gmaxwaXTYYTXW

st. wiw, =1

)

tI't; =w! X' Xw; =0, for j=1,....,i — 1 (2.10)

The objective function w” X7 YY?Xw is maximized by SIMPLS in the same way
as in the univariate case by PLS1. The objective function could be rewritten as the

sum of squared covariances between T and y,,...,yp
w XYY Xw = ((Xw)'Y)T((Xw)'Y)

q
= 7122:C;'01}(T,yi)2 (2.11)
i=1

where n is number of observation or number of rows in X and Y. SIMPLS can be
viewed as a generalization of univariate PLS to the case of multivariate response be-
cause it has the same optimality criterion w? X7 YY” Xw and the same constraints.
In the actual SIMPLS procedure, the weights and latent factors are obtained by a
GramSchmidt-type algorithm Jong (1993).

There is another equivalent objective function for SIMPLS that considers
weight vectors for both the response variables and the predictor variables. Two sets
of weights w in X space and c in Y space are found to create a linear combination
of the columns in X and Y respectively such that their covariance is maximal.

Specifically, it optimizes the following term for i=1,....K

24

(Wi, c;) = argmazy.Cov(Xw,Yc)

= argmaa:w7cWTXTYTc

st. wliw; =1
clc; =1
tI't; =wl X" Xw; =0, for j=1,....,i — 1 (2.12)

The goal of the above SIMPLS formulation is to obtain a first pair of vectors
t; = Xw; and u; = Yc; such that tlTul is maximal subject to constraints that
Wipwl =1 and cchl = 1. After the first pair of latent vectors t; and u; are found,
matrix Y7 X is ‘deflated’ and this procedure is repeated to obtain all latent factors
t, u and weights w, c. The detailed SIMPLS pseudocode is given in Figure 2.4.
This formulation suggests that PLS is related to classical canonical correlation anal-
ysis (CCA). The main difference between the two methods is that PLS maximizes
covariances rather than correlations. Therefore PLS does not need to invert the
covariance matrix, which is more appropriate for the analysis of high-dimensional
data. It can be proven using results from linear algebra that the above formulation
is equivalent to the original one CR (1993).

To summarize, SIMPLS has the following appealing features: first, it pro-
duces orthogonal, i.e. empirically uncorrelated, latent factors; second, it is easily
generalized from PLS1 to multivariate response; finally, it optimizes a simple statis-
tical criterion. Other PLS variants for multiple response variables in the literature
have predictive power comparable to SIMPLS. However, some generate orthogonal
weights W rather than orthogonal latent factors T Martens (2001). Or some do
not easily generalize to multi-dimensional responses in terms of object function, e.g.
Nonlinear Iterative Partial Least Squares (NIPALS) algorithm Geladi and Kowalski
(1986). In addition, SIMPLS is also one of the most computationally efficient PLS

algorithms.

INPUT:
X (n x M, column normalized): matrix of predictors
Y (n X ¢, column normalized): matrix of response variables
S = Y'X: cross-product

Algorithm:
S; = YTX, initial value of cross-product
Loop over latent factors:
Fori=1to K
q, = dominant eigenvector of SiSiT
w; = STq,, get X weights

t; = Xw;, get X latent factors

normt «— tiTti, compute norm

t; < t;/normt, normalize X latent factor t;.
w; < w;/normt, adapt weights w; accordingly.

P; < X, Tt;, get X loadings.
c; — Y't;, get Y weights.
u; — Y, get Y latent factor.

If i=1 then
v; = X't;, orthogonal loadings for deflation of S
Else

v; = XTt; — V(VTXTt;)), make v; orthogonal to previous loadings.

End

v; = v;/sqrt(vI'v;), normalize loadings.

Sit1 =S; — vi(vl'S;), deflate S with respect to current loadings.

Store c;, w;, t;,u;,p;,q;, v; into C, W, T, U P, Q,V respectively.
End for

OUTPUT:
B «— WCT, regression coefficients.

Figure 2.4: Pseudocode for SIMPLS.

25

26

2.1.3.5 Determining the number of PLS latent factors

One step of PLS regression analysis is to decide the optimal choice of number
of latent factors K. The maximal value of K is the rank of matrix of predictors
X: Kpae = rank(X). If K4, is chosen, then PLS will have the same number
of components as ordinary multiple regression. However, an important feature of
PLS regression is that usually much fewer factors are required to replace original
predictors. Thus we would like to choose a small value of K but without sacrificing
too much predictive power. One approach is to construct the PLS predictive model
for a given number of factors on one set of data and then test it on another. We
then choose the number of extracted factors such that the prediction error on the
test data is minimal. Specifically, we use the standard procedure of 10-fold cross-
validation to determine the minimum value of K. Cross-validation is used to evaluate
machine learning algorithms as follows: the data is first partitioned into 10 equally
sized sets or folds. Then 10 iterations of training and validation are performed and
within each iteration, 9 folds of data are used for learning and the learned model
makes predictions on the data in the remaining validation fold. Specifically for

PLS, we have the following procedure:

1. Split all examples into training set consisting of 9 folds of data and test set

containing the remaining examples.

2. Use the training set to determine the matrix of regression coefficients B for

different values K =1, ..., K ,4z.

3. Predict the responses of examples from the test set using B with different

values of K.

4. Repeat step 1-3 10 times and compute the normalized mean squared error

(NMSE) for every K.

27

5. Finally the value of K giving the smallest normalized mean squared error is

selected.

2.1.4 Boosting
2.1.4.1 Introduction to the Idea of Boosting

Boosting is one of the most important developments in classification methodology.
Kearns and Valiant first introduced the framework for Probably Approximately
Correct (PAC) learning Kearns and Valiant (1988). The PAC-learning framework
explores the limitations of existing machine learning algorithms. The work intro-
duced the concept of weak learners versus strong learners: strong learner has good
prediction performance with very low generalization error in a classification setting;
while weak learner yields generalization error that is just lower than 12, which is
only slightly better than random guessing.

In the PAC-learning framework, an instance space X is defined for the learn-
ing problem. We assume some distribution exists for X and we can sample from X
based on this distribution. A concept ¢ in X is some rule associated with a subset
of X. And a concept class C is then defined as all possible instances of a given
set of rules. The concept class C' is PAC learnable if there exists an algorithm L
with the following property: for any concept ¢ € C, any distribution on X and
inputs 0 < € < % and 0 < 6 < 1, L produces a hypothesis h with a generalization
error smaller than e with probability higher than 0. The algorithm L is called weak
learnable if L has a hypothesis h for the concept ¢ with probability § and error rate
e as follows:

1

q(n, size(c))
1 1

€= 2 p(n,size(c))

where n is dimension of space X and p, ¢ are polynomial functions. One

28

intuitive interpretation of weak learner is that instead of producing a strong learner
having arbitrary accuracy with arbitrary confidence, weak learner only guarantees

1

a classifier with a fixed confidence that has accuracy slightly greater than s

The question is whether we can “convert” a weak learner into a strong
learner. Schapire Schapire (1990) later showed that there were techniques to im-
prove the accuracy and confidence so that any weak learner can be “boosted” into a
strong learner by averaging multiple weak hypotheses into a strong classifier. These
techniques are referred to as “boosting” methods and the weak learner which only
predicts better than chance was “boosted” into a strong learner with very good pre-
diction accuracy. Figure 2.1.4.1 illustrates how boosting uses a weighted average of

simple weak learners y; to construct a strong one learner Y.

2.1.4.2 AdaBoost

The most popular implementation of boosting is adaptive boosting called AdaBoost
proposed by Freund and Schapire Freund and Schapire (1997); Freund et al. (1999).
AdaBoost is the first practical and efficient machine learning algorithm for ensemble
learning. The idea of AdaBoost is to constructs an additive combination of weak
rules by minimizing an exponential loss function.

In the boosting setting, we have a set of labeled examples (x;, ¥;)i=1,. m in
X xY. x; belongs to the instance or feature space X and label y; belongs to
the label space Y. Generally we assume Y = {—1,+1} for binary classification
problem. Suppose we have weak rules h: X — {0,+1} . Though generally the
output of h is assumed to lie in {—1,41}, we will restrict to {0, +1}, which is the
case for our study. In other words, weak rule can make a prediction that labels a
given example, and it is also allowed to “abstain” by predicting 0, or say “I don’t
know” for certain examples. AdaBoost repeatedly calls a weak rule for a number

of iterations t = 1...7T and linearly combines those moderately inaccurate weak

29

@) @) -
/ /’ /’\
F 3

g
y1(x) Yo (x) ym (x)

Yu(x) = sign(mYm(X))

Figure 2.5: Schematic illustration of Boosting Method.

rules h! into a single strong prediction function.

r) =Y onhy() (2.13)

The final prediction function f(x) is a weighted majority vote of all T weak
rules. We interpret the sign of f(x) as the final classification for example = (-1 or
+1) and the absolute |h(x)| as the level of “confidence” of this classification. If
h(x) is far away from zero, it suggests a high confidence prediction. «; is computed
by the boosting algorithm as the weight assigned to each weak rule, measuring the

contribution of weak rules in the final prediction. Since a; can be either positive or

30

negative, each weak rule can classify examples into both +1 and -1 classes even if h;
outputs {0, +1}. All oy are initially set to zero. Then at every boosting iteration,
AdaBoost selects a weak rule h; and updates coefficient «y.

The boosting algorithm also maintains a weight distribution over the training
examples denoted by w; (i=1,...,m). Initially all of the weights are set equally
w; = % so the choice of the first weak rule has no bias towards any set of training
examples. For later iterations t = 2,...,T, weights of examples are modified and
the boosting algorithm is then applied to the new weighted distribution. At each
iteration t, examples misclassified by previous weak rule h;_; are assigned higher
weights, while correctly classified examples have lower weights. By doing this,
AdaBoost forces each new weak rule to concentrate on the hard examples that are
missed by previous one.

It has been shown that AdaBoost minimizes an exponential loss function to

learn weak rules h; and update oy, w; Hastie et al. (2001):

L = Zewp(—yif(:vi))

— Zexp(—yi > aghu(z)) (2.14)

At iteration t-1, we write the strong prediction function as

fioa(z) = iaqhq(x) (2.15)

31

Using the exponential loss function, we solve

(hi,on) = argmingoL

m

= argmingq Z exp(—yi(fi-1(x) + ah(z;)))

m t—1

= argming Z exp(—y; Z aghg(z;))exp(—yiah(z;))) (2.16)

=1 q=1
for the new weak rule h; and corresponding coefficient «;. The above equa-

tion can be expressed as

(ht, o) = argming, o Z wiexp(—y;ah(x;)) (2.17)

=1

with w; = exp(—y; 22;11 agzhy(z;)). Given the fact that hy is restricted to

{0, 41}, we define W(;”(“):O, Wft(xi)zl and Wht@)=1

Wg”"“):o = Z w;
it (2;:)=0
Wft(xi)zl = w;
ithe(z)=1,y,=1
i) =t ooy (2.18)

t:he(z;)=1,y,=—1

Thus the loss function in equation 2.16 can be simplified as
L= Wyte=0 oy pea=temar yphele)=t o (2.19)

We set jTL = 0 to solve for oy
t

1 D=t

_ 55”—Wht<zi>:1 (2.20)

Qi

Plugging «; into equation 2.19, we have

he = argminy We™=0 4 2\/ | (2.21)

32

Therefore equation 2.21 describes how we choose new weak rule h; at boost-
ing iteration t. And we add it to the prediction function f(z) with a coefficient
given in equation 2.20. Hence it is obvious that AdaBoost takes a greedy gradient
descent approach to learning and combining weak rules, because it optimizes the
loss function iteratively by adding one weak rule and updating its corresponding
coefficient at a time. Finally for the next iteration t+1 the example weights are

updated

w; X wi%p(—at%ht(xi)) (2-22)

So the new weights are w; = exp(—y; 22:1 agzhg(z;)). By doing this, the
boosting algorithm increases weights for misclassified examples y;h;(z;) = —1 and
decreases weights for correctly classified ones y;hi(z;) = 1. Figure 2.6 shows the

pseudo-code for the AdaBoost algorithm. In addition, it has been shown that given

dn _
doy

0, the updated weight distribution is now “decorrelated” with the yh(z):

Zyiht(xi)wi =0 (2.23)
i=1

The advantage of a boosting algorithm is that it does not need to find a
strong classifier at a time, but instead it performs an easier task: find a group of
weak rules that are only slightly better than random guessing. Suppose we have
training error €, of the weak rule hy 3 — v, (0 < 7, < 3). 7, tells how much better
is h; than random prediction. Freund and Schapire (1995) proved that the training

error had the following upper bound:

H2 a@(l—¢) = H V1—472 < emp(—QZﬁ) (2.24)

t=1 t=1 t=1

33

INPUT:
Training examples: (z1, ¥1), - - -, (Tm, Ym)
Initialized example weights: w; = %, i=1,2,....)m
set H of possible weak rules h: X — {0,1}
Algorithm:

Fort =1toT
(a) Train the weak rule h; using weights w;
ht = argmmheHWOh(“):O + 2\/Wj_‘(xi)zlwil(xi)=1
(b) Compute ay

wht(=1
(c) Update f(x;) < f(x:) + awhi(z)
(d) Update w; < w;exp(—awy;hi(z;))

End for

OUTPUT:
Final classifier is a weighted majority vote of the T weak rules

fl@) =30 auh(x)

Figure 2.6: Pseudocode for AdaBoost.

If each weak rule is slightly better than random, the training error drops
exponentially fast. Earlier boosting algorithms require that a low bound v is known
v, > v before the boosting run. However, in practice it is not easy to know = in
advance. On the other hand, AdaBoost does not need to obtain this knowledge
because of its“adaptive” nature: it “adapts” to the performance of each new weak
rule at every boosting iteration. For example, a; is solely determined by one weak
rule h; only. This is why the boosting algorithm is called AdaBoost — “Ada” is
short for “Adaptive”.

Early experiments found that AdaBoost did not overfit Breiman (1998);
Drucker and Cortes (1996). The test loss, which is the estimate of generalization

error, decreases even after thousands of boosting runs. It was sometimes observed

34

that AdaBoost continued decreasing the test error even after the training error
reached zero. Later Schapire et al. (1998a) gave an explanation of these empirical
observations in terms of margins of training examples and showed that the increas-
ing margin was related to decreasing generalization error. The margin of example
(x;,y;) is defined as y; f(x;), which is positive if f correctly classifies the exam-
ple. The magnitude of the margin measures confidence in prediction and larger
margin translates into a lower uppder bound on lower generalization error Freund
et al. (1999). Even AdaBoost does not directly optimize margin, it is empirically
observed that AdaBoost could aggressively improve margin. Because AdaBoost
assigns more weight w; = exp(—y; f(x;)) to examples with lower margin y; f(z;) so
it iteratively selects weak rules that concentrate on predicting those low margin

examples.

2.1.4.3 Alternating Decision Trees

Boosting algorithms have used either decision stumps or decision trees as weak
rules. For example, boosting decision stumps has T decision stumps and then
takes a weighted majority vote of those stumps for the final classification. This
assumes no relationship between weak rules, giving an unstructured set of T weak
rules. Decision trees adds structure to the set of weak rules by building new weak
rules based upon earlier ones. This makes it easier than boosting stumps to infer
correlations between features. The boosting procedure has been successfully com-
bined with decision tree algorithms to produce accurate classifiers such as CART
(Classification and regression tree) and C4.5 Friedman et al. (1986); Freund and
Schapire (1996); Quinlan (1996). Here we use the AdaBoost algorithm in the form
of alternating decision trees (ADTs) Freund and Mason (1999b), which is a general-
ization of decision trees. An alternating decision tree consists of both splitter nodes

and prediction nodes. Splitter nodes specify a condition associated with weak rule

35

and prediction nodes contain a single number. Figure 2.1.4.3 shows an example of
alternating decision tree. The tree starts with a root prediction node related to
ratio of positive to negative training examples. At each boosting iteration a new
splitter node (rectangle) and its prediction node (oval) containing the coefficient o
are introduced. The splitter node is associated with the new weak rule h; and asks
question like “is hy(z) = 17”. Only the examples z; for which h; predicts 1 will have
oy in the prediction node added to their prediction function f(x;). Moreover, only
those examples will go further down in the tree through other splitter nodes below
the current one. Therefore at each boosting iteration a new weak rule only makes
predictions on the subset of the training examples that reach the splitter node.

In an alternating decision tree, one prediction node can be followed by mul-
tiple splitter nodes. For example in figure 2.1.4.3, the prediction node of h; has the
splitter nodes of hg and h, attached. Therefore an example is classified by following
all paths for which all splitter nodes are true and summing any prediction nodes
connected. This is different from traditional decision trees such as CART or C4.5
in which an example follows only one path in the tree. A pseudo-code description

of the alternating decision tree algorithm is given in Figure 2.7.

2.1.4.4 LPBoost

Previous study has shown that AdaBoost is very successful boosting algorithm
because of its simplicity and high classification accuracy. And it has been empir-
ically observed that AdaBoost rarely overfits even after the training error reaches
zero. This observation has been explained in terms of margins of the training set,
where the margin is interpreted as the confidence in the prediction Schapire (1999).
AdaBoost is empirically found to improve the margins even after many boosting
iterations, which are translated into better performance on the test set. Following

the logic of the margins theory, alternative boosting algorithms have been proposed

36

INPUT:
Training examples: (z1, ¥1), - - -, (Tm, Ym)
Initialized example weights: w; = %, i=1,2,....)m
Initial set Hy of possible weak rules h: X — {0,1}

Algorithm:
Fort =1to T
(a) Train the weak rule h; using weights w;
H = Ul H,

hy = argmmheHWé‘(’“):O + 2\/Wﬁ(zi):1Wﬁ,(l‘i):1
(b) Compute oy

1 Wﬁt(zi)zl

Qr = N Ey=1
(c) Update f(z;) < f(:) + ovh(:)
(d) Update w; «— w;exp(—apy;he(z;))
(e) Update set H; of possible weak rules
for every h € Hy, define a new weak rule
hnew(x) = h(x), if hy(x) =1
=0, ifhx)=0
Define H, as the set of all new weak rules Ay,
End for

OUTPUT:
Final classifier is a weighted majority vote of the T weak rules

fx) = 320 ach(2)

Figure 2.7: Pseudocode for the alternating decision tree algorithm Freund
and Mason (1999a).

that would provably optimize margins as AdaBoost is not theoretically perfect from
the viewpoint of optimization as the training is an iterative gradient-descent proce-
dure. LPBoost, linear programming (LP) based boosting, is one of them Grove and
Schuurmans (1998); Demiriz et al. (2002). Different from the AdaBoost, LPBoost
produces the optimal linear combination of weak rules by optimizing a margin cost

function.

37

\

h1(x)=1? h2(x)=1?
yes yes
h3(x)=1? h4(x)=1?

J yes J yes

Figure 2.8: Example of an alternating decision tree.

Let the matrix H be a ¢t by m matrix of all the possible labelings of the
training examples, where ¢ is number of weak rules and m number of training
examples. Specifically H(x;) = [hy(x;), ..., he(x;)] is vector of labels given by weak
rule Ay, ..., hy on the training example x;. After a new weak rule h; is received,
the margin of an example (x;,y;) measures how well the example is classified by
the current combination of weak rules and is defined as p(«, z;) = y; 22:1 aghg(x;).
When the sign of the combination is the same as the label y;, the margin is positive.
The margin of a set of examples is always the minimum margin of the set. One
measure of the performance of weak rule h, with respect to weight distribution w
is “edge”, which is defined as y(w, hy) = > v Yihg(z;)w;. The edge indicates how
well a weak rule classifies the training examples. The higher the edge, the higher

classification accuracy the weak rule has. The edge of a set of weak rules is defined

38

as the maximum edge of the set. We ask the question: how are margins and edges
related? By linear programming duality, the minimum edge of the set of weak rules

equals the maximum margin of the set of examples:

Minimum edge : v; = mingymaz,—i,. .y(w,hy)
m
= mingmazei,... Y Yihe(:)w;
=1

Mazimum margin : p;, = mazemini—1_mp(a, ;)
t
= mamam@ni:17.,.7m§ aghy ()Y
q=1

Duality v; = pj (2.25)

Equation 2.25 results in the hard margin version of LPBoost Grove and
Schuurmans (1998). The hard margin version of LPBoost solves for ag,...,a; by
maximizing the minimum margin over all examples. And the dual variables of
the linear program provide the updated example weights needed by the boosting
algorithm wy, ...w,,. If the training examples can be separated by the linear combi-
nation of weak rules, maximizing the margin has been proved to be a proxy for low
generalization error Schapire et al. (1998b). If the data is not separable, we replace
the hard margin by the soft margin. By “soft” we mean relaxing the lower bound
on margin. Training examples are allowed to lie below the margin but they are pe-
nalized through slack variables. To maximize the soft margin of training examples

Demiriz et al. (2002), LPBoost solves the following LP problem mathematically :

39

maZege, p—D Z &
i=1
st yH(w)oa+§ >p

&>0i=1...m

t
Zaqzl,anO,q:l,...,t

q=1

(2.26)

This LP formulation is for soft-margin LPBoost, which is similar to the [;-

norm SVM. Here p — D) is the soft margin to be optimized at boosting

ge Sge
iteration ¢. ¢, is the slack variable for each training example. D is the tradeoff
parameter that balances margin maximization and training error. This LP formu-
lation is also known as v-LP is with D = %(% <wv < 1), as v is interpreted as
percentage of training examples misclassified Ratsch et al. (1999). In experiments,
D is chosen by a cross-validation procedure. Without D and slack variables &, it is
the hard-margin version of LPBoost Grove and Schuurmans (1998).

The dual of the LP problem is:

MMyt 41 5 Y
s.t. Zyihq(xi)wf“ <y g=1...t

wa“ =1,0<wt <D
ge

(2.27)

The dual LP problem defines a basic boosting algorithm: update w'*! such
that the maximum edge of the t weak rules received so far is minimized. Specifi-

cally, we have a constraint that h? achieves edge of at most 7, which is minimized.

40

t+1

The dual LP has a natural interpretation. w;"" is viewed as a probability distri-

bution over the training examples z; that sum to 1. >0 yihy(z)w!t!

is simply
the weighted sum of the correctly classified training examples minus the weighted
sum of misclassified training examples. The set of weak rules satisfy the constraint
> yihg(z)w!tt <y (¢ =1...t) so v is the maximum edge of the set. The ob-
jective of dual LP is to find a reweighting of the training set, such that maximum
edge v of the set of weak rules is as small as possible. Therefore LPBoost is “to-
tally corrective” in the sense that it optimizes the weights based on all past weak
rules. In contrast, AdaBoost only updates the weights based on the last weak rule.
The pseudocode description for LPBoost combined with alternating decision tree
is given in Figure 2.9.

In a linear program a column corresponds to a primal variable or a weak
rule in LPBoost . In many circumstances the size of the set of weak rules is too
large to use standard LP solvers. Because the matrix H has a very large number
of columns and so the primal LP has extremely more variables than constraints.
Therefore the idea of solving the LPBoost formulation could be intractable using
standard LP techniques. To resolve this issue, the classic column generation (CQG)
based simplex algorithm Luenberger and Ye (2008) has been proposed and applied
to the LP Bennett et al. (2000); Demiriz et al. (2002). Column generation is
a state-of-the-art method for solving difficult large-scale optimization problems.
Unlike traditional LP solvers, the CG method avoids considering all variables of an
optimization problem explicitly. Thus it is very powerful for LP with significantly
more variables than constraints.

The logic of CG is: the number of non-zero variables of the optimal solution
is equal to the number of constraints, therefore even though the number of possible
variables may be large, we only need a small subset of the entire variable set, i.e.,

a subset [of the columns of H to learn the current solution. The LP solved using

41

H is known as the restricted master problem. Solving the restricted primal problem
also leads to solving a relaxation of the dual LP since the constraints for weak rules
that have not be generated as columns are not taken into account.

The CG method first solves the restricted master problem and then asks
the question: “ Are there any other variables that could be included to improve the
objective function?”. If it is determined that the current solution is not optimal, the
algorithm will continue to generate a new column that will improve the solution.
This creates a subproblem to identify a new variable. The objective function of
the subproblem is the reduced cost of the new variable with respect to the current
dual variables. Thus given the current set of dual values, one either identifies a
variable that has a negative reduced cost or finds that no such variable exists. If it
is the former, this variable is then added to get the new restricted master problem,
and the new restricted master problem is re-solved. It will generate a new set of
dual variables, and the subproblem is re-solved. This process is repeated until no
negative reduced cost variables are identified and then we can conclude that the
solution to the master problem is optimal. In summary, CG finds the variables

with negative reduced costs without going through all variables explicitly.

2.1.4.5 Connection between AdaBoost and LPBoost

LPBoost is mainly inspired by SVM and the idea of LPBoost is to maximize the
minimum margin over the training set because it is believed that the minimum
margin is an effective proxy for generalization error Schapire et al. (1998b). The
question is: is there any connection between AdaBoost and LPBoost? It can be
shown that the hard margin version of LPBoost actually minimizes an upper bound

of AdaBoost’s cost function.

42

INPUT:
Training examples: (z1, ¥1), - - -, (Tm, Ym)
Initialized example weights: w; = %, i=1,2,....)m
Initial set Hy of possible weak rules h: X — {0,1}
Soft margin parameter v
1

Penalization constant D = —
mv

Algorithm:
Fort =1to T
(a) Train the weak rule h; using weights w;
H = U} H,

hy = argmmheHW(?(xi):O + 2\/WJ’:($"):1WE(“):1
(b) Optimize weights of weak rules ay, ¢ =1, ..., ¢
maTagep, P — D 2211 gz
s.t. i ;Z:l aghy(z)+&>p i=1...m
Zq:l a,=1,§ >0
a, > 0,g=1,...,t
(c) Update f(z;) = 22:1 aghg(x;)
(d) Update w!*™* by solving the dual LP
Mingti1 g 3
s.t. S yihg(z)wlTt < B og=1...t
Zyil w;&+1 =1,0< wzt‘Jrl <D
(e) Update set H; of possible weak rules
for every h € Hy, define a new weak rule
hnew(x) = h(x), if hy(x) =1
=0, ifhx)=0
Define H,; as the set of all new weak rules Ay,
End for

OUTPUT:
Final classifier is a weighted majority vote of the T weak rules

fl@) =30, culu(z)

Figure 2.9: Pseudocode for LPBoost combined with alternating decision
tree algorithm.

Let us take a look at the cost function of AdaBoost and LPBoost in the

primal. We know that AdaBoost minimizes the exponential cost function in terms

43

of margins of examples:

m

T m
minimize Z exp(—y; Z athy(z;)) = min Z exp(—margin(z;,y;)) (2.28)

i=1 t=1 i=1
which is the same as

m

minimize log(z exp(—margin(z;,y;))) (2.29)
i=1

So AdaBoost minimizes a log-sum-exp cost function, which can be viewed
as a smooth approximation of the maximum function. We have the following in-
equality:

m

max; a; < log(z exp(a;)) < max; a; + log(m) (2.30)
=1

If we apply the inequality 2.30 to equation 2.29, we can show that the mar-
gin maximization problem of LPBoost is equivalent to minimizing the bound on

AdaBoost’s cost function given the following:
mazximize min;{margin(z;,y;)} = minimize max; {—margin(z;,y;)} (2.31)

Therefore, LPBoost uses a hard maximum function while AdaBoost uses a

soft approximation of the maximum function.

2.1.4.6 TotalBoost

LPBoost is the most straightforward boosting algorithm for maximizing the soft
margin of the linear combination of weak rules. It does so by solving a linear
programming problem. In the dual LP, the boosting algorithm minimizes edge
~ without placing any specific constraints on example weights. One challenge of
this is that the weights computed by the CG simplex method are often sparse, i.e.
w; = 0 for many examples Bennett et al. (2000); Demiriz et al. (2002); Warmuth

et al. (2006). The dual LP has a basic feasible solution corresponding to a vertex

44

of the dual feasible region. While a face of the region corresponding to many
nonnegative weights may be optimal, a simplex method is more likely to choose the
vertex solution with fewer nonnegative weights. Therefore with examples having
zero weights w; = 0, solutions based on small data subsets are not meaningful
for the entire training set, In other words, it could easily happen that LPBoost is
“blind” on a large subset of training examples when selecting new weak rules.

In this chapter, we discuss another totally corrective boosting algorithm
TotalBoost which also maximizes the margin. TotalBoost is “totally corrective”
because the algorithm also optimizes weights on examples based on all past weak
rules Warmuth et al. (2006).

However, different from LPBoost, TotalBoost attempts to maintain a stable
weight distribution. To do this, TotalBoost introduces an entropic regularization on
the weights that helps to improve the stability of the boosting procedure. LPBoost
updates example weights by minimizing the maximum edge of all past weak rules,
while the basic idea of TotalBoost is to constrain the edges of all past weak rules
only and minimize the relative entropy to the initial weight distribution. In this
aspect, TotalBoost has its connection with AdaBoost. Because AdaBoost can be
viewed as minimizing the relative entropy to the last weight distribution subject
to the constraint that the edge of the last weak rule is zero Kivinen and Warmuth
(1999).

The minimum relative entropy principle works as follows: among all the
weight solutions that satisfy linear constraint on edge v, it chooses the new weight

0. The ‘closeness’ is

distribution w*! that is ‘closest’ to the initial distribution w
measured by the relative entropy between distribution w and w® defined as follows:
A(w,w?) = 3" w; log % The optimization problem is defined in the following
equation , where TotalBoost minimizes the relative entropy subject to the constraint

that edges of all past weak rules are less than or equal to zero.

45

. . W;
Wt = argming, A (w, w°) = argmin, g w; log —5
W:

i=1 ¢

s.t. X:waZ () <0 g=1...1

Zwizl w; >0

(2.32)

In LPBoost, the upper bound v on the edge is chosen to be as small as pos-
sible, whereas in TotalBoost the weights are chosen to be closest to initial weights
as long as 7 is less than zero. Therefore in TotalBoost v decreases more moderately
and TotalBoost could converge slowly than LPBoost during early boosting rounds.
However, relative entropy minimization has a smoothing effect in the weight dis-
tribution, as it is “slowly” changed from the initial distribution . Since the initial

0 is uniform, it is unlikely that TotalBoost produces problem-

weight distribution w
atic sparse weight distribution during later boosting iterations. In addition, the
relative entropy term makes the objective function of TotalBoost strictly convex
and therefore the optimization problem has a unique solution, which we denote as
w'*. In contrast, the objective function of LPBoost is linear so the solution is not
unique and highly dependent on the LP solver used.

A pseudocode description for TotalBoost combined with alternating decision
tree algorithm is given in Figure 2.10. We could use a “vanilla” sequential quadratic

programming (SQP) algorithm Nocedal and Wright (1999) to solve the convex

optimization problem in TotalBoost.

min E w; log—
wiy, wi=Lw; 20,5, wiyihg(x:)<0,g=1...

0

We first set the approximate solut1on to w = w"” and optimize w in a se-

quential way. Given the current solution w that satisfies the constraints), w; =

46

1,w; > 0, we determine the update w by minimizing the approximation of change

mo 1
i=1 2w,

in relative entropy A(w, w®) —A(w,w?) = 37

((wl—wl)z—l—le log %(w,—wl))

subject to the same linear constraints. The estimate w is then updated w «— w and

this process is repeated until @w converges to a distribution.

i=1

(2.33)

The above objective function is the 2nd order of Taylor approximation of

change in the relative entropy. Therefore the relative entropy optimization problem

is broken down into a series of quadratic optimization problems with a diagonal

Hessian, which can be easily solved by off-the-shelf optimizers.

47

INPUT:
Training examples: (z1, y1), . - -, (fL‘m, Ym)
Initialized example weights: w; = -, i=1,2,...
Initial set Hy of possible weak rules h. X — {0,1}
Soft margin parameter v

Penalization constant D = %

Algorithm:
Fort =1to T
(a) Train the weak rule h; using weights w;
H = U} H,

hy = argminegW, A= 04 2\/W @) =lyphled)=
(b) Optimize weights of weak rules ay, ¢ =1, ..., ¢
mavae, p-DYLE
s.t. Yi 2221 aghy(z)+&>p i=1...m
22:1 ag=1§2>0
a, > 0,g=1,...,t
(c) Update f(z;) = Zt Lagh (w,)
(d) Update w!™ by minimizing the relative entropy
mingee A(w™ w)
s.t. S wi g (z) <0 g=1...t
Z:n) wt+1 =1
(e) Update set H; of possible weak rules
for every h € Hy, define a new weak rule
hnew(x) = h(x), if hy(x) =
=0, ifhx)=0
Define H,; as the set of all new weak rules Ay,
End for

OUTPUT:
Final classifier is a weighted majority vote of the T weak rules

fl@) =30, culu(z)

Figure 2.10: Pseudocode for TotalBoost combined with alternating deci-
sion tree algorithm.

48

2.2 Biology of gene regulation

2.2.1 From DNA to Protein

Deoxyribonucleic acid (DNA), Ribonucleic acid (RNA) and proteins are the three
major macromolecules that are essential to all living organisms. DNA contains the
genetic instructions used in the development and function of the whole organism.
For example, many DNA molecules store genetic information that are needed to
build components of cells, e.g. RNA and protein molecules. DNA sequences that
are eventually translated into proteins or converted into functional RNA molecules
are called genes.

In 1953, two biologists Watson and Crick proposed the double helix structure
for DNA Watson and Crick (2003). The units of a DNA molecule are nucleotides
and there are four different types of nucleotides: adenine (A), guanine (G), cytosine
(C) and thymine (T). Every nucleotide pair along the double helix is called a base
pair(bp) and the DNA obeys the following complementary base pairing rule: each
type of nucleotide on one strand normally connects with just one type of nucleotide
on the other strand. Specifically, A bonds only to T and C only to G. Figure 2.11
illustrates the double-helix structure of DNA molecule.

RNA is created from DNA via a biological process called transcription. Like
DNA, RNA is also made up of nucleotides. During transcription, a DNA sequence
is read by an enzyme called RNA polymerase, which produces a complementary
RNA copy of the DNA sequence. RNA copies the genetic information in DNA with
the same nucleotides as DNA except for uracil (U), which plays the role of thymine
(T) in DNA.

The DNA segment transcribed into a RNA molecule is called the coding
sequence and encodes at least one gene. If the transcribed gene is eventually used

to create the protein, the RNA is called messenger RNA (mRNA). If not, the

49

double-stranded DNA

e s o ° e @ ° ° ° =

BB AR

T =
/ !
sugar-phosphate hydrogen-bonded
backbaone base pairs

Figure 2.11: DNA molecule has a double-helix structure. The nucleotides
A, C, G, T form complementary base pairs (AT) and (CG).

transcribed gene may encode for ribosomal RNA (rRNA), transfer RNA (tRNA)
or other ribozymes.

mRNA carries information about a protein sequence. After the transcription
process, the mRNA is exported from the nucleus to the cytoplasm and is then
translated into its corresponding protein.

Proteins are made up of amino acids. During translation, the genetic code
of mRNA relates the DNA sequence to the amino acid sequence in proteins. Every
triplet of nucleotides in mRNA forms a codon and each codon corresponds to a
particular amino acid. In this way, the mRNA sequence is used as a template to
assemble a chain of amino acids that fold into 3 dimensional structures to form a

protein.

2.2.2 Modeling of transcription factor binding sites

The part of DNA sequences transcribed into RNA molecules encode genes and is
called coding region. But there are other DNA segments called non-coding region

that regulate the use of the genetic information. RNA polymerase binds to the parts

50

of non-coding region of an associated gene to perform the transcription of genetic
information from DNA to RNA. A group of proteins called transcription factors
also bind to specific DNA sequences in the non-coding region, which affects the
rate of gene transcription. By doing this, transcription factors can either promote
(as an activator), or block (as a repressor) the binding of RNA polymerase to in
the transcription process. If the transcription factor is an activator, it increases
the rate of transcription and thus expression level of the associated gene. If the
transcription factor is a repressor, it decreases the rate of transcription. There are
also proteins called coactivators or corepressors that work with transcription factors
to increase or decrease transcription rate.

The non-coding region that transcription factors bind to is referred to as
promoter sequence. In eukaryotes like S. cerevisiae, the core promoter for a gene
transcribed is often found upstream of start site of the gene. A transcription factor
regulating the transcription of a gene contains one or more DNA-binding domains
(DBDs), which are attached to specific sequences of DNA in the promoter region
of the associated gene. We can assign every transcription factor a set of potential
binding sites, usually known as motifs, that the transcription factor binds to with
a high probability. In this way, the promoter sequences provide information for
which transcription factor controls the transcription of a gene.

A specific set of DNA binding sites associated with transcription factors, usu-
ally referred to as a binding site motif, can be represented by a consensus sequence.
The consensus sequence contains new letters in the subsets of the A,C,G,T nu-
cleotides. For example, we consider a short DNA sequence: C[GAJRN{T}. In this
notation, C means C is always in the position; [GA] means either G or A; R stands
for A or G; N means any nucleotide; {T} means any nucleotide but T. However, in
this example, the notation [GA] does not give any information of probability of G

or A occurrence.

o1

To address this issue, the position specific scoring matrix (PSSM) is intro-
duced to model the binding site motif in a probabilistic way. PSSM scores how close
any sequence is to the set of sequences used to construct the scoring matrix. PSSM
assumes independence between positions in the sequence, as it calculates scores at
each position independently from the nucleotides at other positions. Therefore, the
score of a sequence is simply the product of the scores or the sum of log of scores
at each position. If the length of the binding site motif is [, a PSSM p is a matrix
of size 4 by [, where each column j is a probability distribution over {A,C, G, T}:
ZSQA’C’G’T} p;(s) = 1. The probabilities p;(s;) can be calculated by counting the
nucleotides of each type at position j. The PSSM assigns every sequence s;ss...5; a
log-odds score S = 22:1 log(p;(s;)/peg(sj)), where p;(s;) is the probability of nu-
cleotide s; at position j in the PSSM p, and py,(s;) is the background probability of
nucleotide s;. The background probability of nucleotide can be viewed as a ”prior”
probability. For example, the background probability could be the frequency of the
nucleotide in all sequences used to create the matrix. So given a sequence of length
1 the above log-odds score can be computed by summing up the log-odds score of

every nucleotide s; in the sequence.

2.2.3 Experimental Data
2.2.3.1 Microarray gene expression data

DNA microarrays measure mRNA levels in cells or tissues for many genes simultane-
ously. The goal of microarray experiments is to identify genes that are differentially
transcribed under different biological conditions or in tissue samples. A microarray
experiment has the following components: a set of probes, an array on which these
probes are immobilised, a sample containing a mix of labeled biomolecules that
bind to the probes. Single strands of complementary DNA for thousands of gene

are immobilized in a microarray. From a sample of interest, the mRNA is extracted,

52

labeled and hybridized to the microarray. The quantity of label of each spot can
be measured and the measurement indicates the abundance level of corresponding
RNA transcript, or expression level of the gene in the sample.

There are two common types of labeling. First, The company Affymetrix
synthesizes sets of short oligomers for genes on a glass wafer and uses only one
fluorescent label Lipshutz et al. (1999)(www.affymetrix.com). Each transcript has
16 to 20 pairs of oligonucleotide probes and each probe pair is an oligonucleotide
of 25 bases that exactly matches the target sequence but only one mismatch in
the middle. The purpose of the mismatch probes is to estimate background noise
that contributes to the signal. The simple average or weighted average of probe
intensities provide an estimate of the abundance of the transcript. Second, two
samples are labeled, one with a green fluorescent dye (Cy3) and the other with a
red dye (Cyb). The two samples are mixed and then both hybridized to the spots
on the microarray, and the slide is scanned. From the scanned image, the intensities
of Cy3 and Cyb5 signals are read and the log of the ratio of Cy5 intensity to Cy3
intensity is calculated. The log ratio indicates relative level of gene expression in
Cyb-labeled versus Cy3-labeled sample. Figure 2.12 gives an example of microarray

data.

2.2.3.2 Gene ontology annotation data

In bioinformatics, one challenge in seeking biological information is that there is
no standard terminology, e.g. inconsistent descriptions for the same gene exist in
different biological databases. The Gene Ontology (GO) Ashburner et al. (2000)
project was initiated to standardize the representation of gene and gene product
properties in many different species. The ontology has three domains: cellular
component, molecular function and biological process. The biological databases

in the GO Consortium gather information about properties of genes using terms

53

in the GO ontology, from published scientific papers. In this way, every gene in
an organism can be annotated with a specific set of GO terms. In bioinformatics,
research scientists study the enrichment of specific GO terms in gene sets, which

helps to validate biological hypotheses made with computational algorithms.

H,0, cd Heat Sorb. MMS
o 18 60 0 15 &0 O i1 80" 0 15 60° 0 15 60

1682 Genes

>8x induced — =———— >8x repressed

Figure 2.12: Example of microarray gene expression data. Every row is a
gene and every column corresponds to a sample in a specific condition. Red color
indicates over-expression of gene (induction) and green under-expression of gene

(repression).

54

Chapter 3

Learning “graph-mer” motifs that
predict gene expression

trajectories

3.1 Introduction

The mRNA expression level of a gene is regulated by multiple input signals that
are integrated by the cis regulatory logic encoded in the gene’s promoter. genes
whose regulatory sequences contain similar DN A motifs are likely to have correlated
expression profiles across a given set of experimental conditions. The converse, how-
ever, is not necessarily true. That is, genes can have correlated expression profiles
without being coregulated, since multiple regulatory programs may lead to similar
patterns of differential expression. This is particularly evident in developmental
time series data, in which the genes exhibit only a few distinct expression patterns.
Nevertheless, computational approaches for deciphering gene regulatory networks
from gene expression and promoter sequence data often do assume that correlation

implies coregulation. For example, a typical computational strategy is to cluster

5}

genes by their expression profiles and then apply motif discovery algorithms to the
promoter sequences for each cluster. The cluster-first motif discovery approach is
indeed so prevalent that the best-known benchmarking study of motif discovery
algorithms Tompa et al. (2005) defines the problem in precisely this way — namely,
given a cluster of genes, find the overrepresented motif(s) in the promoter sequences
— and compares numerous such algorithms. It is clear, however, that assigning genes
to static clusters that are assumed to be coregulated oversimplifies the biology of
transcriptional regulation. Moreover, in a setting where there are few experiments
probing the conditions of interest or where many genes have synchronized expres-
sion profiles, such as in a time course, clustering may fail to resolve meaningful gene
sets for subsequent motif analysis.

We present an algorithm that models the natural flow of information, from
sequence to expression, to learn cis regulatory motifs and to characterize gene ex-
pression patterns. Our algorithm learns motifs that help to predict the full expres-
sion profiles of genes over a set of experiments, with no clustering. More precisely,
we use a novel algorithm based on partial least squares (PLS) regression to learn
a mapping from the set of k-mers in a promoter to the expression profile of the
gene across experiments; in time series, we learn k-mers that help to predict the
full expression time course for genes. PLS combines dimensionality reduction and
regression; it iteratively finds latent factors in the input space with maximal co-
variance with projections in the output space. We introduce a graph-regularized
version of the PLS algorithm to enable motif discovery by imposing two constraints:
a lasso Tibshirani (1996) constraint for sparsity and a graph Laplacian constraint
for smoothness over sequence-similar motifs.

The goal of our method is to discover regulatory elements and decipher
transcriptional regulation in the nematode Caenorhabditis elegans, a key model

organism in developmental biology. In particular, we are interested in using mRNA

o6

profiling experiments from developmental time courses, where the high global level
of correlation presents a challenge to clustering. Dissection of gene regulatory
logic is not as advanced in C. elegans as it is in D. melanogaster, for example.
There are few motif discovery programs designed specifically for worms, and while
worm biologists do use generic programs such as MEME Bailey and Elkan (1994a),
traditionally they have relied on experimental strategies to define binding motifs
and then performed genome-wide motif searches and validation with transgene
reporters. One goal of our work is to advance this area of inquiry by defining novel
elements and providing new opportunities for directed experimental validation.
Here, we evaluate the performance of our method by measuring normalized
mean squared error on cross-validation test data. Moreover, we show that the
learned PLS latent factors contain information that is both statistically significant
and biologically meaningful. These significant features, which are associated with
high generalization rather than simple correlations in the training data, suggest
biological relationships between sequence motifs and temporal expression patterns.
We first describe the data sets used in our study, and then present the algorithm
to finally perform validation of learned PLS latent factors and motifs. Most of the

work presented here is published in Li et al. (2010).

3.2 Data Sets

3.2.1 Microarray Data

We use the gene expression microarray data for wild-type germline development
in worm C. elegans Reinke et al. (2004). This data set consists of a time course
beginning in the middle of the third larval stage (L3) and extending through adult-
hood. During this time, the major developmental changes occur in the germ line.

Some germ cells undergo constant proliferation, while others initiate developmental

57

events, including entry into meiosis followed by differentiation into sperm, which
occurs in the fourth larval stage, or differentiation into oocytes, which occurs in
young adults. By the end of the timecourse, animals have produced mature gametes
and launched embryogenesis. Twelve samples are collected at 3-hour intervals with
3 replicates for each sample. Basic microarray data normalization was performed
in the original study, and we use the normalized gene expression levels as reported
(Gene Expression Omnibus, http://www.ncbi.nlm.nih.gov/geo/, accession numbers
GSET726-GSE737). We average expression levels over replicates for 20,000 genes and
calculated the 5% and 95% quantile of all expression values. We filtere out genes
with baseline expression (defined here as having expression values between the 5%
and 95% quantiles at all time points) and also ones that exhibit little variance in
expression over time (SD < 0.1). After further removing genes without upstream
sequences from WormMart, we obtaine the gene expression matrix for ~9,000 genes

and 12 time points.

3.2.2 Promoter Sequences

We download promoter sequences spanning 500 bp upstream of transcription start
sites from WormMart. For genes whose upstream intergenic sequence is shorter
than 500 bps, we use the intergenic sequences instead of 500 bps upstream. We
scan the promoter sequences for candidate 6-mers and 7-mers, and filter k-mers

based on expected counts in background sequences.

3.3 Methods

Standard partial least squares regression

Since our algorithm builds on ideas from PLS regression, we first describe how to

use standard PLS to iteratively learn a linear mapping from the promoter sequences

o8

of genes, as represented by their k-mer counts, and their mRNA expression profiles.
Formally, using a training set of G genes, PLS takes a motif matrix X (dimension
G x M, where M is the number of k-mers), representing the individual k-mer counts
for each gene, and a gene expression matrix by Y (dimension G x E, where F is
the number of experiments). Here, the columns of X represent the independent
variables (features) and the columns of Y are the response variables; we also call
X the input matrix and Y the output matrix. PLS then performs the following
steps:

a. Scale X and Y so that each column of the input and output matrices has

zero mean and unit variance.

b. Perform dimensionality reduction by construction of latent factors T = XW:
Construct K weight vectors, placed as column vectors in W (dimension
M x K), and corresponding latent factors, placed as column vectors in T
(dimension G x K), where the weight vectors are chosen so that the latent

factors have maximal covariance with directions in the multivariate response

Y.

c. Use the latent factors T to predict Y: Regress Y against the latent factors

using ordinary least squares (or ridge) regression,

Y~TQ', Q=Y'T(T'T).

d. Obtain the matrix B of regression coefficients:

Y~XB, B=wWQ'=w(T'T)'T"Y.

We split genes into test and training sets for cross validation experiments.

Training data including motif matrix X and gene expression matrix Y were used

29

to learn matrix of regression coefficients B. And we assessed predictive power of

PLS on test data Y;s and X, by normalized mean squared error (NMSE):

E((thtB - Ytst)z)
E(<Yt5t - ?tst)z)

NMSE = (3.1)

where E(-) denotes the expected value and Y, = F(Yiy).

PLS not only provides a solution to the regression problem, but it also de-
scribes the covariance structure between X and Y. It constructs K weight vectors
w; in the input space RM and corresponding vectors ¢; in the output space R¥,
where cov(Xw;, Yc;) is maximal. Intuitively, each weight vector w; corresponds
to a set of motifs (k-mers) that helps explain expression patterns in the direction
c;. The k-mers with largest coefficients in w; are the most important variables for

predicting the projection of the expression patterns of genes onto c;.

SIMPLS algorithm

There are a number of variants of PLS, each of which defines and solves an opti-
mization problem for constructing the weight matrix W. We use the SIMPLS (Sta-
tistically Inspired Modification of PLS) algorithm Jong (1993), which optimizes an
objective function defined on the matrix Y7 X. The latent factors t;,i = 1,..., K
in T are sequentially built by estimating weight vectors w; as follows:

Fori=1,... K:

a. Maximize the covariance between t; and Y:

w; = argmax, cov(Y,t)? = argmax,w’ XYY’ Xw (3.2)

where w; is a unit vector.

60

b. Impose orthogonality constraints t/t; = w/X"Xw,; = 0 for all j = i +

1,..., K, by deflating YZX:

Y'X = Y'X — v;(vIYTX) (3.3)

where (i) If i = 1, v; = norm(XTt;).

(11) Ife> 1, v; = norm(XTti — V(VTXTtl» V= [Vl, ey Vi—l]-

Regularized partial least squares regression

We now modify the PLS algorithm with the dual goals of (1) making the solution
more interpretable and (2) regularizing the optimization problem, to reduce over-
fitting. We impose two constraints to achieve these goals. First, we use a lasso (L')
constraint Tibshirani (1996) to promote sparsity in the weight vectors w;, that is,
drive the weights for many k-mers to zero. Sparsity is clearly attractive since fewer
k-mers contribute to the solution, making it easier to identify the most important

motifs. The lasso constraint over coordinates w? of weight vector w takes the form:

M

Iwlli =) |uw’] <b (3.4)

p=1

For the second constraint, we want sequence-similar k-mers to have similar
coefficients in the weight vectors, so that a group of similar k-mers are more likely to
act as a single motif pattern in the regression problem. We define a graph structure
on the k-mers where we place an edge p ~ ¢ if the Hamming distance between the
pair of k-mers p and ¢ is less than threshold o. Since k-mers represent potential
binding sites in double-stranded DNA, here we take the distance between two k-
mers p and ¢ to be the minimum of the Hamming distances d(p, q) and d(p,rc(q)),
where rc(q) is the reverse complement of . We then impose a smoothness constraint

in the form of the graph Laplacian Weinberger et al. (2007), as described below.

61

The Laplacian matrix L = (LP?) for an unweighted graph is defined as

(

deg(q) ifp=g,
L=< _1 if p is adjacent to g, (3'5)

0 otherwise.

\
where deg(q) denotes the degree of k-mer ¢, the number of edges that connect k-mer
q with other k-mers. If we write w = (w?) € R as a column vector and view it
as a function on the graph — i.e. a function that assigns a weight w? to each vertex
p — then we can use the graph Laplacian to compute a quadratic form on w that

satisfies the relationship Chung (1997):

wiLw =) |w” — w. (3.6)

p~q
Equation (3.6) shows that this quadratic form measures the smoothness of w with
respect to the graph: the quadratic form is small when the function’s values vary
smoothly over adjacent nodes, so that the weights for sequence-similar k-mers are
close in value. Therefore, the second constraint that we impose is precisely on the

size of the quadratic form, enforcing smoothness on the weight vector w:
w!Lw < by. (3.7)

A pseudocode description of the graph-regularized PLS algorithm is given in
Figure 5.1.

Filtering k-mer features

k-mer features with very sparse genome-wide counts are unlikely to improve the
loss function — since they only only in a handful of promoters — and can contribute
to overfitting. In order to eliminate k-mers with infrequent counts prior to training,

we filter the k-mer feature set based on expect counts on background sequences.

62

INPUT:
X (G x M, column normalized): motif matrix
Y (G x E, column normalized): expression matrix
S = Y'X: cross-product
K: number of latent factors

Algorithm:
Loop over latent factors: For:=1,..., K
(1) Learn weight vectors and latent factors:
w = argmax,, (w’ STSw), subject to
(i) wiw=1
(i) 3,0 [w?| < by
(iii) Zqu |wP — wi|* < by
Compute latent factor: t = Xw
Normalize latent factor: t =t/ VTt

Rescale weight vector: w = w/vVtTt
c=Y"t
u=Yc
(2) Deflate S:
v=X"t
if 2 > 1 then
v=v-V(Vly)
v=v/Vvlv
S=S-v(vlS)
Store w, t, ¢, u and v into column ¢ of W, T, C, U and V, respectively

OUTPUT:
OLS regression from T to Y:
Y, =TCY CT =T'Y
Regression matrix B = WCT = WTTY
Y,rea = XB =XWC” =TC" = TT"Y

Figure 3.1: Pseudocode for graph-regularized PLS. A pseudocode description
of the iterative PLS procedure, enforcing sparsity and Laplacian constraints on
motif weight vectors.

We denote the frequency of occurrence of motif m in background sequences

p. Given the rate p, we evaluate the binomial probability of observing L. occurrences

63

of motif m out of total N k-mers of the same length in the promoter sequences. We
. : _ L—Np .

report the probability as a Z-score defined as Z,, —\/m Eskin et al. (2002),

which measures the number of standard deviations away from what is expected by

chance when the null model is assumed to be binomial. Motifs with high Z-score

conservation are seen as frequently occurring.

We construct the background sequences by shuffling exon sequences 100
L—Np
Np(1-p)’

of the k-mer in all promoter sequences, N is the length of all shuffle exon sequences,

times and rank k-mers by the Z-score: Z,, = where L is the number
and p = % is number of the k-mer in all shuffle exon sequences divide by N. (Note
that shuffle intergenic sequences could also be use to generate the random model.)
We keep the top 3000 k-mers and build the motif matrix containing counts of
k-mers in promoter sequences. We find that this filtering step significantly improve

cross-validation performance.

Hierarchical sequence agglomeration

For each latent factor t, we rank k-mers by their components in the corresponding
weight vector w and perform motif analysis on the top 50 k-mers. Those k-mers are
first displayed in the form of a motif graph via Cytoscape Shannon et al. (2003), in
which an edge between two k-mer nodes indicates similarity. We use the MCODE
Cytoscape Plugin Bader and Hogue (2003) to find k-mer clusters (highly intercon-
nected sets of sequence-similar k-mers) in the graph. Each k-mer cluster represents
a motif pattern consisting of slightly different k-mers.

Finally we perform a hierarchical sequence agglomeration algorithm that it-
eratively merges motifs that are most similar into a single motif, represented by a
probabilistic model called position-specific scoring matrices (PSSMs) for k-mer clus-
ters. For a given sequence length n,,, a position-specific scoring matrix (PSSM) is de-

fined as a probability distribution p(x1, s, ..., ¥,,) over sequences x2s...T,,, where

64

x; € {A,C,G, T}. The emission probabilities are assumed to be independent at ev-
ery position such that p(xy,...,z,,) = [, pi(2;), where er{A,C,G,T} pi(z) =1 for
all . The PSSM n is thus defined by a set of probabilities {p; () }ic1,....npwe{a,c.cT}-

Every PSSM is associated with a log-odds score S,,, for a given sequence x, ..., T,

pK$0
o) (3.8)

Sy (X150 Tnyy) = Zlog

i P

where p% gives the background nucleotide probabilities for smoothing. Within

each k-mer cluster, each k-mer is treated as a seed PSSM (using background nu-

cleotide probabilities for smoothing), and then the algorithm iteratively merges
similar PSSMs until a single PSSM is learned as the binding site model.

When comparing two PSSMs p and ¢ of equal length n, = n,, we use the

Kullback-Leibleer divergence Dy . Given that the position-specific probabilities

are independent, one can easily show

p(l’l, ey Ty,)
Dii(pllg) = p(xy, .oy Ty Jlog—/——2=
KL(||) mlzx (! 'rlp) gQ(x17"'7xnp)
ysTnp
np
pi;)
=Y Y nee
=1 z;€{A,C,G,T} Gilti

= Y Diavla) (3.9)

where the summation goes over all possible sequencs xy, ..., r,, with every
x; € {A,C,G,T}. When merging two PSSMs, the starting position of the first
PSSM does not necessarily have to coincide with the starting position of the second
PSSM. Instead, we allow offsets between their starting positions and pad either the
left or right ends with the background distribution. For PSSMs with arbitrary

lengths n, and n, (not always equal) and with offsets [€ {—n,, ..., n,} in starting

positions, we define

65

maxz(np—I,ng)+max(0,—1)

Diri(pllg) = > D1 (pi +min(1,0)||g; +min(0, —1)) (3.10)

i=1
where we pad PSSMs for positions ¢ < 0 and ¢ > n, with background
probabilities to let them have equal lengths. Finally we can define a distance

measure d(p, q) as the minimum over all possible position offsets of the JS entropy.

xd(p,q) = Orpﬁsiertls[hpDKL(p\hpp + heq) + hyDrcr(qlhpp + hyq)], (3.11)

The relative weights of the two PSSMs, h, and h,, are here defined as h,, =
N,q/ (N, + N,), where N,, N, are the numbers of target genes for the given PSSM.
The initial PSSMs are k-mers and the number of target genes are the number of
promoter sequences with the k-mer occurrence. The number of target genes for the
newly merged PSSM will be the number of target genes combined for the two old
PSSMs.

Assigning genes to latent factors

To extract biological information from the algorithm output, we analyze latent
factors for potential gene groups and corresponding biological functions. To do
that, we assign each gene g to the gene group associated with a factor ¢ based on
TU values. Here, the matrix T (respectively, U) is formed by placing vectors t;
(respectively, u;) for latent factors ¢ = 1...5 as column vectors (Figure 3.3). The
value T; indicates how well w; captures the k-mer profile of gene g, and the value
U,; measures the similarity between c; and expression profile of gene g. In contrast
to traditional clustering, which only relies on gene expression to group genes, we
integrate both sequence and gene expression information in learning potentially
functional gene sets. For each gene g, we computed T, ;U,; across all factors and

chose factor ¢ with the maximum value:

66

i = argmax; Ty;Ug;, j=1...5 subject to Ty, Ug; > 0.

Since we suspect that only large T ;U values indicate strong association of
a gene g with factor ¢, we assign gene g to factor ¢ only when T, U, was in the top
20% of all TU values. Although we use K = 4 latent factors in our model, here we
compute the representation with five factors, reasoning that if a gene is assigned to

the 5th factor, it should not be included in our main analysis.

Conservation of motifs

To look for evidence of the functional roles of highly weighted motifs in PLS regres-
sion, we considered conservation patterns of these sequences. Caenorhabditis brig-
gsae is closely related to C. elegans and is frequently used in comparative genomics
studies in worm. One expects that motifs responsible for a biological function that is
shared by the two species, such as oogenesis, would be under evolutionary pressure
and therefore conserved in the promoter regions of orthologous genes contributing
to this function. We studied the genome-wide conservation of all k-mers, based on
their frequent conservation between the two species. A conserved occurrence of a k-
mer m is an instance of the k-mer for which an exact match to the k-mer is present
in both species. We first defined the conservation rate p of a k-mer as the number
of occurrences of k-mer which are are conserved across the two species divided by
total number of occurrences of k-mer in Caenorhabditis briggsae. We then calcu-
lated a Motif Conservation Score (MCS) based on the conservation rate of each
k-mer in the promoter regions. To evaluate the Motif Conservation Score (MCS) of
a k-mer m of given length, we compared its conservation rate p to expected rate p,
for similar random k-mers of the same length. Assuming the underlying null model
is binomial, we reported the MCS as a Zscore (MCS = %) measuring the
number of standard deviations of conserved instances away from what is expected

by chance. Motifs that have high motif conservation scores, are both highly con-

67

served and frequently occurring. To estimate the expected conservation rate pg for
a k-mer of given length, we obtain the averaged conservation rate of 500 random
motifs of the same length. To take into account the nucleotide compositional bias
in the promoter regions, we generate these random motifs by sampling from the

background distribution of nucleotides in promoters of all genes.

3.4 Results

3.4.1 Statistical Validation
3.4.1.1 Regularized PLS predicts held-out gene expression

We performed 10-fold cross-validation experiments, randomly splitting genes into
test and training sets with 10% of the data assigned to test data. Figure 3.2
illustrates the normalized mean squared error on the cross-validation test sets versus
number of latent factors for both standard and graph-regularized PLS. Here, the
mean squared error obtained with zero latent factors (i.e. the variance of the test
data) is normalized to 1, so that cross-validation errors below 1 indicate that the
model is explaining part of the variance of the held-out data. Figure 3.2 shows
the average mean squared error across the cross-validation folds with the standard

deviation over folds indicated with error bars.

68

Normalized mean squared prediction error

1.6 ‘ :
——Standard PLS
- -*-Standard PLS on randomized data
o ——Graph-regularized PLS
© 4 4 |~=-Graph-regularized PLS on randomized data,
i
o
S
o .-
o L y---
Sz 13- I
5 U S SO RS SRR S S B
o L&
U) 4
c 1 i
@
o)
= 3 —%—3—3%— 35 —3F—3
O'80 2 8 16

4 6
Number of factors

Figure 3.2: Normalized mean squared error on cross-validation test data.
Normalized mean squared error versus number of latent factors for standard PLS
and graph-regularized PLS on real and randomized data. For the real cross-
validation data, standard PLS overfits after the 4th factor; graph-regularized PLS
is more resistant to overfitting than standard PLS. As expected, when trained and
tested on randomized data, both standard and graph-regularized PLS overfit with
the very first factor.

The minimal cross-validation error with standard PLS is obtained with four
latent factors. Graph-regularized PLS appears to be more resistant to overfitting,
with slightly lower cross-validation error at four latent factors and no substantial
increase in error as the number of latent factors increases. Again, cross-validation
error suggests that four latent factors should be used in the model. As a neg-
ative control, we randomly paired promoter sequences with expression profiles,
so that we used real expression data and promoter sequences but lost the corre-
spondence between sequence and expression, and we performed standard PLS and
graph-regularized PLS . As can be seen from Figure 3.2, both standard PLS and
graph-regularized PLS on randomized data overfit with the very first latent factor,

indicating that the performance obtained on the real data is meaningful.

69

3.4.2 Biological Validation

3.4.2.1 Learning graph-mer motifs and corresponding expression tra-

jectories

In order to learn the correspondence between (sets of) regulatory motifs in the
promoter sequences of genes and gene expression trajectories over a time course, we
posed a regression problem: using a training set of G' genes, learn a linear mapping
from the vector of counts of k-mer occurrences in a gene’s promoter to the gene’s
time course expression profile. This model can then be used to predict expression
from sequence on held-out genes, and k-mer features that are highly weighted in
the model should represent important regulatory motifs. Here we have a very
high-dimensional input space of motifs (k-mers) as well as a multivariate output
space, both of which rule out use of ordinary least squares regression. Instead, our
algorithm makes use of a partial least squares (PLS) regression strategy. PLS is
a well-known statistical technique for fitting linear models when the input space
is high dimensional Boulesteix and Strimmer (2007) and has both univariate and
multivariate formulations.

Standard PLS represents the input data as a motif matrix X (dimension
G x M, where M is the number of k-mers), representing k-mer counts for each
gene’s promoter, and the gene expression matrix by Y (dimension G x E, where E
is the number of experiments), and then it performs two basic steps (see Methods

for more details):

a. Construct K weight vectors wy - - - Wx in RM and corresponding latent factors
ty---tx in RY, where the weight vectors are chosen so that the latent factors
have maximal covariance with directions in Y. The latent factors define a

reduced dimensional representation of the promoter sequence data.

b. Regress Y against the latent factors using ordinary least squares (or ridge)

70

regression. The latent factor dimensionality reduction followed by linear map-

ping to Y yields the final mapping from sequence to expression.

PLS algorithms typically work iteratively, so that each round i generates a new
latent factor, and the number of rounds K is chosen by cross-validation to minimize
the square loss function in the regression problem.

Here, we are most interested in what PLS tells us about the covariance struc-
ture between X and Y and how to interpret this information in terms of sequence
motifs and expression patterns. In particular, along with K weight vectors w; in
the input motif space, PLS determines corresponding vectors c; in the output ex-
pression space, defined so that cov(Xw;, Yc¢;) is maximal (Figure 3.3). Intuitively,
each weight vector w; corresponds to a set of motifs (k-mers) that helps explain
expression patterns in the direction c;. The components of the vector w; that have
large positive weights are the k-mers that most strongly predict the expression
pattern c;.

To obtain a more interpretable model, we mathematically imposed two addi-
tional requirements on the PLS solution. First, we wanted the weight vectors w; to
be sparse, i.e. we wanted relatively few k-mers to have non-zero components, so that
the algorithm produces a small number of hopefully functional motifs. Second, for
each weight vector w;, we wanted sequence-similar k-mers to have similar weights,
since such k-mers may represent variants of the same binding site and potentially
should contribute in the same way to the linear model. We achieved the first goal by
adding a lasso constraint to the PLS optimization problem (see Methods for more
details). For the second goal, we defined a graph on the set of k-mers, joining two
k-mers by an edge exactly when they are close in Hamming distance, and imposed
a graph Laplacian constraint to obtain smoothness over the graph (see Methods for
more details). Incorporating these constraints into a multivariate PLS approach

yields a new algorithm that we call graph-regularized PLS.

71

—
o3 g
0oo< <C
3888 3
EEE s w t u c
Jcs.1io[20010000...1]]
c18A3.8| 00000010...0
0

C18A1.1] 01020001...
' ' max(cov(t,u))
X - —p

K11A4.2 10003600...2 ¢

}

k-mer weight vector w experiment weight vector ¢

—
~

Figure 3.3: Mapping between motif weight vectors and experiment weight
vectors. At each iteration i of the modified PLS algorithm, i = 1... K, weight
vectors w; and c; are derived by finding latent factors t; and u; with maximal
covariance. For clarity, subscripts ¢ are omitted in the diagram and in the rest
of the description. Each weight vector w is a vector in RM, where M is the
number of k-mers used as input to the algorithm. Due to graph-regularization,
each weight vector is sparse, i.e. most k-mers have weight 0, and smooth over a
graph connecting sequence-similar k-mers, i.e. similar k-mers get assigned similar
weights. Therefore, we can visualize the weight vector as a “graph-mer”, a graph
where nodes correspond to k-mers with high positive weights and edges connect
sequence-similar k-mers (bottom left). At each iteration, the PLS procedure sets
up a correspondence between the motif weight vector w and a weight vector over
expression experiments represented by vector c. In our setting, the series of expres-
sion experiments is a time course, and the vector ¢ can be viewed as an expression
pattern or trajectory (bottom right). Intuitively, we can think of the set of k-mers
shown in the graph-mer as driving the expression pattern c.

With these additional constraints, we can view the motif vectors w; as

“oraph-mers” — weighted graphs over k-mers, where highly weighted dense clus-

72

ters in the graphs correspond to important sequence-similar k-mer sets, or mo-
tifs. Figure 1 illustrates the mapping between motif weight vectors, interpreted
as graph-mers, and corresponding expression patterns, arising from the latent fac-
tors found in graph-regularized PLS. Intuitively, we can think of each vector c; as
the expression pattern driven by the positively weighted k-mers in w;, that is, the
common expression trajectory displayed by genes containing these motifs. This cor-
respondence will be important for interpreting regulatory motifs in worm germline

development below.

3.4.2.2 Latent factors map to germline-specific expression trajectories

By analyzing separate microarray expression data from germline mutants, the previ-
ous study also identified two gene sets consisting of sperm and oocyte genes Reinke
et al. (2004), which we used in our analysis of the wild type developmental gene ex-
pression profiles. First, we estimated the prediction error on each gene set as shown
in Figure 3.4. Clearly, the first and second latent factors account for the largest
loss reduction for oocyte and sperm genes, respectively. To show that the first two
factors dominate these two gene sets, we first examined the expression profiles of
the two gene sets. In PLS, each weight vector c; gives the weights over time points
and can be interpreted as an expression pattern, and genes significantly influenced
by the latent factor tend to follow this expression pattern. We plot the oocyte gene
expression profiles together with ¢; and sperm gene expression profiles with cs in
Figure 3.5(a) and 3.5(b). The gene expression profiles are strongly correlated with
the corresponding weight vectors, indicating that the first two factors are able to
retrieve the expression patterns of these two gene sets, respectively.

Furthermore, we used functional enrichment analysis to confirm that the
genes identified statistically by these two factors are indeed enriched for oocyte

or sperm genes, respectively. Given a gene set S and a real-valued ranking of all

73

Normalized mean squared prediction error

1.6 : :
——Sperm gene set

5 ——Qocyte gene set
5 14r 8
c
o
S
oS 1.2F |
o
o
°
[0}
c 7
>
o
D — —— —e
3
o 0.8F . ,
=

9% 2 8 10

4 6
Number of factors

Figure 3.4: Normalized mean squared error on cross-validation test data.
Normalized mean squared error versus number of latent factors for standard PLS
and graph-regularized PLS on real and randomized data. The mean squared error
obtained with zero latent factor is normalized to 1. Computed standard deviations
of squared error across cross-validation sets are plotted as error bars. For the real
cross-validation data, standard PLS overfits after the 4th factor; graph-regularized
PLS is more resistant to overfitting than standard PLS. As expected, when trained
and tested on randomized data, both standard and graph-regularized PLS overfit
with the very first factor.

genes, we can use a procedure similar to gene set enrichment analysis (GSEA) Sub-
ramanian et al. (2005) to establish whether the empirical cumulative distribution
of genes in S is significantly shifted up or down compared to the set of genes not
in S. Here, we use sperm and oocyte genes as gene sets and use either correla-
tion with c¢; or number of k-mer hits (for the top 50 graph-mer k-mers in w;) to
produce the ranking. Figure 3.6(a,b) plots the empirical CDF of the correlation
between gene expression and ¢;, (i = 1,2), showing that oocyte and sperm gene sets
are enriched toward the top of the gene expression correlation. Similarly, Figure

3.6(c,d) plots the empirical CDF for k-mer hits, showing that oocyte and sperm

74

gene sets are enriched in the corresponding k-mer hits. These results indicate that
graph-regularized PLS can be used in conjunction with gene set analysis to iden-
tify functional categories that are supported both by shared motif information and

expression trajectories.

Oocyte gene expression Sperm gene expression
g 3
& 200 S 200
o 400 2’400
o
800
o 2 4 6 8 10 12 @ 2 4 6 8 10 12
Time Boint Time ﬁoint
-2 -1 0 1 2 -2 -1 0 1 2
Weight vector c1 Weight vector c2
40 . . . 40 . . .
301 1 301]
S 20/ 1 N 20f /_
10F] 10F 4
0 ‘ ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Time point Time point
(a) (b)

Figure 3.5: Correlation of germ cell expression patterns and PLS expres-
sion weight vectors. Oocyte and sperm gene expression patterns are strongly
correlated with ¢; and ¢y, respectively. (a) Oocyte gene expression versus c¢;. (b)
Sperm gene expression versus Cs.

3.4.2.3 Interpretation of motif weight vectors

In PLS, each weight vector w; corresponds to a set of motifs (k-mers) that help to
explain expression patterns in the direction c¢;. The k-mers with largest coefficients
in w; are the most important variables for predicting the projection of the expression
patterns of genes onto c;. To identify motifs relevant for sperm and oocyte gene
sets, we selected the top 50 k-mers ranked by w and examined the k-mer graphs
corresponding to the first two latent factors. Clusters in the graph that are identified
by MCODE Bader and Hogue (2003) represent motif patterns and hierarchical

sequence clustering is performed to generate corresponding PSSMs. Figures 3.7

5

Empirical CDF for correlation between gene expression and c1 Empirical CDF for correlation between gene expression and c2
1 . . 1 . .
==Non-oocyte genes ==Non-sperm genes
& |[=—Oocyte genes & ||=—Sperm genes
2o0.8f 2 0.8f
2 2
c c
K] k<]
__E 0.6 _S 0.6
]]
© ©
2047 204f
s s
3 3
Eog o2
Q Q
Q Q
< <
Y -0.5 0 0.5 1 4 -0.5 0 0.5 1
Correlation between gene expression and c1 Correlation between gene expression and c2
(a) (b)
Empirical CDF for hits of top 50 k-mers ranked by w1 Empirical CDF for hits of top 50 k—-mers ranked by w2
1 . 1 .
c c
8 i)
208 — 208 —
2 2
c c
o o
__s 0.61 1 _a 0.61 1
2 2
© ©
_029 0.4r 1 _023 0.4r 1
= =
>3 >3
g 0.2 1 g 0.2 R
8 8
< == Non-oocyte genes| < =—=Non-sperm genes
o == Qocyte genes o == Sperm genes
[¢] 10 20 30 40 [¢] 10 20 0 40
Hits of top 50 k—-mers Hits of top 50 k—-mers
(c) (d)

Figure 3.6: Correspondence between first and second latent factors and
sperm and oocyte genes. (a,b) The set of all genes is split into oocyte and
non-oocyte genes, or sperm and non-sperm genes, and the empirical cumulative
distribution of correlation with c;, i = 1,2 is plotted. Oocyte and sperm genes are
enriched towards the top of the gene expression correlation distribution. (c,d) The
set of all genes is split into oocyte and non-oocyte genes, or sperm and non-sperm
genes, and the corresponding empirical cumulative distributions of hits of top 50
k-mers in w;, ¢ = 1,2 are plotted. Oocyte and sperm genes are enriched in k-mer
hits corresponding to the 1st and 2nd weight vectors.

and 3.8 show the graph-mer representation of the top 50 k-mers, motif patterns
and PSSMs for the first two factors.

From the second factor, we successfully found the ELT-1 (‘erythrocyte-
like transcription factor’) motif GATAA and bHLH (‘basic helix-loop-helix’) motif

76

G

® o @,

e

M

Figure 3.7: Sperm motifs determined by graph-mer analysis and posi-
tional bias of motif ACGTG. Sperm motifs extracted from graph-mer output.
The graph-mer consisting of the top 50 k-mers ranked by ws. Graph motif patterns
identified in the form of k-mer clusters using the MCODE plug-in Bader and Hogue
(2003) in Cytoscape are shown in different colors, with each subgraph summarized
by a PSSM generated through hierarchical sequence agglomeration of the corre-
sponding k-mers. Both the ELT-1 motif GATAA and the bHLH motif ACGTG are
found in this way.

ACGTG, as shown in Figure 3.7. The ELT-1 protein is a transcriptional activa-
tor that can recognize the GATA motif, is highly expressed in the germ line, and
has as potential targets a number of genes encoding major sperm proteins Shim
(1999). The bHLH proteins act through E-box elements with consensus CANNTG;
the canonical E-box is CACGTG. bHLH proteins have been found to act at the E-
box and influence hormone-induced promoter activation in mammalian Sertoli cells,

which are required to maintain the process of spermatogenesis J. and K. (1999);

7

S -(aseeeo)
LR N K e
Brccacs/

N

MO
0

S %

A

Figure 3.8: Oocyte motifs determined by graph-mer analysis and con-
servation of graph-mer derived oocyte and sperm motifs. Top 50 k-mers
ranked by the weight vector wy, depicted as a graph-mer, which are associated by
the PLS procedure to the expression pattern of oocyte genes. Graph motif pat-
terns were identified in the form of k-mer clusters using the MCODE plug-in in
Cytoscape. PSSMs generated through hierarchical sequence agglomeration of the
corresponding k-mer sets are indicated, revealing several CG-rich motifs.

however, this motif has not previously been associated with spermatogenesis in C.
elegans.

For the first latent factor, the top ranked motifs are CG-rich sequences as
shown in Figure 3.8. To evaluate the statistical significance of those k-mers for
oocyte genes, we studied the enrichment of all k-mers in oocyte genes. For each
k-mer, a hypergeometric distribution p-value was estimated based on the counts of
oocyte genes and all genes having the k-mer’s presence. Figure 3.9 plots the hy-

pergeometric distribution —logyo(p-value) representing k-mer enrichment in oocyte

78

genes versus the k-mer’s wy value. We found a moderate correlation (Pearson coeffi-
cient = 0.65) between the two variables, and in particular the k-mers highly ranked
by w; had p-values between 1076 and 10~%. This type of k-mer enrichment fur-
ther validates the relevance of inferred k-mers from the first factor to oocyte genes.
Similarly, we studied the enrichment of all k-mers in sperm genes and plotted the
the hypergeometric distribution —logo(p-value) representing k-mer enrichment in
sperm genes versus the k-mer’s wy value (Figure 3.9(b)). There was some positive
correlation between —logo(p-value) and wy (Pearson coeflicient = 0.35), but it was

weaker than that of oocyte genes.

Hypergeometric k—-mer enrichment p-value versus w1 Hypergeometric k-mer enrichment p-value versus w2
18 8

1

161 161

o e® o cesmscens o oo . . s esee o sem o

14+

-
N

-
N
T
-
n

-
o
T
*
-
o

—log10(p-value)
P®

—log10(p-value)

e
T IRRY
.

.

Figure 3.9: Correlation of weights with significance of enrichment in
oocyte and sperm genes for the k-mers from 1st and 2nd graph-mer
respectively. We plot the weights of k-mers in the first motif weight vector versus
the —logyo(p-value) for the enrichment of these k-mers in oocyte and sperm genes,
as computed by the hypergeometric distribution. (a) For oocyte genes, —logio(p-
value) is moderately correlated with w; (Pearson coefficient = 0.65), and k-mers
highly ranked by w; had p-values between 1071 and 10=%. This enrichment sup-
ports the functional relevance of PLS-derived k-mers from the first factor in oocyte
genes. (b) For sperm genes, —logo(p-value) is somewhat correlated with wo (Pear-
son coefficient = 0.35), though the correlation is weaker than that of oocyte genes.

79

3.4.2.4 Positional bias and conservation of motifs

Since functional motifs sometimes exhibit a spatial bias in the promoter region
— for example, overrepresentation close to the transcription start site (TSS) — we
performed positional analysis of top ranked motifs by examining their distance to
the TSS in sperm genes versus non-sperm genes. We observed that the sequence
element ACGTG displayed strong positional bias towards the T'SS of sperm genes.
Figure 3.10 plots the distribution of distance of ACGTG to TSS in sperm genes
versus non-sperm genes, showing that ACGTG is found far more frequently within
200bp upstream of the TSS of sperm genes but displays a fairly uniform distribution
relative to TSS in non-sperm genes. This result indicates that motif ACGTG
was significantly overrepresented immediately upstream of sperm genes, giving us
additional confidence in the motif’s contribution to sperm gene expression.

To look for evidence of the functional roles of CG-rich and other highly
weighted motifs, we considered conservation patterns of these sequences. Caenorhab-
ditis briggsae is closely related to C. elegans and is frequently used in comparative
genomics studies in worm. One expects that motifs responsible for a biological
function that is shared by the two species, such as oogenesis, would be under evo-
lutionary pressure and therefore conserved in the promoter regions of orthologous
genes contributing to this function. We studied the conservation of all k-mers be-
tween the two species and found that highly ranked k-mers, where rankings are in-
duced by the 1st and 2nd factor, tended to be more conserved in the oocyte genes
and sperm genes, respectively. Specifically, we computed the motif conservation
score (MCS) Waterston et al. (2002) of each k-mer by comparing its conservation
rate p to its expected rate pg, estimated using 500 random k-mers of the same
length. A conserved occurrence of a k-mer is an instance of the k-mer in the C. el-
egans genome, for which it is also present in the C. briggsae ortholog. We reported

MCS as a Z-score (MCS = \/%) measuring the significance of observing

80

» Distance of ACGTG to TSS in sperm genes
o 0.1 o S o :

0

4

S 0.05

c

Q

©

S o

IL O 50 100 150 200 250 300 350 400 450 500

Distance to TSS (bps)

» Distance of ACGTG to TSS in non-sperm genes
o 0.1 o S o :

0

X

S 0.05

c

Q

©

S o

IL O 50 100 150 200 250 300 350 400 450 500

Distance to TSS (bps)

Figure 3.10: Sperm motifs determined by graph-mer analysis and posi-
tional bias of motif ACGTG. Distribution of distance of motif ACGTG to TSS
(measured in base pairs) in sperm genes versus non-sperm genes. Motif ACGTG
occurs more frequently within 200bp upstream of the T'SS in sperm genes relative
to non-sperm genes, giving us more confidence in its contribution to sperm gene
expression.

L conserved occurrences out of total N occurrences. To assess the significance of
inferred k-mers for oocyte and sperm gene sets, we focused on motif conservation
in sperm and oocyte genes relative to non-sperm and non-oocyte genes. To do this,
we computed the MCS of each k-mer in both oocyte genes and non-oocyte genes,
and we plotted the distribution of the difference of these two MCS scores for top
50 ranked k-mers in the w; versus remaining k-mers, as shown in Figure 3.11(a);
Figure 3.11(b) shows the difference of the MCS scores for sperm genes and non-
sperm genes for the top 50 ranked k-mers in wy versus the remaining k-mers. For
both oocyte and sperm gene sets, the score distribution for the top 50 k-mers has a
heavy right tail relative to other k-mers, showing that the top k-mers have higher

oocyte- and sperm-specific conservation. To confirm the significance of this obser-

81

vation, we performed a one-sided Kolmogorov-Smirnov (KS) test and found that
the rightward shift was highly significant in both cases (p < 3.0e-13 and p < 1.9e-5
for oocyte and sperm k-mers, respectively). The k-mers that are most significantly
conserved in oocyte and sperm genes, relative to non-oocyte and non-sperm genes,
are also annotated in Figure 3.11; these include the ACGTG motif for sperm genes

and CG-rich k-mers for oocyte genes.

Conservation of 1st factor k-mers Conservation of 2nd factor k-mers
0.2 : : : : . : : 0.2 : : : : : : :
Il All k-mers (excluding top 50) I All k-mers (excluding top 50)
I Top 50 k-mers Il Top 50 k-mers
0.16 0.16

2 [
[0} (0] o<
€ < £ <<g O 0IL

b 00« < < <
_\|‘0412 88%5588 _\|<0.12 895(&) 6,89
kS 80088 8E © 5889 288
g 08'(_'5 'E(o% g o< 0 <
5= 0.08F 3= 0.08f I
(o] [$]
© ©
o o
- IC |

0.04F 0.04F I
| l |
A ulldll] |
-20 -15 =10 -5 0 5 10 15 20 -20 -15 =10 -5 0 5 10 15 20
Oocyte MCS - non-oocyte MCS Sperm MCS - non-sperm MCS

(a) (b)

Figure 3.11: Conservation of graph-mer derived oocyte and sperm motifs.
(a) Analysis of oocyte k-mer conservation using the motif conservation score (MCS).
The plot shows the distribution of (oocyte MCS—non-oocyte MCS) for top 50 k-
mers versus remaining k-mers in w;. The score distribution for the top 50 k-mers
has a heavy right tail, showing that as a distribution, the top 50 k-mers have higher
oocyte-specific conservation scores as compared to other k-mers (p < 3.0e-13 by a
one-sided KS statistic). Significantly conserved k-mers are annotated, including
CG-rich k-mers for oocyte genes. (b) Distribution of (sperm MCS—non-sperm
MCS) for top 50 k-mers versus remaining k-mers in wy. The score distribution
for the top 50 k-mers has a heavy right tail, showing that the top 50 k-mers have
higher distribution of sperm-spefic conservation scores than other k-mers (p < 1.9e-
5, one-sided KS statistic). Significantly conserved k-mers are annotated, including
ACGTG motif for sperm genes.

82

Targets of CG-rich motifs are expressed in the germline

Relatively little is known about transcriptional regulation of oocyte genes. To gain
additional evidence supporting a functional role for learned motifs, we examined
the in situ expression patterns of genes enriched with those motifs. We searched for
a subset of EST (expressed sequence tag) clones known as YK clones of each gene in
WormBase (http://www.wormbase.org) and looked at in situ expression patterns
at the L4-adult stage associated with each YK clone in the Nematode Expression
Pattern Database (NEXTDB http://nematode.lab.nig.ac.jp/db2/index.php).

The in situ analysis provides direct evidence about where the genes are
expressed, and we expect that genes highly ranked by motif hits are more likely to
be germline expressed. To obtain a ranked gene list for each of the three motifs
in Figure 5A, we first defined the gene group associated with the first factor based
on TU values (see Methods). For each motif, we ranked genes within the gene
group by counts of k-mers of that motif and came up with a list consisting of top
~80 genes. Table 1 summarizes the in situ expression patterns of genes associated
with motif 1 (GGCGC), motif 2 (GCGCG) and motif 3 (ACCGTA). We split each
gene list into two groups, those already known to be oocyte genes, and genes with
high motif scores not already defined as oocyte genes. For each group, Table 1
shows number of genes examined; the number of genes with an in situ pattern;
and percentage of genes expressed in germline tissues only, in both germline and
somatic tissues, and somatic tissues only.

Over all three motifs, 7% of the genes have detectable in situ staining. Of
those, an average of 78% stain only in the germ line, and with more than 80% of
genes previously identified as oocyte genes staining in the germ line.

More than 70% of genes that had not previously been identified as oocyte
genes (based on mutant expression profiling) were also dominantly expressed in

germline tissues rather than somatic tissues. In the study that defined the oocyte

83

Motif Previously identified | # genes | # genes with | % Germline | % Germline | % Somatic
as oocyte genes i situ pattern only & somatic only
Motif 1 yes 29 28 1% 7% 5%
(GGCGC) 1o 52 37 73% 8% 13%
Motif 2 yes 31 25 80% 4% 4%
(GCGCQ) 1o 55 43 74% 14% 5%
Motif 3 yes 26 16 94% 0% 0%
(ACCGTA) no 62 38 76% 10% 0%

Table 3.1: In situ analysis of genes enriched with CG-rich motifs. For
each graph-mer derived motif, we identified the set of genes associated to the motif
based on latent factor analysis (see Methods). Each gene list was further split
into two sets: genes that had been previously identified as oocyte genes based on
mutant expression data and those not identified as oocyte genes by this previous
analysis. The table shows the number of genes associated to the motif; the number
of genes having an in situ pattern in the NEXTDB database; and genes expressed in
germline tissues only, in both germline and somatic tissues, and somatic tissues only
as a percentage of genes with an in situ pattern. The results show that even among
genes not previously identified as oocyte genes, more than 70% of genes examined
were dominantly expressed in germline tissues rather than somatic tissues. This
percentage is much higher than seen overall for genes that were not previously
called oocyte or sperm without considering motif information (20%), suggesting a
functional role of CG-rich motifs in germline expression.

and sperm gene sets Reinke et al. (2004), about 20% of genes that were not identified
as oocyte or sperm had the germline expression by in situ analysis. Table 3.1 shows
that for the genes that were associated with oocyte motifs 1, 2 and 3 via latent factor
analysis — but had not previously been identified as oocyte genes — 37/52, 43/55,
and 38/62 showed germline expression. All these proportions are very significantly
higher than the background percentage of 20% (p < 8.0e-16 for all motifs by a
proportions test). These results provide additional evidence that we are learning

functional motifs that contribute to germline expression.

Comparison with principal component analysis

Principal component analysis (PCA) is a widely used dimensionality reduction tech-

nique that extracts from the data matrix a sequence of orthogonal vectors, or princi-

84

pal components, that capture the directions of maximal variance in the input data.
PCA is frequently used on either rows (genes) or columns (experiments) of a gene
expression matrix for visualization or preprocessing prior to other kinds of analysis
Raychaudhuri et al. (2000). By contrast, PLS is a supervised method that, in our
context, determines weight vectors c; as directions in gene expression space having
maximal covariance with latent factors in motif space. Both PCA components and
PLS weight vectors are interpreted as gene expression patterns. However, principal
components are learned from gene expression data only, while weight vectors c; are
found based on a linear mapping from motif space to gene expression space.

We were interested in comparing our (graph-regularized) PLS results with
standard PCA in order to assess the value added by the motif information and
supervised learning formulation. We anticipated some concordance of results, since
directions that capture little variance in the expression data will also fail to have
significant covariance with motif latent factors. Figure 3.12(a) and 3.12(b) plot the
first four PCA components versus PLS weight vectors. The first and second PCA
components indeed bear some similarity to the first and second PLS weight vec-
tors and to some extent resemble the oocyte and sperm gene expression patterns,
respectively. Since these two gene sets are fairly large and follow distinct expres-
sion patterns, they account for a significant portion of gene expression variance,
and so it is not surprising that the first PCs show correlation with these patterns.
However, all the principal components are less smooth, as expression trajectories,
than their corresponding PLS weight vectors, and the smoothness of the PCs de-
teriorates more rapidly than in PLS as the number of principal components/latent
factors increases. It therefore appears that PLS uses motif information to provide
some degree of regularization on the weight vectors, leading to smoother expression
patterns corresponding to latent factors.

To confirm that the PLS-derived motifs could not be determined from anal-

85

First 4 PCA principal components

First 4 PLS weight vectors
1 50 ——

==PC1 ==C1
0.8({=e=PC2 1 40 ———C2
PC3 c3

0.6 PC4] c4

30
0.41

WU PR ZK O

-0.

1t 2 3 4 5_6 7 8 9 10 11 12 12 3 4 5_6 7 8 9 10 11 12
Time point Time point

(a) (b)

Figure 3.12: Comparison of PCA components and PLS expression weight
vectors in gene expression space. The first and second principal components
bear some similarity to corresponding PLS weight vectors c;, ¢ = 1,2, but all
principal components are less smooth than in PLS. (a) PCA identifies the first four
directions (PCy, PCy, PC3 and PCy) that have maximal variance in gene expression
space. Principal components are plotted v.s. time. (b) Graph-regularized PLS
learns weight vectors (cj, ¢, ¢z and c4) based on a linear mapping from motif
space to gene expression space. Weight vectors are plotted vs. time.

ysis of the first and second principal components (PC; and PCs), we further com-
pared PCA and PLS in terms of extracted motifs. We used AlignACE Hughes
et al. (2000a), a Gibbs sampling based motif finding algorithm, to discover motifs
associated with the first two PCs, using the following procedure. First, we selected
genes highly correlated with PC; and PCy (Pearson correlation coefficient > 0.9)
and obtained two gene sets consisting of 1248 and 415 genes for PC; and PCs re-
spectively. Second, we ran AlignACE on the upstream regions of genes in each set,
producing 58 motifs for PC; and 89 motifs for PC, in order of descending MAP
scores, the metric for motif strength used by AlignACE. Figure 3.13(a,b) shows
the two tables consisting of top 40 motifs for PC; and PCs, respectively. In both
tables, we see many AA-rich and GG-rich motifs that are highly ranked by MAP

score, which likely come from low complexity sequence regions and probably do

86

not represent biological binding sites. In Figure 3.13(a) for PC;, AlignACE found
several CG-rich motifs with relatively low MAP scores (e.g. MAP = 147.05, 90.77,
80.93). Among these motifs, most contain the core element CGCGC, matching the
top ranked 50 k-mers of 1st PLS weight vector.

In Figure 3.13(b) for PCs, only one motif (MAP score = 101.03) is similar to
our PLS sperm gene motif ACGTG from the 2nd weight vector. However, it ranks
low by MAP score and top ranked motifs seem to be background sequences with
local AA or GG enrichment. These results suggest that we cannot fully retrieve
the motifs learned by PLS simply by analyzing genes correlated with PC; and PCs.
Rather, PLS appears to recover more complete motif information by directly setting
up a correspondence between promoter sequence and gene expression.

Since the third and fourth PLS latent factors represent much smoother
and quite different expression patterns than their PCS counterparts, we exam-
ined whether the genes associated to these factors based on motif and expression
similarity (see Methods) may have common functions. While there were few genes
associated to the fourth PLS factor (18 genes) showed no enrichment for GO terms,
the gene set for the third PLS factor was significantly enriched for 54 GO terms
(using a threshold of p < le-4, uncorrected hypergeometric people), of which the
majority involved metabolism (32/54) and almost half of these were specific to
amino acid metabolism (15/54). These genes are not enriched for germline expres-
sion, suggesting that our analysis has uncovered an independent co-regulation of a
set of gene functions that might have been swamped out by the stronger germline

information using other techniques.

Comparison with clustering

Finally, we compared our results with standard cluster-first analysis, using hier-

archical clustering to identify 5 distinct gene clusters and applying the AlignACE

87

MAP Motif MAP Motif
2450.03 [~AAAA "AAA~ 558.51 | AAAA . x aAAA
1171.00 [~AAAA anAA _ 41792 | o TT ~AAAA~~
79862 | TTT= ~AAAA- 34464 | = ~AA~_. AAAA
624.79 | ~AAAAT-- __TTx 273.99 | axT o AAAA~
584.70 AAAAA-~ AA 250.64 | AAAAAA - =2A=
546.80 TCTCc——-CCA 242.08 -GG_c~G_cGac
521.67 | ~AAAAAC-A -~ 204.30 | ¢ o oAl ool
44684 | T.__AA ~AAAA 180.54 | AAA x~ = AA TT
358,60 | A=TT 1T AAAA~ 17739 | T--AAA=TT __AA
335.20 | cchAa ~cCLC.Con . 171.85 | AAAA TTx A~
257.68 | [TAAAL-Cc=CA 16737 | _~AAAAAT _A
24644 | =~ TAC=_-TA 156.94 | CCAlicn alia. 50C
184.36 AGA=A~ < o 156.87 AAAAAA . TTx =~
180.69 | C-AAAA C 154.68 CeAlixanelilreo00s.5-oCsz
170.03 AGACGCAGA 149.93 o T
161.28 ~AAAAT _ G~ 149.21 | Aol Coologanlicl,
147.05 | cCLCLClL = __ 14822 | Tues o sevrriilel oot0
142.38 AAAAA _~A 141.76 | T.TUecAx2AC.~cA_TCC
126.60 | === c ~ 139.13 | A-ileacllolzcscla 00l
12642 | AAAACA=TT 1 138.46 ~x750C A5zl (o AGaG0-C
75516 | AAA_ C! — 13459 | ~nAA _TTCA=~
11591 [Ao a CACAAAAA 183.10 | olizelingigsbeanlel sigerennle
11576 | T -TIT T -C- 130.39 | Tia. x.-C. UTCGAAL
11552 | AA. A.AA AAAA 125.16 er o C c
11481 | ¢ A .cLUALL TC 124.05 | 2 osirobonbele moronrle
109.57 | GCA Tvv. CCTenccll 122.06 208805 TGAeAG o na AR o
102.63 | ci0: Cic c - 12028 | Croovfocole b Cog..C
97.27 AAAI"‘ AAAA | 117.52 | ACsonzeosiflacanc<(iles(C
s707 | - _CC ocC 115.77 | TCT.CCACA o AxAR
9077 | A __-_ACLCLCAA 111.20 xTCACA. achAax AA
8990 | AAcT-(Al <C | 10789 | oo os o (hr Gl
88.32 C==GAA=xT 102.74 | T.lahGolanCC0l Tove T
80.93 | A... =cl.LC=LCa 101.03 | 2=ACLT ana
80.81 CA __TCCC-.~ 100.43 GG~ GG G =r = c.C
79.33 cAA__~ <cCaC= 97.76 | la.. G0 00 oo c
7616 | T-C_.C.00AST-CAC 95.88 ATCT..=aC~.-GA<A
68.88 TAGATCAAA 94.41 | Ceaccrilin A
66.81 | mm= CLCAAAAA T 94.08 AAA. A,AAT — A
5522 CC-AGAAA 87.54 AAA T.T_A A _II
34.11 GGG A ag. 87.36 <CGACG Cc
(a) (b)

Figure 3.13: Motifs found by AlignACE in genes correlated with PC; and
PC,. (a) Top 40 AlignACE motifs in genes correlated with PC; sorted by MAP
score. Top ranked AA-rich and GG-rich motifs may result from low complexity
regions, and several PCA motifs with relatively low MAP scores (e.g. MAP =
147.05, 90.77, 80.93) are similar to PLS 1st factor motifs. (b) Top 40 AlignACE
motifs in genes correlated with PCy. Only one motif (MAP score = 101.03) is
similar to our PLS sperm gene motif ACGTG from 2nd weight vector. None of the
other PCA motifs matched any of the PLS 2nd factor motifs.

88

motif discovery program to the promoters of each cluster in order to find over-
represented motifs. In the hierarchical clustering step, we clustered genes by the
similarity of their temporal expression profiles and determined gene clusters with
distinct expression patterns. Using average linkage for calculation of cluster dis-
tance, we identified five large gene clusters within which the Pearson coefficient
exceeds 0.80. In particular, we found three large gene clusters exhibiting expres-
sion patterns similar to oocyte or sperm gene expression, as illustrated in Figure
3.14. Genes in Cluster 1 display very low levels of expression early in the time
course (time points 1 to 5) and then show an abrupt increase (time points 6 and
7). Meanwhile, genes in Cluster 2 have higher levels of expression at early time
points and show a more gradual increase in expression over time. Genes in Cluster
3 are characterized by a sharp increase in expression at time points 3 and 4 and
a sharp decline at time points 7 and 8, an expression pattern seen in many sperm
genes. We applied AlignACE analysis on the three gene clusters and learned 47, 53
and 36 motifs for Clusters 1, 2 and 3 respectively. Figure 3.14 displays the three
motif tables consisting of the top 40 motifs for Clusters 1 and 2 and all 35 motifs
for Cluster 3, sorted in order of descending MAP scores. Similar to AlignACE
on PCA gene sets, there are many AA-rich and GG-rich motifs that may come
from low complexity sequence regions. For Cluster 1 and 2, which resemble the
oocyte gene expression patterns, four motifs with relatively low MAP scores (MAP
= 87.22, 57.85 with ranks 22, 28 among motifs in Cluster 1; and MAP = 109.32,
95.99 with ranks 24, 24 among motifs in Cluster 2) match PLS 1st weight vector
motif CGCGC. Two motifs (MAP = 192.24, 120.51 at ranks 14, 21) in Cluster 2
contain the core element GGCGC found by PLS 1st weight vector. For Cluster 3,
none of the AlignACE motifs match the top ones found by PLS 2nd weight vector.
We conclude first that PLS avoids many presumably spurious motifs from low com-

plexity regions while finding true germline-specific motifs that are missed through

89

standard cluster-based analysis.

Univariate PLS regression

n multivariate PLS, we found latent factors in motif space that explain gene ex-
pression trajectories over all time points simultaneously. For comparison, we also
investigated learning motif information to predict time-specific gene expression
by applying PLS to single experiment gene expression values, similar to existing
regression-based algorithms like REDUCE Bussemaker et al. (2001). We ran stan-
dard univariate PLS regression, where we trained and tested each time point sep-
arately. We learned up to five latent factors per time point, giving a total of sixty
factors. Figure 3.15(a) plots the normalized mean squared error on cross-validation
test data versus number of PLS iterations for univariate and multivariate PLS . At
each PLS iteration, univariate PLS learns twelve latent factors, corresponding to
the twelve time points, while multivariate PLS learns one latent factor for all time
points together. As shown in the Figure 3.15(a), univariate PLS achieves its lowest
test error at the 1st iteration (12 latent factors), performing similarly though in
fact marginally better than the best cross-validation error for standard multivari-
ate PLS at the 4th iteration (4 latent factors). We conclude that learning motifs
for each time point indendently does as well as (indeed, slightly better than) the
multivariate approach in terms of reducing squared error, but it does so at the cost
of a more complex model.

We were also interested in evaluating univariate PLS on biological gene sets
across time points, to see whether correlating motifs with certain time points can
significantly explain the differential expression of the gene sets. We only examined
the time-specific twelve factors corresponding to first latent factors for each time
point, as univariate PLS starts overfitting after the 1st iteration. Figure 3.15(b)

plots the time-specific normalized mean squared prediction error versus time point

Cluster 1 gene expression

20

Cluster 2 gene expression

Cluster 3 gene expression

200 00
§ § gzoo
84oo & 400 3
600 400
600
2 4 .6 .8 10 12 2 4 .6 .8 10 12 2 4 .6 .8 10 12
Tlmﬁ iﬂlm Tlmi iﬂlm Tlmi iﬁlm
-2 0 2 -2 0 2 -2 0 2
(a) (b) (c)
MAP Motif MAP Motif MAP Motif
1746.62 ’il_AI_AA - :\%ﬁﬁA 2398.25 /KAAAA% ~AAA. 624.20 | ~AAAA.. AAas
678.33 |xI1x A 2 1909.95 A Ada. AAAA
41473 | =AA~AAAA~A 1046.43 | xTTx ~AAAA~ :Zg': TIT AAAAT:AAA
390.94 | _AAAAA<—=~A 61239 | AAAAAT<-A = . B s
386.96 TCTCC_..CCA 47339 [=C_~~AAAA~ 26024 | xTTr = AAAAA
37823 | AAA=TT _AA=x 46978 | 1 v=_AAAAA~ 24330 | aARs___ o TTT AA
35665 | =l =-—n ~AAAA 42120 | _.AA AAAA= AA 20931 [AAATTT AAs =
22231 | = Tl= AAAA=T 406.35 | aAAAs . eaA_ . TT 15117 | TT=AAAA T
198.86 | T=AAACLC=CA 374.71 | ~AAA AAAA 131.70 g GG
187.33 | AAAAT ~ =TTT 323.85 TCTCG...cCA 10932 | A_AA_AA A_AAA
186.52 | (CAn ~CCUCaCeA. -0 20854 | CCAAAA A 105.80 | CoeA CaACC<A.
177.45 | =~ TACx-TA 25032 | AAAax=: TTT
158.32 | .- AAAAA . 234.64 | (CAa cCLCC_A _C z:;z ﬁAAAEA L IP;TT?
141.25 | AAAA AaAA - 19224 | TTAAAC .C-C : L=
136.55 | A= CA=AGA 189.62 | COUTCrTICCo Ac 82.37 -~ TACTGTA
106.74 | Ax..CLGACT TCLT 186.93 | AAaoT__ _AAA 6419 | CGTGAA-TT-
10523 |« CC CAAAAxT 164.76 | v A..-CLOAC= TCCT 4476 | CCo. CUACACC
9776 | CCAAAAC e 139.29 | 2AA < Cov 3792 | ACL..L_CA <G
0120 [Ghrer. CTc T 19896 [ARAA T ok 7655 | o Gos ol ¢
9058 | =Cen AA=TTI 137.96 | o G _¢oCG ccC 2489 | T-GUCLG=UC=T
8827 | AAA_. - CCl=. 12051 | To=T - CLC_ 2471 | AB - (lcon =t
8722 | ==CLC=aAA~ 115.02 AGACGCAGA To.04 - ~AC A
83.60 | cowco = = 114.17 ~ TAC=GTA 13.08 ATC A 'A AA
79.18 | AAcT< aTx -C 109.32 | =—=CLcCAAA = : Z= oG -
6389 | [, o~ g0A o gOR 95.99 | -LCLC= —20o 11 AAT-A-T
62.77 CGTCGCGx = 9109 | = G Lc e o (1019 | C_TC=TCETCA
5989 | _(.__TT.C. A< 87.57 | (CA x -~ Ciloocll 1004 | TACCeacCA
5785 | _(CoxcCCEC . A 86.11 G . G AG G 9.44 c.._6CelbeallCe
57.17 — Coh .0 (¢ 85.94 | TLUCA< TCLCCA 918 | g UzalC. G.a. CA
47.19 ATc AT 76.29 p— — = 7.07 0C-GGCCAc . c r5a s
4498 | cCTUCL oo 72.91 | AACA_.CACCC 663 | AAa_.x__ ~AAARA
44.78 aAAA=A- Aa 68.96 CraalTAGCAST 5.68 _cGexGaC. ~
37.74 0. CC.C. 6578 | = CACAUAC. 515 — = éT —
3465 | T.CC...A.C c__C. 62.77 _Gec 5 o 2'92 — = EAQ
33.49 TaAACAa.. ¢CC. - c 5546 | —=L <= C=l= - —— -
3268 | 0 G- R o 52.26 | 10 . xeoxhele.(CACTO0=] 247 | Goues, cxla
2727 | —.CC=A_-AAA 24997 | 0. . cibb ¢l 246 | GoacTUTAC: cTawx
14.46 | —cn o0 L oG 4459 | C. C~ A .. ACCAGA 2.42 A=~-cGC aC
14.28 GCEecATx=C 38.97 AaanAAA _cGa 117 | e .GGacGAGC

Figure 3.14: Motifs found by AlignACE in different gene clusters.
Expression patterns of genes in Cluster 1.

(d)

(e)

(f)

90

(a)

(b) Expression patterns of genes in

Cluster 2. (c) Expression patterns of genes in Cluster 3. (d) Top 40 AlignACE
motifs found in Cluster 1 genes. (e) Top 40 AlignACE motifs found in Cluster 2
genes. (f) All 35 AlignACE motifs found in Cluster 3 genes.

91

Normalized mean squared prediction error Normalized mean squared prediction error by time point
1. - - 1.5
=e=Univariate PLS =—All genes
5 =e=Multivariate PLS 5 =—Qocyte gene set
£ 1157] £ ——Sperm gene set
s 513 Sperm gene se
o =
2 S
SERA 5
b1 B 1.1
Qo L
_g 1.05F _g— .
(<l D
= & 0.9r
> 1 =
8 &
5 g
0.7}
2oos %’
0% 1 2 3 4 5 o 2 4 6 8 10 12
Number of PLS iterations Time point
(a) (b)

Figure 3.15: Normalized mean squared prediction error on cross-validation
test data. (a) Normalized mean squared error versus number of PLS iterations
for standard univariate and multivariate PLS. At each iteration, standard univari-
ate PLS learns twelve latent factors, corresponding to the twelve individual time
points, while multivariate PLS learns one latent factor for all time points. Uni-
variate PLS yielded a slightly lower test error than that of standard multivariate
PLS after the 1st iteration; however, after one iteration, the univariate PLS cor-
responds to a collection of motif sets, each predicting a single experiment’s gene
expression changes, while multivariate PLS uses a single motif set to predict full
gene expression trajectories. (b) Normalized mean squared error on test data by
time point after the 1st univariate PLS iteration. Normalized mean squared error
versus time point on all genes, oocyte and sperm gene sets. Univariate PLS reaches
lowest prediction error on oocyte gene set at late time points when oocyte gene
expression peaks. Similarly, prediction error on sperm gene set is small at middle
time points when sperm gene expression peaks. Each time-specific univariate PLS
models the motif-expression correspondence for the gene set differentially expressed
at the given time point.

as the first twelve latent factors were applied to the twelve time points. We also
estimated the prediction error on oocyte and sperm gene sets, and found that their
prediction error profiles seemed to be anti-correlated with their expression profiles,
respectively. Univariate PLS reaches lowest prediction error on oocyte gene set at
late time points when oocyte gene expression peaks. Similarly, prediction error on
sperm gene set is small at middle time points when sperm gene expression peaks.
These results are expected, as each time-specific univariate PLS models the motif-

expression correspondence for the gene set differentially expressed at the given time

92

point.

Nonetheless, we found the k-mers ranked top by weight vectors at those
middle or late time points to be fairly similar. This redundancy confirmed our
earlier hypothesis that neighboring time points, either in the middle or late stages,
are correlated and help us discern essentially the same motifs. Multivariate PLS
reduces this type of redundancy in the model by learning fewer latent factors to

map from motif to full expression patterns.

3.5 Conclusions and Discussion

We present a predictive framework for modeling the natural flow of information,
from promoter sequence to expression, to learn cis regulatory motifs and char-
acterize gene expression patterns in developmental time courses. We introduce a
cluster-free algorithm based on a graph-regularized version of partial least squares
(PLS) regression to learn sequence patterns — represented by graphs of k-mers, or
“oraph-mers” — that predict gene expression trajectories. Applying the approach to
wildtype germline development in Caenorhabditis elegans, we found that the first
and second latent PLS factors mapped to expression profiles for oocyte and sperm
genes, respectively. We extracted both known and novel motifs from the graph-
mers associated to these germline-specific patterns, including novel CG-rich motifs
specific to oocyte genes. We found evidence supporting the functional relevance of
these putative regulatory elements through analysis of positional bias, motif con-
servation and in situ gene expression. This study demonstrates that our regression
model can learn biologically meaningful latent structure and identify potentially
functional motifs from subtle developmental time course expression data.

There have been several other regression based motif discovery approaches
related to our work. For example, REDUCE Bussemaker et al. (2001) was the orig-

inal method to use correlation between k-mers and differential expression for motif

93

discovery. REDUCE, however, uses each experiment independently, where we use
multivariate PLS to treat full expression trajectories as the output space. To weight
the benefits of regression with a multivariate output, we also tried fitting a separate
graph-regularized univariate PLS model on each time point separately. We found
that multivariate PLS outperforms univariate PLS, suggesting that correlating mo-
tifs with full expression patterns is more statistically accurate than performing
regression one experiment at a time, at least in the case of correlated experiments
such as time series data. Moreover, there was substantial overlap in the motif in-
formation inferred from nearby time points, showing that fitting a separate model
for each time point entails a good deal of redundancy.

More recently, Zhang et al. Zhang et al. (2008) used PCA to define a basis of
univariate response variables in the output space and then performed a REDUCE-
like regression onto each variable to collect a set of motifs. In our work, by doing
multivariate regression, we retain more structure in the solution, for example, a
stratification of the output space by images of latent factors, each one correspond-
ing to a characteristic time expression profile. We also note that lasso regression
has been used elsewhere for learning regulatory networks in bacteria using time
course expression data Bonneau et al. (2006), and standard PLS has been used
with a collection of known motifs in linear modeling of expression data in yeast
and bacteria Brilli et al. (2006). Finally, graph-based motif representations have
been used previously by other groups, for example Naughton et al. Naughton et al.
(2006), but this work again falls into the “cluster-first” category in that it seeks to
find overrepresented motifs for a predefined gene set. By contrast, we learn motifs
via a global regression problem, and the graph structure is encoded as a constraint

on the solution.

94

Chapter 4

A Predictive Approach to
Learning Regulatory Motifs and

Control in Caenorhabditis elegans

4.1 Introduction

The ability of individual cell lineages within multicellular organisms to sense and
respond to their environment hinges on the coordinated function of thousands of
genes and their products. A central computational challenge of the past decade has
been revealing the underlying network of causal connections among these genes and
products — principally, the protein-DNA interactions of transcription factors and
the short sequence elements to which they bind in order to regulate the expression
of genes — from noisy and incomplete but high-throughput genomic data such as
mRNA expression data from microarray experiments.

Most recent machine learning efforts to study gene regulatory mechanisms
at a systems level have focused on learning modular or network structure in gene

expression data — for example, finding clusters of potentially co-regulated genes,

95

or building a graph of putative regulatory “edges” between genes. In particular,
probabilistic graphical models, also called Bayesian networks Friedman (2004); Se-
gal et al. (2003a); Hartemink et al. (2001); Pe’er et al. (2001; 2002); Beer and
Tavazoie (2004) have been widely used for learning structure within a formal prob-
abilistic framework where the conditional dependence relationships between various
random variables are constrained by a directed graph. Other authors have tried to
learn explicit parameterized models for pieces of the regulatory network by fitting
linear models to the training data Yeung et al. (2002); D’Haeseleer et al. (1999).
Clustering approaches have of course been widely used in gene expression anal-
ysis (e.g. et al. (1998)), along with alternate approaches for revealing modular
structure Bergmann et al. (2003). An appealing feature of these structure-oriented
approaches is that the models are interpretable and therefore provide useful ex-
ploratory tools for generating biological hypotheses about gene regulation. We
note that almost all this structure modeling work has been limited to the yeast S.
cereviseae.

Other efforts have focused on using traditional statistical approaches to find
individual regulatory patterns that independently account for differential gene ex-
pression. For example, the REDUCE method of Bussemaker et al. Bussemaker
et al. (2001) discovers motifs whose presence individually correlates with differen-
tial mRNA expression in a single microarray experiment. In other work, Pilpel et
al. Pilpel et al. (2001) find “synergistic” pairs of motifs whose joint presence corre-
lates with significantly greater gene expression coherence than occurrence of either
motif alone. Such statistical approaches can find strong regulatory signals, but do
not allow us to detect or integrate many subtler regulatory effects.

More broadly, most methods for discovering transcription factor binding sites
rely on first clustering genes (based on expression profiles, annotations, or both) and

then looking for overrepresented patterns in the regulatory sequence for these genes.

96

Although the numerous “cluster-first” approaches — such as MEME Bailey and
Elkan (1994b), Consensus Hertz and Stormo (1999), Gibbs Sampler Lawrence et al.
(1993), AlignACE Hughes et al. (2000b) and many others — include methods that
use probabilistic models, we still characterize them as signal-finding approaches,
since they do not learn integrated gene regulation models.

An alternative computational approach for learning predictive models of
gene regulation called “regulatory programs” was previously proposed based on
the MEDUSA algorithm Middendorf et al. (2005; 2004). The goals of the approach
are twofold. First, we want our gene regulatory programs to explain the context-
specific regulation of target genes in terms of meaningful mechanistic information,
including the activity of transcriptional regulators and signal transducers and the
presence of binding motifs in the promoter sequences that mediate regulatory con-
trol. Therefore, rather than directly learning a network or a set of clusters or
modules, we are learning a prediction function, and we view the learning task as
a prediction problem rather than a model selection problem. Second, in order to
provide unambiguous statistical validation, we want our gene regulatory programs
to achieve high prediction accuracy on held-out data. In the previous work in
yeast, MEDUSA achieves both these goals while still yielding interpretable and
experimentally testable biological hypotheses.

While the previous work on MEDUSA and the bulk of the structure-learning
methods described above have dealt almost exclusively with the Saccharomyces
cerevisiae (baker’s yeast), here we are interested in studying gene regulation in
higher eukaryotes with sequenced genomes in general, but focusing on the most
tractable of these organisms, the worm Caenorhabditis elegans. There are numer-
ous issues in extending computational learning methods to higher eukaryotes. First,
the number of regulatory components (transcription factors, signaling molecules) is

much larger and less well elucidated. In general, the regulatory sequence informa-

97

tion in the non-coding DNA is larger — regulatory elements in the fly, for example,
can be found 10K base pairs up or downstream of the gene or in introns Berman
et al. (2002) — and more complex, often requiring the modeling of cis regulatory
modules, spatial clusters of binding sites that acts as an irreducible functional ele-
ment Berman et al. (2002); Rajewsky et al. (2002). In worm, however, the promoter
sequences are similar to those in yeast in length and complexity, allowing us to use
the MEDUSA’s current sequence representation. It is nevertheless true that the
knowledge of the binding sites in the regulatory sequence is far more limited and
motif discovery approaches less developed in worm. Gene expression data can also
be more difficult to interpret in multi-cellular organisms. Ideally pure populations
of cells should be isolated and be prepared for gene expression data of individual cell
types. However at only 1mm in length as an adult, Caenorhabditis elegans makes
tissue dissection tedious or even impossible for generating homogeneous tissue for
biological analysis. For example, if a microarray experiment is performed on whole
embryos in development, the gene expression measurements observed are averaged
over all cells in the organism, and spatial patterns of differentiation that are crucial
for development are lost.

With MEDUSA we obtain encouraging results both in terms of prediction ac-
curacy and in the biological information we are able to extract from the MEDUSA
regulatory program. In particular, we present a case study where we detect a
signal of lineage-specific regulation despite the fact that we learn from whole em-
bryo expression data.While we do not address all the modeling challenges of higher
eukaryotes in general, the experimental results described below are a significant
step towards representing more complex regulatory mechanisms in our predictive

modeling approach.

98

4.2 Methods

The core of our approach is a novel algorithm called MEDUSA Middendorf et al.
(2005) (= Motif Element Discrimination Using Sequence Agglomeration), which
integrates mRNA expression and regulatory sequence data to discovers motifs rep-
resenting putative transcription factor binding sites and to build a global gene
regulatory program. MEDUSA differs from most previous studies by implement-
ing a number of key algorithmic features: (1) it integrates promoter sequence and
expression to learn a global regulatory program; (2) it learns binding site motifs
directly from sequence without seeding the algorithm with known motifs; (3) it
models functional contributions of both regulators and motifs in the regulation of
target genes; (4) it avoids overfitting when training in a high dimensional feature
space by use of a machine learning technique called boosting.

The inputs to the MEDUSA algorithm are a list of regulators, including those
that do not bind DNA, the promoter sequences for all target genes, and gene expres-
sion training data that has been discretized into up, down, and baseline expression
levels. MEDUSA learns sequence motifs whose presence in the promoters of target
genes, together with the mRNA levels of regulators across experimental conditions,
helps to predict the differential (up/down) expression of the targets. MEDUSA uses
boosting Freund and Schapire (1997), a general binary prediction algorithm from
statistical learning theory, to build this prediction function or regulatory program.
Empirically, boosting often learns to make large-margin (confident) predictions on
the training set, which is theoretically linked to its ability to obtain good general-
ization on test data even when the feature space is very high dimensional (that is,
it avoids overfitting the training data).

MEDUSA models the control logic of transcriptional regulation in the form
of an alternating decision tree (ADT). An ADT is a generalization of a decision

tree that consists of alternating layers of decision nodes, which ask yes/no questions

99

based on particular features, and prediction nodes, which contain a real-valued score
associated with the yes or no answer. Given the promoter sequence of a gene and
the expression level of the regulators in an experiment, the MEDUSA regulatory
program asks yes/no questions of the form, “Is motif X present in the upstream
region of the gene and is the state of regulator Y up (or down) in that experiment?”,

4

in the ADT decision nodes. If the answer is “yes”, we add the real value contained
in the prediction node to the overall prediction score for the example, and we
continue down to the next decision node; if the answer is “no”, there is no score
contribution. To compute the prediction score for a gene-experiment example, we
start at the root node and recursively check which decision nodes we can pass
through by answering “yes” to the condition, working from the top to the bottom
of the ADT; the prediction score is the sum of all the prediction node scores in all
paths in the ADT that we visit in this process. Figure 4.1 summarizes the way in

which MEDUSA represents the training data and how the learned ADT defines a

genome-wide regulatory program.

4.3 Data Set

We performed MEDUSA experiments on a gene expression data set for embryonic
development in the worm C. elegans Baugh et al. (2003). The data set consists
of a finely sampled time course that commences with the zygote and extends into
midgastrulation, spanning the transition from maternal to embryonic control of
development and including the presumptive specification of most major cell fates.
The data contain 7 time points with multiple replicates for each experiment. The
data were transformed to fold changes using the PC32 time point (32 minutes after
pseudocleavage) as control. The replicate data was used to estimate an intensity-
dependent noise model. We discretized the expression data into 3 levels (up, down

and baseline) using an intensity-dependent noise model: +1(-1) representing sig-

100

A B
Cosrt

Regulators hmg-11 up and gsp-3 up and
AA Y c' a present? AA C - present?
R ®

AAAATAAGATA ¥ Y
TGCCGCTGCGC
CATTACATATC @ @
TAGAGTGACAT
GTAATTAARTG G)
TAAGTRACGAT D
TATCTGTARAC =
GACTATATACA @ pha-4 up and pke-1 up and
ATTAGTCATAT 0 «@ e
TAT1GAAGCT 2 ?
e _CCCC, . present = present?
ACACAGCTGCA
GACGTTTAAAT
TGCCACTACCT

Figure 4.1: MEDUSA learns genome-wide, context-specific regulation programs. A
schematic example shows how MEDUSA regulatory programs predict differential target gene ex-
pression. (A) In the data representation, rows represent genes and columns represent experiments.
Genes are divided into regulators (transcriptional regulators and signal transducers) and targets.
The expression levels of regulators, along with the promoter sequences of target genes, are used
to predict up/down expression of the targets. Individual weak rules in MEDUSA depend on a
pairing of a particular regulator state and a motif. For example, the rule illustrated suggests that
a certain regulator is in a down state (low expression level), targets genes containing the motif
“GAAGCT” in their promoters tend to be upregulated; while a single gene-experiment example
is highlighted, the weak rule must be predictive across the (weighted) training data in order to
be chosen. (B) The MEDUSA regulatory program is described by an alternating decision tree
that asks questions about the expression level of regulators in the experimental condition and
the presence of motifs in the gene’s promoter. Using boosting, weak rules are iteratively added
as nodes in the ADT; the scores in each round node indicate the contribution to the overall
prediction score when the corresponding weak rule applies. The ADT can be applied to a new
gene-experiment example to obtain a real-valued prediction score. The sign of the score gives the
up/down prediction, while the size of the score is a measure of its confidence.

nificant up-(down-)regulation and 0 representing expression measurements within
the level of noise using a p-value of 0.01) and obtained a total of 9135 genes that
significantly changed expression in at least one time point.

We collected a set of 1370 potential regulators consisting of transcription
factors, kinases, phosphates and signaling molecules from TRANSFAC Matys et al.
(2006), WormBook, (http://www.wormbook.org) and WormPD Costanzo et al. (2000).
We obtained promoter sequences spanning 1000 bp upstream of the genes from Wor-

mmart (http://www.wormbase.org/biomart/martview). These data were used as

101

input to the MEDUSA algorithm.

4.4 Results

4.4.1 Statistical Validation

4.4.1.1 MEDUSA predicts held-out experimental data without overfit-

ting

A central goal of machine learning is to avoid overfitting, i.e. to ensure that, as
the complexity of the learned model increases, the model continues to generalize
well to new data drawn from the same distribution as the training data. To con-
firm that MEDUSA’s learned regulatory program generalizes well, we performed
10-fold cross-validation experiments, randomly splitting gene-experiment examples
into test and training sets with 10% of the data assigned to a test fold. Replicate
examples were groups within folds to avoid making the learning task too easy. Fig-
ure 4.2 illustrates that after 500 iterations of boosting (i.e. 500 weak rules combined

in the ADT), the model continues to generalize well to test data.

4.4.1.2 MEDUSA’s accuracy is statistically significant

To assess the difficulty of the prediction task, we compared MEDUSA to a sim-
ple correlation-based method, where we predict a gene’s held-out expression levels
based on the “nearest regulator” to its training set expression levels. As in our main
experiments, we performed 10-fold cross-validation, and for each gene represented
in the test set, we considered its expression profile when restricted to examples
(i.e. experiments) in the training set and found the best-correlated regulator across
these experiments. The expression level of this regulator was then used to predict

up/down expression in experiments held out for this gene. As similarity metrics,

102

training and test loss
0.45 T T T T T

training loss
© testloss

0.05 1 1 1 I I 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500

Figure 4.2: Prediction accuracy on unseen experimental data. Training and test set
error rates for the first 500 rounds of boosting, showing MEDUSA’s accurate prediction on test
data (red line) as well as agreement with training data (blue line).

we tried both the Pearson correlation over real-valued expression data (including
baseline examples) and the normalized Hamming distance (excluding baseline ex-
amples) for discretized expression data, where the inclusion/exclusion of baseline
examples was chosen in order to report the better results. In cases where multi-
ple regulators were equally distant from a target gene, we randomly selected one
amongst them as the “nearest regulator.” The ratio of negative to positive examples
for the target genes was 42% to 58%; a classifier that always predicts the larger
class would therefore achieve the baseline (“random”) performance of 58% accu-
racy. As shown in Table 4.1, we found that MEDUSA greatly outperformed the
nearest-regulator method for both experiments using real-valued expression data

and for discretized data.

103

Table 4.1: Assessing statistical significance of accuracy of predictions on
held out experimental data.

method expression data averaged cross-validation accuracy
nearest regulator continuous 66%
nearest regulator discrete 73%

MEDUSA discrete 84%

4.4.2 Biological Validation

4.4.2.1 MEDUSA learns regulatory sequence elements ab intio

We compared the MEDUSA PSSMs learned in the first 500 boosting rounds against
TRANSFAC and WormBook PSSMs. Figure 4.3 shows the most significant matches
of PSSMs and corresponding p-values (calculated from average log likelihood ratios
using MatAlign (http://ural.wustl.edu/software.html). In particular, we found the
binding site for HLH-8, a helix-loop-helix transcription factor expressed in all body
wall muscle cells from several cell lineages during embryogenesis, and for MEC-3,

a transcription factor essential to touch cell differentiation in the neural lineage.

wes | CATATG | 0TS | o oo o oo TG | AMOMA. | o [0 se]oce
ocs | MNTIOT | ATIOHT | s oo s | JTUTOHT | ATANTC. | o |0 s ocomc
ocs | MWD | T | o s eeo e | MR | ATGAT | v ool
wn | TOHAN | | w eswfeeo|mee] PN | MTTGE | s | sae]asse
wws| U | ROToh | w fesssfuvee | (TN | (T, | e [poue
wcs | U | Mk | e oo | OGN | . | oo e o

Figure 4.3: Significant TF binding site motifs learned by MEDUSA for the worm
data set. The table shows some of the PSSMs found by MEDUSA that most significantly
match experimentally verified TF binding sites compiled from the TRANSFAC and WormBase
databases. The significance of the match is reported as a p-value for the average log likelihood
ratio (uncorrected for multiple hypothesis testing).

104

4.4.2.2 MEDUSA reveals context-specific regulation relevant to touch

receptor neurons in worm

We further investigated whether we could reveal target, context, and even cell
lineage specific regulation by examination of the learned MEDUSA regulatory pro-
gram, despite the limitation that the expression data came from whole embryo
samples. We performed a case study relevant to touch receptor neurons. Six
mechanosensory neurons (the touch cells) mediate the response of C. elegans to
gentle touch. FExperimental evidence suggests that the gene MEC-3 encodes a
transcription factor which specifies the differentiation of the touch cells, Way and
Chalfie (1988); Xue et al. (1992); Zhang et al. (2002). and a subset of 34 genes in
our data set have been previously identified as MEC-3-dependent genes expressed
in touch cells Zhang et al. (2002). We first analyzed this set of genes across all
time points after the 4-cell stage during embryonic development in order to find
MEDUSA motifs which strongly affect this group of targets. We ranked the motifs
using a margin-based score and frequency score. The frequency score is simply
the number of training examples that are affected by the motif according to the
regulatory program. The margin-based score assesses how much the motif affects
the confidence of predictions on a set of training examples.

In large-margin techniques like boosting and SVMs, the margin for an ex-
ample x; with label y; = +1 and prediction function f is given by y; f(x;). If the
margin is positive, the prediction is correct, and the size of the margin gives a
measure of confidence in the prediction. If we remove, for example, motif m from
the regulatory program (i.e. delete nodes containing m and their subtrees from the
ADT learned by boosting), we denote f~™ as the modified prediction function and

define the following score:

Sm = 77 yilf(2s) = ().

{(zi,yi)}eT

105

Here T is a set of training examples considered. The score S,,, will again be positive
if on average m is important for making predictions, and its size measures its
importance to the target set.

We found a MEC-3 binding site (ATCGAT) among the top scoring motifs us-
ing both rank analyses. We also studied two special time points, 53 and 83 minutes
after the 4-cell stage, at which time MEC-3 is most up-regulated and potentially
most active. In both cases, the same binding site scored the highest among all
motifs. In this way, MEDUSA successfully discovered a MEC-3 motif despite the
lineage-specific nature of touch cell differentiation. Figure 4.4 illustrates the results

of margin score analysis for target genes relevant to touch cell differentiation.

4.5 Conclusions and Discussion

It is useful to emphasize some aspects of what MEDUSA has been able to accom-
plish in these experiments which suggest promising next steps for the predictive
modeling framework. In whole embryo worm expression data, the MEDUSA model
can be validated both biologically and statistically, and is predictive both in that it
generates hypotheses (provides a ranking of most important associations between
transcription factors and regulatory sequences) and in that it makes quantitative
predictions of data from completely held-out experiments with statitically signifi-
cant accuracy. By representing the regulatory control logic of the organism as an
alternating decision tree, the model is also highly interpretable: one tree describes
the transcriptional regulatory program of the organism for all genes, during all ex-
periments. We also illustrate how MEDUSA can be used to reveal context-specific
and lineage-specific regulation relevant to a particular biological behavior of interest
(illustrated with a cell lineage-specific mechanism of touch receptor neurons), and
can be used to reveal regulatory cascades (the regulation of transcription factors

by other transcription factors).

106

ceh20
211284
pph-4.2
142g9.1
ref-2
sde-3
aey-t
tat 112

mec-3 binding sites
k09b11.5
prach
w2
6112
sprd
tbx-36
c18b10.6
s9e129
a0z

Regulators

HHATATGTA2g
8aACGAATH
IAGGGG
TGGAAGGY
ttCaCtat

atgTGCTAAL
aAGATCA
HHAGATAGE
ITCGACGA
ICCCCACA
AcTeCTC
CAGATTGaa
AACGATet
HCACGAL

Target genes

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm 405 6 7 8 9101112 13 1415 16 17 16 19 20 21 22

Motifs Experiments

Figure 4.4: Context-specific regulation for target genes relevant to touch cell differ-
entiation. (a) Patterns of up (red), down (green), and baseline (black) expression levels for the
statistically significant regulators controlling target genes regulated by MEC-3 across the time
points after 4-cell stage. At the left of each row, the number of target genes affected by the regu-
lator in these experiments is given. (b) The top-ranked sequence features learned by MEDUSA,
as determined by a margin-based score, and their hits across the set of target gene promoters.
The PSSMs learned by MEDUSA are represented by their consensus sequences. At the bottom of
each column, the number of target genes containing the motif is given. (¢) Patterns of discretized
gene expression levels for the target genes regulated by MEC-3 across the time points after 4-cell
stage.

We note that MEDUSA is able to learn the regulatory binding sites for worm
ab initio, without any initial guesses as to the binding site information (e.g. by us-
ing the expression data first to cluster the genes and then look for sequence elements
which correlate with cluster assignment). This suggests that MEDUSA should be
able to learn these regulatory elements for eukaryotes of similar or less complexity,
e.g., members of the worm or yeast family which have been sequenced but whose

regulatory elements have not yet been annotated. Note that while regulatory infor-

107

mation learned by MEDUSA may be presented as a network, in common with many
approaches for understanding transcriptional regulatory programs, this network is
extracted from a quantitative prediction function rather than simply a qualitative
edge list. In this way, MEDUSA combines the statistical performance of a modern
large margin prediction technique with the ability to visualize and interpret the
model through a rendered network.

Although the ability of MEDUSA to repeat in C. elegans its successes in
Saccharomyces Cerevisiae is encouraging, it remains to be seen to what extent
such the predictive modeling framework can be used in higher eukaryotes. In D.
melanogaster, M. musculus and H. sapiens, the regulatory sequence information in
the non-coding DNA is known to be far more complex: unlike in Saccharomyces
Cereuvisiae, where the promoter is limited to a 1000 base pair region directly up-
stream of the transcription start site, regulatory elements in the D. melanogaster,
for example, can be found 10K base pairs up or downstream of the gene or in
introns Berman et al. (2002). Furthermore, combinatorial regulation is known to
be more prevalent and important in higher organisms, and one must deal with the
phenomenon of the cis regulatory module, a spatial cluster of binding sites that
acts as an irreducible functional element Berman et al. (2002); Rajewsky et al.
(2002). Modification of chromatin structure Widom (1998) through histone-DNA
interactions in the nucleosomes, histone tail interactions in the chromatin fiber, and
the activity of chromatin remodeling complexes represents another set of mecha-
nisms regulating transcription. Finally, numerous post-transcriptional regulatory
processes, including mechanisms related to alternative splicing and RNA stability,
play an important role in higher organisms.

As we anticipate extending MEDUSA to more difficult multicellular organ-
isms, we note several reasons for optimism and opportunities for carefully designed

machine learning approaches. One promising avenue is learning regulatory pro-

108

grams in multicellular eukaryotes from data other than microarray data, which
necessarily involves the loss of any spatial or single-cell-specific information. The
most notable example of this is the wealth of image data being generated and made
publicly available, e.g., in single D. melanogaster embryos Janssens, Hou, Jaeger,
Kim, Myasnikova, Sharp, and Reinitz (Janssens et al.); Perkins et al. (2006); Grum-
bling and Strelets (2006). A second specific promising advance is algorithmic devel-
opment allowing richer representation of sequence data, particularly cis-regulatory
modules and conservation information. A cis regulatory module is a spatial clus-
ter of binding sites that acts as an irreducible functional element Berman et al.
(2002); Rajewsky et al. (2002); incorporation of spatial information beyond the sim-
ple ‘presence/absence’ representation of MEDUSA will be necessary to learn such
structure. Conservation information can be obtained owing to the growing num-
ber of sequenced genomes for comparative approaches and in databases of known
interactions (e.g. KEGG, MIPS) and gene annotations (e.g. Gene Ontology). For
instance, comparisons between non-coding regions of C. elegans and C. briggsae
have revealed important cis-acting regulatory elements controlling gene expression
in C. elegans Natarajan et al. (2004); Culetto et al. (1999); Teng et al. (2004).
Given a known binding site, programs have be used to identify target genes using

phylogenetic footprinting Bigelow et al. (2004).

109

Chapter 5

A comparative study on boosting
algorithms for motif discovery in

Saccharomyces cerevisiae

5.1 Introduction

One of the central challenges in computational biology is learning the structure and
control of transcriptional regulatory networks from functional genomic data. The
problem of identifying transcription factor-target gene regulatory interactions and
the DNA sequence elements that mediate these interactions is a key component in
those computational studies. MEDUSA Middendorf et al. (2005; 2004) has been
previously presented as a machine learning approach for learning motif models of
transcription factor binding sites and gene regulatory programs. By incorporating
promoter sequence and gene expression data, MEDUSA learns motifs whose pres-
ence in the promoter region of a gene, combined with activity of a regulator in an
experiment, that are predictive of differential gene expression.

MEDUSA is based on a popular boosting algorithm: Adaptive Boosting

110

(AdaBoost), proposed by Freund and Schapire Freund and Schapire (1997). In
the MEDUSA model, the role of boosting is to combine many roughly accurate
weak rules, associated with motifs and regulatory activity, into one highly accurate
prediction function for differential gene expression. In boosting algorithms there are
two sets of weights: the weights on training examples and weights on the currently
selected weak rules. It has been shown that to determine the weights on the weak
rules, AdaBoost is a gradient descent procedure that minimizes an exponential
classification error function Freund and Schapire (1997). The performance of a weak
rule with respect to weight distribution can be measured by edge, which is connected
with the weighted classification error. Large edge indicates low classification error

b

for a new weak rule. To “decorrelate ” new weak rule with last one, AdaBoost
updates weights on examples such that the edge of the last weak rule with respect
to the weight distribution is minimized Kivinen and Warmuth (1999). AdaBoost
is very successful as it has been empirically observed that AdaBoost rarely overfits
even after the training error reaches zero. This observation has been explained
in terms of margins of the training set, where the margin is interpreted as the
confidence in the prediction Schapire (1999). AdaBoost is empirically found to
improve the margins even after many boosting iterations, which often translates
into better performance on the test set.

Following the logic of large-margin theory, alternative boosting algorithms
have been proposed that provably optimize margins, e.g. Linear Programming
Boosting (LPBoost) Demiriz et al. (2002) and Totally Corrective Boosting (To-
talBoost) Warmuth et al. (2006). Both LPBoost and TotalBoost aim to find the
optimal linear combinations of weak rules that maximize hard or soft margin on
the training set Demiriz et al. (2002). This margin optimization problem has been
formulated as a linear programming (LP) problem Grove and Schuurmans (1998).

In LPBoost, the dual of this LP leads to a new example reweighting procedure:

111

at each boosting iteration, the example weight distribution is updated so that the
edges of all past weak rules w.r.t. weight distribution are constrained. In Total-
Boost, the example reweighting procedure minimizes the relative entropy to the
initial example weight distribution subject to linear constraints on the edges of all
selected weak rules. Hence, both LPBoost and TotalBoost are totally corrective
boosting algorithms in the sense that they optimize weights on examples based
on all past weak rules. In contrast, AdaBoost is corrective as it only updates the
weights on the examples based on the last weak rule.

Theoretically, LPBoost and TotalBoost should have better generalization
performance than AdaBoost according to the margin theory Schapire (1999). Be-
cause totally corrective boosting algorithms directly optimize margins while Ad-
aBoost, at least in some cases, does not Mukherjee et al. (2011). In this paper,
we implement both LPBoost and TotalBoost in the MEDUSA model. We run
MEDUSA experiments on the dataset of hypoxia response in Saccharomyces cere-
visiae Lai et al. (2005; 2006) comparing the performance of hard-margin LPBoost,
soft-margin LPBoost, soft-margin TotalBoost and AdaBoost. We find there is no
statistically significant difference between AdaBoost and soft-margin TotalBoost in
their generalization error, but they both outperform hard-margin and soft-margin
LPBoost on the hypoxia dataset. We explain the results by considering the margin
and weight distribution of training examples. In addition, we perform a comprehen-
sive comparison of the motif discovery results of AdaBoost and TotalBoost. Our
findings reveal that TotalBoost identifies many biologically meaningful binding site
motifs that are missed by AdaBoost. For motifs found by both TotalBoost and
AdaBoost, TotalBoost tends to learn them earlier than AdaBoost, making Total-
Boost a more efficient boosting algorithm for extracting biological features in the

MEDUSA model.

112

5.2 Methods

5.2.1 Boosting in MEDUSA

The inputs to the MEDUSA algorithm are a list of regulators and promoter se-
quences for all target genes, and gene expression training data that has been dis-
cretized into up, down and base-line expression levels. MEDUSA learns sequence
motifs whose presence in the promoters of targets genes, together with the mRNA
levels of regulators across experimental conditions, helps to predict differential gene
expression (up/down) Middendorf et al. (2005) .

MEDUSA implements boosting algorithm using the structure of an alter-
nating decision tree (ADT) Freund and Mason (1999a). MEDUSA asks yes/no
questions of the form, “Is motif X present in the upstream region of the gene and
is the state of regulator Y up (or down) in that experiment?”, in the ADT decision
nodes. If the answer is “yes”, we add the real value contained in the prediction node
to the overall prediction score for the example, and we continue down to the next
decision node; the prediction score for a gene-experiment example is the sum of all
the prediction node scores in all paths in the ADT that we visit in this process.
where g and e are gene and experiment indices and labels y,. lie in {—1,+1}. The
boosting algorithm repeatedly calls a weak rule for a number of iterationst =1...7T
and combines those moderately inaccurate weak rules h! into a single, highly accu-
rate prediction rule. Boosting maintains a weight distribution w over the training
set denoted by w_f]e. At each iteration t, misclassified examples are assigned higher
weights so that the next weak rule will focus more on the hard examples in the
training set.

We can measure the performance of a weak rule h' with respect to weight

distribution w by edge: v, = ge wéjlygeht(xge). The edge is connected with the

113

% — %%. Large edge indicates

weighted classification error ' of weak rule h': &' =
low classification error for a new weak rule. e.g, a weak rule that predicts perfectly
has an edge v = 1 and a completely random one has a zero edge. After a new weak
rule is selected, boosting algorithms generally update the weight distribution w by
constraining the edge of the new weak rule w.r.t w. This is known as the corrective
property of a boosting algorithm, e.g. AdaBoost. Some boosting algorithms are
totally corrective, e.g. LPBoost and TotalBoost, which update the weight distribu-
tion w by constraining the edge of all selected weak rules instead of the new one
only w.r.t. w.

The final prediction rule of the boosting algorithm is a convex combination of
wealk rules F'(z,.) = Y01, auhi(24) Freund et al. (1999), where oy is the coefficient
of weak rule at iteration t. The margin of a labeled example (x4, y,e) is defined
as Py = Ygel'(74e) and the margin of the training set is the minimum of example

margins. Larger margin indicates lower error rate on the training set and higher

prediction accuracy on the test set.

AdaBoost

AdaBoost was previously implemented for MEDUSA Middendorf et al. (2005;
2004). AdaBoost constructs an additive combination of weak rules by minimiz-

ing the exponential loss function:

L= Z exp(—ygel'(24e)) = Z exp(—Yge Z arhy(wge)) (5.1)

ge
AdaBoost can be viewed as a gradient descent method to minimize the ex-
ponential loss function. At each boosting round Adaboost selects a new weak rule
ht that classifies training examples with minimal weighted classification error. The

linear coefficient of the new weak rule o4 is determined by the weighted classifica-

114

t+1

tion error. AdaBoost updates the example weight distribution w'*" to increase the

weight of misclassified training examples after each boosting round:

wit wéeexp(—atygeht(xge)) (5.2)

ge

Further details of the AdaBoost algorithm in MEDUSA could be found in
Middendorf et al. (2005; 2004).

5.2.2 LPBoost

Previous studies have shown that AdaBoost is very successful for MEDUSA as its
classification accuracy is high Middendorf et al. (2005; 2004). However, AdaBoost
is not theoretically perfect from the viewpoint of optimization. In contrast to
AdaBoost, LPBoost directly optimizes a margin cost function. The goal of LPBoost
is to find the optimal linear coefficients of weak rules aq, ..., a; that maximize the
minimum margin among the training examples Demiriz et al. (2002). Let the
matrix H be a t by N matrix of labelings of the training examples, where ¢ is
number of weak rules and N number of training examples. Specifically, H(z,.) =
[hi(xge), ..., hi(xge)] is vector of labels given by weak rule hy, ..., hy on the training

example z4.. LPBoost is formulated as the following LP problem:

maZee, p—D Z e
ge
s.t. Yge H (Tge)x + &40 > p

5g320,g:1...G,€:1...E

t
Zaq: Lag>0,g=1,...,¢

q=1

(5.3)

115

where p — D>

ge &ge 18 the soft margin to be optimized. £/, is the slack variable
for each training example. D is the tradeoff parameter that balances margin max-
imization and training error. This LP formulation is also known as v-LP is with
D = ﬁ(% < v < 1), as v is interpreted as the percentage of training examples
misclassified Ratsch et al. (1999). Without D and slack variables &, equation (5.4)
is the hard-margin version of LPBoost Grove and Schuurmans (1998).

The dual of the LP problem is:

MMyt 41 5 Y
s.t. Z ygehq(:ﬁge)w;ﬁl <~ g=1...t
ge

Zw?gl =1,0< w;rl <D
ge

(5.4)

The dual LP has a natural interpretation. w'*! is viewed as a probability distribu-
tion over the training examples. Thus, > y4h? (g)wpt! is simply the weighted
edge achieved by h? on the training set. The best weak rule has a edge of v, and
the objective of dual LP is to find a reweighting of the training set, such that the
edge v of the best weak rule is as small as possible. Therefore LPBoost is totally
corrective in the sense that it optimizes the weights based on all past weak rules.
In contrast, AdaBoost only updates the weights based on the last weak rule.
Since the matrix H has a very large number of columns, the LP problem
(3) has vastly more variables than constraints. The idea of solving the LPBoost
formulation is intractable using standard LP techniques because the LP problem has
vastly more variables than constraints. The classic column generation (CG) based

simplex algorithm Luenberger and Ye (2008) has been successfully applied to the
LP problem Bennett et al. (2000); Demiriz et al. (2002). The simplex method avoids

116

considering all variables of an optimization problem explicitly. At each iteration,
the CG based simplex algorithm only uses a small subset of the entire variable set,
i.e., a subset of the columns of H to learn the current solution. The simplex method
first determines if the current solution is optimal, and if it is not, the algorithm
will continue to generate some column that will improve the solution. A detailed
pseudo-code description of LPBoost implementation in MEDUSA is given in Table
1.

5.2.3 TotalBoost

LPBoost is the most straightforward boosting algorithm for maximizing the soft
margin of the linear combination of weak rules. It does so by solving a linear
programming problem. In the dual LP, the LPBoost algorithm maximizes edge
v without placing any specific constraints on example weights. One challenge of
this is that the weights computed by the simplex method are often sparse Bennett
et al. (2000); Demiriz et al. (2002); Warmuth et al. (2006). Hence it could easily
happen that LPBoost is “blind” on certain examples when selecting new weak
rule. TotalBoost is also a “totally corrective” boosting algorithm that constrains
the edges of all past weak rules Warmuth et al. (2006). The difference between
LPBoost and TotalBoost is that TotalBoost introduces an entropic regularization
on the weights, in order to improve the stability of the boosting procedure.
TotalBoost is motivated by the minimum relative entropy principle: among
all the weight solutions that satisfy linear constraint on edge -, it chooses the weight

0

distribution w!*™! that is ‘closest’ to the initial distribution w®. The ‘closeness’ is

measured by the relative entropy between distribution w and w° defined as fol-

lows: A(w,w’) = ge Wge log 2%, The modified optimization problem is defined
ge
in equation (5), where TotalBoost minimizes the relative entropy subject to the

constraint that edges of all past weak rules are less than or equal to zero. A de-

117

tailed pseudo-code description of TotalBoost implementation in MEDUSA is given
in figure 5.1.

: w
wtt = argming A (w,w°) = argmin,, g Wge log ge

ge ge

s.t. ngeyge :cge) <0 g=1...t

Z Wge = 1
ge

(5.5)

In LPBoost, the upper bound v on the edge is chosen to be as small as pos-
sible, whereas in TotalBoost the weights are chosen to be closest to initial weights
as long as 7 is less than zero. Therefore in TotalBoost v decreases more moderately
and weights are updated in a more smooth way. Since the initial weight w® is uni-
form, it is unlikely that TotalBoost produces problematic sparse weight distribution
during later boosting iterations. In addition, the relative entropy term makes the
objective function in (5.5) strictly convex and therefore the optimization problem

1 We implement sequential quadratic

has a unique solution, which we denote as w
programming (SQP) algorithm Nocedal and Wright (1999) for solving the convex
optimization problem. We initially set the approximate solution to w = w" and
optimize w in a sequential way. Given the current solution w, we determine the
update w by minimizing the 2nd order Taylor approximation of change in relative
entropy A(w,w’) — A(w,w’) =3 nge((wge — Uge)? + 2y log 2= (wge W))in

(5.6). This is reformulated as a quadratic optimization problem and we solve it

using the convex optimizer package (http : //www.stan ford.edu/ ~ boyd/cvx/).

118

s.t. ngeygehq(xge) <0 ¢g=1...1

ge
g Wge = 1
ge

5.3 Data set

We assemble a compendium of hypoxia response expression experiments in Sac-
charomyces cerevisiae that have not previously been analyzed using MEDUSA.
The compendium consists of gene expression profiles of ~ 5000 genes in response
to 55 hypoxia related experimental conditions from two previously published mi-
croarray data sets, with three independent biological replicates for each condition.
Among the 55 microarray experiments, 10 examine the temporal response of both
yeast wild-type and MSN2/4 strains to short-term anaerbiosis (2 generations) in
both glucose and galactose media Lai et al. (2005); 45 experiments measure the
temporal response of wild-type yeast to long-term anaerbiosis (6 generations) and
subsequent aerobic recovery (about 2 generations) in glucose and galactose media
Lai et al. (2006). This hypoxia data is a large data set for expression profiles under
hypoxia and reoxygenation in glucose versus galactose media, which is different from
the small data set of perturbation experiments previously analyzed by MEDUSA
Kundaje et al. (2008).

All measurements are represented as log 2 expression values, which are fold-
changes with respect to a reference condition (0 time point condition for 55 time
series conditions). In preprocessing, we discretize expression data by binning ex-

pression values into three states (up, down, and baseline) and partition genes into

119

potential regulators (transcription factors and signal transducers) and targets. We
download promoter sequences spanning 500 bp upstream of the genes from the
Saccharomyces genome Database (SGD) and scan the promoter sequences for all
occurring k-mers (k=4,5,6,7). These data are used as input to MEDUSA boosting

algorithms.

5.4 Results

5.4.1 Comparison of boosting algorithms in generalization

performance
5.4.1.1 Cross-validation

We perform 5-fold cross-validation experiments, randomly splitting gene-experiment
examples into test and training sets with 20% of the data assigned to a test fold.
We use the training set to identify statistically significant regulators and motifs
and then use these regulators and motifs to predict the expression of the 20% held-
out examples. We run all boosting algorithms - MEDUSA AdaBoost, MEDUSA
LPBoost and MEDUSA TotalBoost for 500 boosting iterations and compare their

generalization performance across 5-fold cross-validation experiments.

5.4.1.2 LPBoost vs. AdaBoost

We first compare MEDUSA AdaBoost, MEDUSA hard-margin and soft-margin
LPBoost. An important parameter of the soft-margin LPBoost algorithm is the
capping parameter v. The optimal value of v should be selected. This is accom-
plished by using 5-fold cross-validation on v values in {0.01, 0.05, 0.1, 0.2, 0.3 1.0}.
The best generalization performance is achieved at v = 0.1, and thus training is

performed using this value for MEDUSA soft-margin LPBoost.

120

Definitions:

c = precondition associated with a specific position in the tree

Turo = weak rule associated with motif u and regulator = in state o

wh, = weight of example (g,e) at iteration t

Wic(g, e)] = Xc(g,e)=1 Wge, given condition ¢

e = mnotc

Yge = label of example (g,e)

T = number of boosting iterations

Rt (2 ge) = weak rule at iteration t

F'(z4.) = prediction function at iteration t

Z(c,p,m,0) = boosting loss: W[=c] 4+ 24/ W e A Ture] W A =7 o]

Ye(e,p,moo) = edge: ge wf;eygeht (Zge)

N = number of training examples

v = soft margin parameter

D = penalization constant: ﬁ

Ege = slack variables

o = weight of weak rule contributing to prediction score
Initialization:

FOzge) =0, wge = +, for all (g,e)

Main loop:
fort=1...T:
(1) call Hierarchical Motif Clustering and get a set of proposed PSSMs
(2) minimize boosting loss or maximize edge to obtain the new weak rule
ht = argmine o2 (c, u,m,0) or h* = argmaze yxov(c, p, 7, 0)
(3) optimize weights of weak rules aq, g =1...1
malogp P — D de gge
s.t. ygezgzlaqhq(xge)—kﬁgezp g=1...G,e=1...F
22:1 Oéq = 1’€ge 2 0
ag>0,q=1,...,1
(4) update weight distribution wg‘gl:
LPBoost: by solving dual problem of optimization problem (3):
minwwlﬁ ﬁ

s.t. > ge ygehq(mge)wg‘gl <pB g=1...t
tH1 _ t+1
W =1,0< w1 <D

TotalBoost: by minimizing the relative entropy to the initial distribution w°:

minfjl A(wt+1’ wO)

s.t. ge ngiygehq(:cge) <0 g=1...t
1 _
ge wg—g =1

end

Prediction of class labels:
Sign(FT(l‘ge)) = 31’9”(2?:1 ath' (zge))

Figure 5.1: Pseudocode for boosting algorithm implementation. A pseu-
docode description of LPBoost and TotalBoost algorithm in MEDUSA

121

MEDUSA test loss MEDUSA margin distributions

Soft-margin LPBoost Soft-margin LPBoost :" s
——Hard-margin LPBoost| 0.9 = = = Hard-margin LPBoost 1] _.'
06l ——AdaBoost = = = AdaBoost]

o
®

Test loss
E
-

“eemn.,

Cumulative distribution function
o o o o o
© @

-

»
02f i
0.1 H
0.1 "
i
0 . . o H ; e H i i
0 100 200 30 400 500 -0.04 -003 -002 -0.01 0 001 002 003 004
Boosting iteration Margin
(a) (b)

Figure 5.2: Comparison of generalization performance of MEDUSA soft-
margin LPBoost, hard-margin LPBoost and AdaBoost. (a) Test errors for
hard-margin LPBoost, soft-margin LPBoost and AdaBoost for the hypoxia dataset
as a function of the number of boosting rounds. AdaBoost performs better than
both soft-margin and hard-margin LPBoost on test data. (b) Cumulative margin
distributions for hard-margin LPBoost, soft-margin LPBoost and AdaBoost after
500 boosting rounds. AdaBoost has the best margin distribution and hence best
prediction accuracy.

Figure 5.2(a) illustrates test errors for MEDUSA AdaBoost, hard-margin
LPBoost and soft-margin LPBoost based on 5-fold cross validation. After 500
boosting iterations, AdaBoost achieves the lowest test error 16.49%, while hard-
margin LPBoost has 43.14% and soft-margin LPBoost 22.89%. It is clear that in
terms of prediction performance, MEDUSA LPBoost does not have an advantage
over MEDUSA AdaBoost.

To investigate why AdaBoost outperforms LPBoost, we perform a compara-
tive analysis of margins for the two boosting methods. Figure 5.2(b) illustrates the
cumulative distributions of margins of hard-margin LPBoost, soft-margin LPBoost
and AdaBoost after 500 boosting rounds. In the Figure 5.2(b), we can see that the
minimum margin for hard-margin LPBoost is considerably larger than AdaBoost.
However, margins for hard-margin LPBoost are more concentrated near the lower

end of the distribution, despite the fact that the minimum margin is higher. In

122

fact, we estimate that 82.8% of all examples have a larger AdaBoost margin than
corresponding LPBoost margin. Therefore, hard-margin LPBoost has more exam-
ples with negative margins than AdaBoost, explaining the much higher test error of
hard-margin LPBoost. We conclude that for the hypoxia data set, although hard-
margin LPBoost aims to maximize the minimum margin, it could sacrifice on the
overall margin distribution to achieve an optimal minimum margin. By contrast,
AdaBoost which minimizes an exponential weighting of all examples as a function
of their margins, pays more attention to the entire margin distribution and thus
performs better on the test data. This result suggests that the minimum margin is
not as important as we expect and for linearly inseparable data like hypoxia data
set.

On the other hand, soft-margin LPBoost’s minimum margin is much smaller
than that of hard-margin LPBoost and AdaBoost in the Figure 5.2(b). It is not sur-
prising as soft-margin LPBoost introduces a penalty term allowing it to ignore noisy
examples with very negative margins. By maximizing the soft instead of hard mar-
gin, soft-margin LPBoost seems to “shift” the attention from the minimum margin
to the overall margin distribution, resulting in a better prediction accuracy than
hard-margin LPBoost. However, soft-margin LPBoost’s margin distribution is ex-
tremely concentrated near zero, as shown in the Figure 5.2(b). We find this results
from a practical problem with LPBoost: classification weights wg. could be very
sparse, especially during the early iterations Bennett et al. (2000); Demiriz et al.
(2002); Warmuth et al. (2006) of a column generation simplex algorithm. LPBoost
uses the dual variables of the linear program for weights of training examples and
searches for the best solutions in the dual space. Since training examples greatly
outnumber weak rules, LPBoost is highly degenerate and could have multiple op-
timal dual solutions, corresponding to a face of the dual feasible region. Not all

the optimal solutions are sparse; however, a simplex based algorithm will find the

123

sparse extreme point solution.

Average example weight updated after the 1st weak rule

Il Examples correctly classified by the 1st weak rule
Il Examples incorrectly classified by the 1st weak rule

Average weight (1e-5)

LPBoost AdaBoost

Figure 5.3: Soft-margin LPBoost’s weak rule learning overly focuses on
predicting examples with negative margin. We compare average weights of
correctly classified and misclassified examples for soft-margin LPBoost and Ad-
aBoost. LPBoost’s weight extremely concentrates on misclassified examples, leav-
ing weight of correctly classified ones almost zero. In contrast, for AdaBoost the
average weight of the misclassified examples is only slightly higher than that of
correctly classified ones.

To illustrate this point, we present a breakdown of weight of the training
set after the first weak rule in Figure 5.3. We divide the training set into two
groups: examples correctly classified by the first weak rule with positive margin
and misclassified ones with negative margin. In Figure 5.3 we compare averaged
weights of correctly classified and misclassified examples for soft-margin LPBoost
and AdaBoost. We note that LPBoost’s weight strongly concentrates on misclas-
sified examples, leaving weight of correctly classified ones very close to zero. This
is evidence that LPBoost produces a sparse dual solution in the optimization pro-
cedure. In contrast, for AdaBoost the average weight of misclassified examples is
only slightly higher than that of correctly classified ones in Figure 5.3. Obviously
AdaBoost has a much smoother weight distribution as the updated weight is an

exponential function of margins.

124

Apparently, compared with AdaBoost, LPBoost overly concentrates on ex-
amples with negative margin and forces the learning algorithm to generate good
classifications for those examples only. We estimate that among examples misclas-
sified by the first weak rule, 67.50% are correctly classified by the second rule and
99.66% by one of the next four weak rules. This suggests that LPBoost learns
highly anti-correlated weak rules that simply “flip” the example label prediction.
As a result, to maximize the soft-margin LPBoost assigns almost equal scores «; to
the first few weak rules, causing the margin distribution to be concentrated near

Zero.

5.4.1.3 TotalBoost vs. AdaBoost and LPBoost

We also compare the prediction performance of MEDUSA TotalBoost vs. Ad-
aBoost. Figure 5.4(a) plots 5-fold cross-validation test errors vs. the number of
boosting iterations for soft-margin TotalBoost and AdaBoost. Similar to soft-
margin LPBoost, soft-margin TotalBoost has a capping parameter v chosen by
5-fold cross-validation. The best generalization performance is achieved at v = 0.3,
and examples are trained with this optimal value. In Figure 5.4(a), we show that
the test error curves of TotalBoost and AdaBoost are very close, and hence Total-
Boost is competitive with AdaBoost in terms of prediction accuracy on the hypoxia
data set.

Because both soft-margin LPBoost and TotalBoost are both intended to
maximize the soft margin, we would have been very surprised to see a significant
difference in their generalization error. To understand why TotalBoost outperforms
LPBoost, we further examine cumulative margin distribution of soft-margin Total-
Boost after 500 boosting iterations in Figure 5.4(b). Unlike soft-margin LPBoost,
the margin distribution of soft-magin TotalBoost is not heavily concentrated near

zero. We believe this is because TotalBoost uses entropic regularization on example

125

weights which helps to avoid very sparse weights. To verify that TotalBoost gener-
ates a more “stable” weight distribution, we examine average weights of correctly
classified and misclassified examples for soft-margin TotalBoost after the first weak
rule and compare with soft-margin LPBoost and AdaBoost in Figure 5.5. As we
expected, TotalBoost’s average weight of the misclassified examples is only slightly
higher than AdaBoost but significantly lower than LPBoost. Because of the more
“uniform” weight distribution, TotalBoost does not completely “ignore” certain ex-

amples like LPBoost does and is unlikely to select new weak rules that are highly

anti-correlated with old ones. TotalBoost spreads the weight to examples with

higher soft margins. We believe that this tradeoff of relative entropy against pure
linear optimization has a smoothing effect in the weights, which then translates
into smoothed maximum edge and margin distribution. However, TotalBoost is
only comparable to but not better than AdaBoost in terms of generalization er-
ror. We notice that TotalBoost has both higher minimum margin and average of

negative margins than AdaBoost, yet AdaBoost has higher positive margins.

MEDUSA margin distribution

MEDUSA test loss
0.6 T T : : : 1 Pr37: S
— AdaBoost pord
0.5 — Soft-margin TotalBoost 09 i
'y
B ”

o
™
T

o
3
T
o
3
T

o
S
> o
o
o
e ran
-, v
S
aaay

o ¢
I
T T
wu

Test loss
o
©w
(5]
Cumulative distribution function
o
(4
=5

0.3r
"
‘]
L]
0.25 03 .
0.2 0.2 5
H
0.151 0.1 = = = Soft-margin TotalBoos!
0.1 L L L L L L L L L el -AdaBOOSt
’ 50 100 150 200 250 300 350 400 450 500 ~0.03 -0.02 —-0.01 0 0.01 0.02 0.03
Boosting iteration Margin

(a)

Figure 5.4: Comparison of generalization performance of MEDUSA soft-

margin TotalBoost and AdaBoost. (a) The two boosting algorithms are run
for 500 iterations and 5-fold cross-validation test errors are plotted. (b) Cumulative

margin distributions of TotalBoost and AdaBoost.

126

Average example weight updated after the 1st weak rule

Il Examples correctly classified by the 1st weak rule
Il Examples incorrectly classified by the 1st weak rule

27 II | II 7
1k 4

TotalBoost LPBoost AdaBoost

Average weight (1e-5)

o

Figure 5.5: Average weights of correctly and misclassified examples for
soft-margin TotalBoost, soft-margin LPBoost and AdaBoost. TotalBoost’s
average weight of the misclassified examples is only slightly higher than AdaBoost
but significantly lower than LPBoost. Totalboost has a smoother weight distribu-
tion and thus does not completely “ignore” certain examples like LPBoost does.

5.4.2 MEDUSA TotalBoost retrieves a greater number of

biologically meaningful motifs

MEDUSA AdaBoost and TotalBoost’s high prediction accuracy give us the confi-
dence that both boosting algorithms could retrieve statistically significant motifs.
To confirm that those motifs are biologically meaningful, we compare MEDUSA Ad-
aBoost and TotalBoost motifs against experimentally verified transcription factor
(TF) binding sites compiled from two databases: TRANSFAC (http : //www.gene—
regulation.com/pub/databases.html) and SCPD (http : //rulai.cshl.edu/SCPD)).

We measure the distance of two motifs using the average loglikelihood ratio
(ALLR) calculated from Matalign (http : //ural.wustl.edu/software.html). The
significance of a motif match is represented by a corresponding p-value (uncorrected
for multiple hypothesis testing) calculated for ALLR. We obtain p-values for all
pairs of MEDUSA motifs and database binding sites. We plot the distribution of

127

logl0(p-value) in Figure 5.6 and from the distribution we set a p-value cutoff of

1.0e — 5 for a real motif match to database binding site.

Distribution of log10(p-value)
10000 T T T T - - -

9000+

8000+

7000

6000+

5000

4000

3000+

2000

1000+

T

0 . L .
-2 11 -10 -9 -8 -4 -3 2 -1 0

S
Log10(p-value)

Figure 5.6: Distribution of logl0(p-value) for ALLR measuring the dis-
tance between MEDUSA motifs and database binding sites. p-values
for all pairs of MEDUSA motifs and database binding sites are estimated and a
p-value cutoff of 1.0e — 5 for a real motif match to database binding site is set.

In Figure 5.7(a) and 5.7(b), we report significant motif matches (p-value
< 1.0e — 05), corresponding ALLRs and p-values in the order of increasing p-
value for the first 50 motifs learned by MEDUSA AdaBoost and TotalBoost. If
a MEDUSA motif is found to strongly match multiple known transcription factor
binding site, we report the transcription factor binding site with the lowest p-value.
As shown in the Figure 5.7(a) and 5.7(b), both MEDUSA AdaBoost and TotalBoost
identify several important hypoxia-related transcription factor binding sites. For
example, MSN2 (AGGGG) mediates stress response Segal et al. (2003b). Hap2/3/4
(CCAAT) is important for heme induction and for the regulation of oxygen-induced
genes Kwast et al. (1998); Lai et al. (2005; 2006). ROX1(ATTGTT) is important
for repression of hypoxic genes under aerobic conditions Kwast et al. (2002). MGA2
(ACTCAACAA) has been shown to be important for oxygen regulation of certain
genes Jiang et al. (2002).

128

TF Name TF Name MEDUSA Motif

Binding Site

o 118 e
COOGMA | COGM | » [poefser
UG | MGATAG | = oo

Binding Site ‘ MEDUSA Motif

(o [T [WAMATIT [oo
o | CUME | ol | ® wpeeo

;

[me | GATOAG | amwp |+ pmeps| [me [CATICT [KGMTEC [o [sefeen
MSN2 A ’ A ’ 683612 L3017 vor3 ‘ TTECCT ‘ ARAGECA ‘ £l WW
wo | AGGGG | Aocce | o s [owe | G000 [O0006E [2 [powpesen
HAPJ?M‘ CCAAT ‘ ‘ 30 |86595 | 15707 PAC ‘ ATGA ‘ ATGA ‘ I @’m
wa | Clcor | Mo | s [@] ACCx | com | @ pasn s
o | TR | ROATH: |+ [roreen || RGOGG | ki [0 [l

TCCTCA ‘) ‘ 39 (75619 1667e06 urez (IGTATHA CTOGTA | 2 | 83898 fsdotedr

=
3 =2
= =
& ~ = 5 k> -
; = ; ; 3 2| = Z ; = % 2

z
2

z

El

Q

5]

2
5
3

=
=

| |
" ‘ ATCGA ‘ CeATE ‘ T ’ CCCTC AGEGATC | 46 (7001 ooz
o [i | | o e [0 TETCA | CTOMTA[0 o o
G ‘ ATA ‘ CTATC ‘ 31 (6971 osieos Rapl ’ ~ACCCA | CCCAACE | = ﬁlm%
RIG3 A AGGTGA 69079 I5736¢-06 crl TCACCT ATCTCAC | 35 |7roon Lomseds
‘ Achl ET o fﬁ son | GTGACE [GAOCTC [[s
Toc | GGG | Wb | o [[0 IO | AOMTAG | 0 o oo
‘RRPE ‘ MALTTTT ‘ kil ‘ 5|66 o7 RRPE ’ RARTTTT ’ AT ’ o |78 188106

TG | AbAgan [0 [roor e
foa [g [[2 [renpoas
COAAT | COMTOA [e saeos

(a) (b)

Figure 5.7: Significant TF binding site motifs identified by MEDUSA Ad-
aBoost and TotalBoost in the first 50 boosting iterations. Each row in the
table represents a motif found by either MEDUSA AdaBoost or TotalBoost that
significantly matches a known transcription factor binding site from TRANSFAC
and SCPD databases. The significance of the match is reported as a p-value for the
average log likelihood ratio calculated by Matalign . The columns are transcrip-
tion factor names, logos of transcription factor binding sites, logos of MEDUSA
motifs, iteration scores (number of iteration at which MEDUSA motif is learned),
average log likelihood ratios and corresponding p-values. (a) MEDUSA AdaBoost
motifs that match database transcription factor binding sites (p-value < 1.0e —05).
(b)MEDUSA TotalBoost motifs that match database transcription factor binding
sites (p-value < 1.0e — 05).

HAP/3/4

Since a large number of rRNA processing and cell cycle genes are found

to be transiently down-regulated in response to anaeroboisis in galactose medium

129

Lai et al. (2005), both AdaBoost and TotalBoost also discover PAC (GATGAG)
and RRPE (AAAWTTTT) motif elements that are significantly enriched for rRNA
processing genes, and binding sites of MCB (ACGCGW) and SCB (CNCGAAA)
for DNA synthesis/replication and cell cycle genes.

As shown in the Figure 5.7(a), AdaBoost discovers RRPE, MSN2 and PAC
motifs multiple times in the first 50 iterations. This is not surprising as AdaBoost is
only a “corrective” boosting algorithm and could learn motifs similar to previously
selected ones. In contrast, TotalBoost, due to its “totally corrective” property,
selects new weak rules that are different from earlier ones. Therefore, TotalBoost
is more likely to find more unique motifs than AdaBoost after the same number
of boosting iterations. As shown in the Figure 5.7(b), motifs found by both Ad-
aBoost and TotalBoost all appear only once in the first 50 iterations of TotalBoost.
In addition, TotalBoost is able to retrieve a few more transcription factor binding
sites. For example, MOT3 (TTGCCT) is involved in controlling certain anaerobi-
cally expressed genes including many genes involved in cell wall maintenance and
sterol biosynthesis Klinkenberg et al. (2005). UPC2 (CTCGTATA) is known to be
important for oxygen and heme regulation Lai et al. (2006); Cohen et al. (2001).
GAL4 (CGGNCCG) is required for the activation of the GAL genes in response to
galactose Bhat and Murthy (2001).

We further perform a full comparison of MEDUSA TotalBoost to MEDUSA
AdaBoost motif discovery results. We compare all 500 MEDUSA TotalBoost and
AdaBoost motifs to transcription factor binding sites in TRANSFAC and SCPD.
Since MEDUSA motifs learned during different boosting iterations could match to
the same transcription factor binding site, we define an iteration score (IS) for the
database binding site as the boosting iteration at which the matched MEDUSA
motif first appears. If multiple motifs are found to be strong matches to the same

transcription factor binding site, we only report the one with the lowest iteration

score.

130

. . | TotalBoost AdaBoost
TF Name I Binding Site : : I TF Name I Binding Site Itration TF Name Binding Site crado
[msNz | A [o [& [AP-T [ToA_T<A [75 oA 71
[xBP1 | —_TCcoA [& [1o [__PDR3 [Toc-co.a [65 ~ . cc o= 270
[oxr | e 2 [MATal | ToAToTA T |[104 = [iis
| Sacore T [HsFI I AcAA AcAATTeT || 61 —_AccoT 368
[oov [Ateaere. [& 7 e cooner B0
[TcBr [~TCAC.TGA || 245 [134 I = I (; e : 7
e]l = TTTATAT J[25 [184 [TAF I CGT -AAA=GAC_A |[419
[PDR3 [TccicooA [65 [210 I HACT I —cacToTe | T3
[“mcB [~c e [0 s [Cars I GcaTT—. cc |[11
[CREBI][x.Accc. [55 [23 [Rcst I A=T-CAGCCA TT || 174
[CADRI ToTcoo [[58 [zapi | ACCCTAAA—-T |[164
[BAsz [TAAT A [50 [167 [™McMm1 I COTTr T h-lbido Bt || 34
[Terrr [TCACCT [35 ES I stell I AGAACAAAGAAA || 61
[Tsce C ccAAA [14 [24 [GCR1 [=-—w<=< |[144
[™iGr | CCCC- ----- || 120 [235 [stEiz [AT—AAA=_ |[4
[™sE || C-CAAA~- | 104 [360 [ATE [Ac=TcAa [246
[Peri | TTCoc CCoAA || 25 [260 [CSRE [~CCCA—n~Ax [372
[Br | TATA-A~ || 6 || 4 [GaLa [< cc [35
[[EcB | AAAA_ [15 [a07 [_HSTF [AA Tcc [107
[orc | STTTAT-TTT= || 193 | #7 [teos c ~-Aacc [1o
[opca | CTC.TATAAGC || 20 | &3 [_NBE [ATG-G~A; 215
[MET3T | AAACTGCT [t [375 I RME1 [AaccToAA 2
[UASPHR [cT rcocT [210

[ToaFT [CEOTTROMTTMRTEE: || 63 [170 et I cAAeT T -
(M [caTvoT [® [@ [ERCATRVRS | e
[| ArAMGAA: [7 [® A TR oA [
[[OmEs [ToGoCLCTA=x || 207 | 250 I STB5 [cc- < I 65
[yupi | TAATT [es [a0 I XBP1 I ToTcoA——A || 99
[HACT [CACCOCT [200 [83 I MBP1 I cocoTca || 14
[~DTs0 | C.CAAA- || 481 || 360 [pHoz || cAc T [200
[T™MTF [ATATAAGTA || 118 [184 [sumi I AG.G-CACAAAA [183
[TaFr2 | ~-CACCC. | 184 || 350 [SIPa [TCCATT. -TCC: |
[ARRT [TTACTAA || 141 [149 [_YAPI [TrTAcT~A [62
[FAP2737a | ccAAT | 15 [[™MoT3 [Trocox [34
[RrTG3 | TCAC | 255 | 4 [_Crz1 [c-—cA][22
[[Noz | CAT T 71 [1o [RAPL [—Accca [21
[RDRT | AccACA [[[™MET3T | aaacToTcoTCACoTe | 190
[Tsomi [~GTGAC [[5 [WART [S = [321

= [UGAs || ——coc.TTT [6
[RGTT [[=3 A A [s [170 I AFT I = vvear || T
[CAsHT =TSAT [15 _J[_Uus [™iGT I TATACA A |[61
[BAST | ToACTC || 75 [7 I PORT I cc- < [65
[Ecmza | TCCTATA [61 [205 [GLN3 I cT ccrtrrer [34
[[Nos CATGTGAA [191 [74 [SKN7 I TTACCC 7
[ROMT [CTAAAGATA =22 [a7
[DALso [ATAAC CATAAS [154 [115
[com | TCTTTT.cctc || 22 || &
[TTEAT [[=3 ccC [e3 [57
[[UGAS [=GC ~TTT [107 [122
[Tswia [TTTT coc [TS
[swis [ToCT [o1 [2%
[swie [ACcCcoT | 40 [35
[RRPE || AAA-TTTT || 4 [15
[pac | ATGA [1 [1
[HAPZ | ToATTooT | 15 [318
[mNoz | CAToTe [71 [e
™G | ccccoc | s [2%
[MAcT [TocTecA [38 [3
[AcEz | cTooT [ot [15
[THAPT [[= T C [2o [210

(a) Intersection of motifs dis- (b) Motifs discovered by Total- (¢) Motifs discovered by Ad-

covered by AdaBoost and To- Boost but not AdaBoost
talBoost

aBoost but not TotalBoost

Figure 5.8: Comparison of TF binding site motifs learned by MEDUSA
AdaBoost and TotalBoost. Each row in the table represents a motif found by both
MEDUSA AdaBoost and TotalBoost (left section), by MEDUSA TotalBoost only (middle
section), or by MEDUSA AdaBoost only (right section). The first column describes the
motif by the name of the corresponding transcription factor, second column logo of TF
binding site motif, third column the iteration score of the motif. In the left table, two
iteration scores are reported and compared for both AdaBoost and TotalBoost.

We show in Figure 5