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Fully Corrective Boosting with Arbitrary Loss and Regularization

Chunhua Shena,1,∗, Hanxi Lib, Anton van den Hengela

aSchool of Computer Science, The University of Adelaide, Adelaide, SA 5005, Australia
bNICTA, Canberra Research Laboratory, ACT 0200, Australia

Abstract

We propose a general framework for analyzing and developing fully corrective boosting-based classifiers.
The framework accepts any convex objective function, and allows any convex (for example, `p-norm, p ≥ 1)
regularization term. By placing the wide variety of existing fully corrective boosting-based classifiers on a
common footing, and considering the primal and dual problems together, the framework allows direct com-
parison between apparently disparate methods. By solving the primal rather than the dual the framework is
capable of generating efficient fully-corrective boosting algorithms without recourse to sophisticated convex
optimization processes. We show that a range of additional boosting-based algorithms can be incorporated
into the framework despite not being fully corrective. Finally, we provide an empirical analysis of the per-
formance of a variety of the most significant boosting-based classifiers on a few machine learning benchmark
datasets.
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Boosting, ensemble learning, convex optimization, column generation.

1. Introduction

Boosting has become one of the best known methods for building highly accurate classifiers and regressors
from a set of weak learners [1]. As a result, significant research effort has been applied to both extending and
understanding boosting (see [2, 3, 4, 5, 6] amongst many others). Totally corrective boosting, which aims to
achieve classification efficiency without sacrificing effectiveness, has particularly given rise to a wide variety of
competing analyses and methods. We present here a framework which not only allows the consolidation and
comparison of this important work, but which also generalises the underlying approach. More importantly,
however, the framework also enables direct and immediate derivation of a classifier implementation for the
wide variety of cost functions and regularization terms it accepts.

Much effort has been devoted to analyzing AdaBoost [2] and other boosting algorithms [3, 4, 5] due to
their great success in both classification and regression when applied to a wide variety of computer vision
and machine learning tasks (see [7, 8] for example). Both theoretical and experimental results have shown
that boosting algorithms have impressive generalization performance.

Researchers have been trying to interpret the success of boosting from a variety of different perspectives.
Early work focused on developing theories in the framework of probably approximately correct (PAC)
learning [9] or the large margin principle [2]. Friedman et al . [10] developed a statistical perspective that
views AdaBoost as a gradient-based stage-wise optimization method in a functional space, minimizing the
exponential loss function l(y, F ) = exp(−yF ). AnyBoost [11, 12] generalizes this concept in the sense that
AnyBoost can optimize a broader family of loss functions. Hereafter, we use the term “AnyBoost” to refer to

∗To whom all correspondence should be addressed (email: chunhua.shen@adelaide.edu.au).
1This work is in part supported by Australian Research Council Future Fellowship FT120100969.
2NICTA is funded by the Australian Government as represented by the Department of Broadband, Communications, and

the Digital Economy, and the Australian Research Council through the ICT Center of Excellence Program.

Preprint submitted to Neural Networks 6·5·2013

chunhua.shen@adelaide.edu.au


all gradient based boosting methods, as their theoretical essentials are almost identical. For example, within
the AnyBoost framework, one can optimize the binomial log-likelihood loss l(y, F ) = log(1 + exp(yF )),
which penalizes a mis-classified point with less penalty than the exponential loss, in the hope that it might
be more robust to outliers. In [11], a non-convex loss function was used in order to achieve a better margin
distribution, which can be translated into a smaller test error rate. Shen and Li [13] explicitly derived a
Lagrange dual of `1 regularized boosting for a variety of common loss functions. The relationship between
these dual formulations and the soft-margin LPBoost [3] was established in [13].

Rosset et al . [14] observed that asymptotically stage-wise boosting converges to a `1 regularized solution.
They deliberately set the coefficient of the weak classifier to a very small value (ε-boost) such that the
boosting method converges extremely slowly. The slow rate of convergence plays the role of `1 regularization
as we will discuss in detail later. It is not new to impose regularization other than `1 in boosting. In [11],
`2 norm regularized boosting has been considered and gradient based boosting is used to perform the
optimization. In [15], Duchi and Singer introduced a family of coordinate-descent methods for optimizing
the upper-bounds of mixed-norm regularized boosting based on gradient boosting [11]. In contrast to
conventional gradient-based boosting, the authors there also prune selected features that are not informative,
thus sharing conceptual similarities with the FloatBoost of Li and Zhang [16] and Zhang’s forward-backward
sparse learning [17]. Duchi and Singer mainly focused on learning with structural sparsity in the context of
multi-class and/or multi-task applications. Both works are largely inspired by gradient AnyBoost and no
analysis of Lagrange duality was performed. Most of the boosting algorithms in the literature can thus be
seen as building upon the gradient-based boosting of AnyBoost.

AnyBoost [11] is a seminal work in the sense that it enables one to design boosting algorithms for optimiz-
ing a given cost function. It uses coordinate descent, however, and is therefore not fully (totally) corrective.
Totally corrective boosting algorithms, like LPBoost [3], TotalBoost [18] and those proposed in [13], update
the coefficients of all previously selected weak learners at each iteration. The fully corrective boosting algo-
rithms thus require significantly fewer training iterations to achieve convergence [13] and result in smaller,
and therefore more efficient, ensemble classifiers. Although it is not discussed in [11], the slow convergence
rate of AnyBoost is critical to its success, as it plays the role of the `1 norm regularization parameter [14].
As an illustration of the importance of AnyBoost’s slow convergence to its success consider the case where
the training data are separable, which leaves AdaBoost’s objective function

∑
i exp(−

∑
j yiwjhj(xi)) not

well defined. In fact the objective function can always be rendered arbitrarily close to zero by multiplying
w by a large enough positive factor.

In contrast to AnyBoost, we here explicitly put boosting learning into the regularized empirical risk
minimization framework and use convex optimization tools to analyze its characteristics. We will see as
a result that the only difference between boosting and kernel learning is the optimization procedure. If
all weak learners were known a-priori, there would be no essential difference between boosting and kernel
methods. The most important aspect of the work presented here, however, is that we propose a general and
fully corrective boosting learning framework that can be used to minimize regularized risk with arbitrary
convex loss functions and arbitrary convex regularization terms in the form of problem (1).

The main contributions of this work are as follows.

1. We propose a general framework that can accommodate arbitrary convex regularization terms other
than `1 norm. By explicitly deriving the Lagrange dual formulations, we demonstrate that fuuly-
corrective boosting based on column generation can be designed to facilitate boosting. In particular,
we focus on analyzing the `1, `2, and `∞ norm regularization.

2. We generalize the fully corrective `1 regularized boosting algorithms in [13] to arbitrary convex loss
functions. We also show that a few variants of boosting algorithms in the literature can be interpreted
in the proposed framework.

3. By introducing the concept of the nonnegatively-clipped edge of a weak classifier, we show the con-
nection between `1, `2, and `∞ norm regularized boosting. The Lagrange dual formulations can then
be interpreted as part of the presented unifying framework.

4. We show that the Fenchel conjugate of a convex loss function in the primal regularizes the dual
variable (the training samples’ importance weights). We thus generalize the results in [13], where only
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the exponential loss, logistic loss and generalized hinge loss are considered. We thus show that the
Fenchel conjugate of an arbitrary convex loss penalizes the divergence of the sample weights.

Moreover, we observe that fully-corrective boosting’s primal problems are much simpler than their coun-
terpart dual problems. So at each iteration of a column generation based boosting algorithm, it is much
faster to solve the primal problem. In the proposed CGBoost, generally we do not require sophisticated
convex solvers and only gradient descent methods like L-BFGS-B [19] are needed. Previous totally-corrective
boosting algorithms [3, 13, 18] all solve the dual problems using convex optimization solvers. Besides the
primal problems’ much simpler structures, in most cases, the dual problems have many more variables than
their corresponding primal problems.

The remainder of the paper is organized as follows. Before present the main results, we introduce the
basic idea of boosting and Fenchel conjugate in Section 2. In Section 3, we extend the results in [13] to
arbitrary convex loss functions. A new fully corrective boosting is proposed to minimize the `1 regularized
risk. Connections of the proposed algorithm to some previous boosting algorithms are discussed. In Section
4, we generalize the fully corrective boosting to arbitrary convex regularization. We also briefly discuss
boosting for regression. We present experimental results in Section 5 and conclude the paper in the last
section.

2. Preliminaries

2.1. Notation

We introduce some notation that will be used before we proceed.
Let {(xi, yi)} ∈ Rd ×{−1,+1}, i = 1 · · ·m, be a set of m training examples. We denote H a set of weak

classifiers; the size of H can be infinite. Each hj(·) ∈ H, j = 1 · · ·n, is a function that maps x to [−1,+1].3

We denote H a matrix of size m× n, where its (i, j) entry Hij = hj(xi); that is Hij is the label/confidence
predicted by weak classifier hj(·) on the training datum xi. So each column H:j of the matrix H consists
of the output of weak classifier hj(·) on the whole training data; while each row Hi: contains the outputs of
all weak classifiers on the training datum xi.

The edge of a weak classifier is defined as d =
∑m
i=1 uiyih(xi) where ui is the weight associated with

training example xi. The edge is an affine transformation of the weighted error for the case when h(·) takes
discrete outputs {−1,+1} and u is normalized (e.g ., in AdaBoost). The weighted error of h(·) is $ = 1

2−
1
2d.

An edge can be used to measure the quality of a weak classifier: a larger d means a better h(·). The symbol
diag(y) ∈ Rm×m is a diagonal matrix with its (i, i) entry being label yi. Column vectors are denoted by
bold letters (e.g ., x,d). We denote by A† the Moore-Penrose pseudo-inverse of the matrix A when A is not
strictly positive definite.

2.2. Boosting

In statistics or signal processing, when we face ill-posed problems, regularization is needed to enforce
stability of the solution. Regularization usually improves the conditioning of the problem. Literature on
this subject is immense. In statistical learning, in particular, supervised learning, one learns a function that
best describes the relation between input x and output y. Statistical learning theory tells us that often a
regularization term is needed for a learning machine in order to trade off the training error and generalization
capability [20].

Concretely, we solve the following problem for training a classifier or a regressor:

inf
F∈F

m∑
i=1

l(F (xi), yi) + ϑΩ(F (·)). (1)

Here l(·) is a data-fitting loss function, which corresponds to the empirical risk measure, and Ω(·) is a
regularization function. For example, Ω(·) can be the Tikhonov regularization (ridge regression) for obtaining

3Later, we will discuss the general case that h(·) could be any real value.
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a stable solution of ill-posed problems [21]. The parameter ϑ ≥ 0 balances these two terms. F is the
functional space in which the classification function F (·) resides. Clearly, without the regularization term,
if F is very large, it can easily lead to over-fitting and the minimizers can be nonsense. The regularized
formulation considers the trade-off between the quality of the approximation over the training data and the
complexity of the approximating function [20]. Often simplicity is manifested as sparsity in the solution
vector—or some transformation of it. Typically, `p norm functions can be used for regularization such as
`1 norm in Lasso [22], `2 norm in ridge regression, and RKHS regularization in kernel methods4. `1 norm
regularization may create sparse answers and better approximations in relevant cases. `1 norm regularization
methods have recently gained much attention in compressed sensing [23] and machine learning due to the
induced sparsity and being easy-to-optimize as a surrogate of the non-convex `0 pseudo-norm [24, 25].

For boosting algorithms, F (·) takes the form

F (x) =

n∑
i=1

wihi(x), (2)

with w < 0. This nonnegativeness constraint can always be enforced because one can flip the sign of the
weak classifier h(·).

It has been shown that some boosting algorithms can be viewed as `1 norm regularized model fitting
[14]. We can rewrite the learning problem into

inf
F∈F

m∑
i=1

l(γi) + ϑ1>w (3)

where γi is the unnormalized margin: γi = yiF (xi) = yiHi:w. Our analysis relies on the concept of Fenchel
duality.

Definition 2.1. (Fenchel duality) Let f : Rn → R. The function f∗ : Rn → R, defined as

f∗(u) = sup
x∈dom f

u>x− f(x), (4)

is called the Fenchel duality of the function f(·). The domain of the conjugate function consists of u ∈ Rn
for which the supremum is finite.

f∗(·) is always a convex function because it is the point-wise supremum of a family of affine functions of u,
even if f(·) is non-convex [26]. If f(·) is convex and closed, then f∗∗ = f . For a point-wise loss function,
l(γ) =

∑m
i=1 l(γi), the Fenchel duality of the sum is the sum of the Fenchel dualities:

l∗(u) = sup
γ

{
u>γ −

m∑
i=1

l(γi)

}
=

m∑
i=1

sup
γi

{uiγi − l(γi)}

=

m∑
i=1

l∗(ui).

Clearly, the shape of f∗(u) is determined by f(x) and vice versa. We consider functions of Legendre type
[27] in this work. That means, the gradient f ′(·) is defined on the domain of f(·) and is an isomorphism
between the domains of f(·) and f∗(·). If f(·) admits a strict supporting line at x with slope u, then f∗(·)
admits a tangent supporting line at u with slope f∗′(u) = x.

4Due to the representer theorem, RKHS regularization is special: typically, the optimal solution in an infinite-dimensional
functional space can be found by solving a finite dimensional minimization problem.
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Table 1: Loss functions and their derivatives.

Name Loss l(F, y) Derivative l′(F, y)

Exponential exp(−yF ) −y exp(−yF )

Logistic log(1 + exp(−yF )) −y/(1 + exp(yF ))

Hinge max(0,−yF ) 0 if yF ≥ 0; −y otherwise

Squared hinge 0.5[max(0,−yF )]2 0 if yF ≥ 0; F otherwise

MadaBoost loss [28] exp(−yF ) if yF ≥ 0, otherwise 1− yF −y exp(−yF ) if yF ≥ 0; −y otherwise

Least square 0.5(y − F )2 F − y
`1 norm |y − F | sgn(F − y)

Huber’s loss 0.5(y − F )2 if |y − F | < 1, otherwise |y − F | − 0.5 F − y if |y − F | < 1; sgn(F − y) otherwise

Poisson regression exp(F )− yF exp(F )− y
Quantile regression max(τ(F − y), (1− τ)(y − F )) τ if F > y; τ − 1 otherwise

ε-insensitive regression max(0, |y − F | − ε) 0 if |y − F | ≤ ε; sgn(F − y) otherwise

3. `1 Norm Regularized CGBoost

The general `1 regularized optimization problem we want to solve is

min
w,γ

m∑
i=1

l(γi) + ϑ · 1>w

s.t. : γi = yiHi:w (∀i = 1 · · ·m), w < 0. (5)

We now derive its Lagrange dual problem. Although the variable of interest is w, we keep the auxiliary
variable γ in order to derive a meaningful dual. The Lagrangian is

L =

m∑
i=1

l(γi) + ϑ1>w − u>(γ − diag(y)Hw)− p>w

=
(
ϑ1> + u> diag(y)H − p>

)
w −

(
u>γ −

m∑
i=1

l(γi)

)
,

with p < 0. To find its infimum over the primal variables w and γ, we must have

ϑ1> + u> diag(y)H − p> = 0,

which leads to
u> diag(y)H < −v1>; (6)

and

inf
w,γ

L = − sup
γ
u>γ −

m∑
i=1

l(γi) = −
n∑
i=1

l∗(ui).

Therefore, the dual problem is

min
u

m∑
i=1

l∗(ui), s.t. : (6). (7)

We can reverse the sign of u and rewrite (7) into its equivalent form

min
u

m∑
i=1

l∗(−ui), (8a)
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s.t. : u> diag(y)H 4 ϑ1>. (8b)

From the Karush-Kuhn-Tucker (KKT) conditions, between the primal (5) and the dual (8) the relationship

ui = −l′(γi),∀i, (9)

holds at optimality. This means, the weight ui associated with each sample is the negative gradient of the
loss at γi. This can be easily obtained by setting the first derivative of L w.r.t. γi to zeros. Under the
assumption that both the primal and dual problems are feasible and the Slater’s condition satisfies, strong
duality holds between (5) and (8), which means that their solutions coincide such that one can obtain both
solutions by solving either of them for many convex problems.

If we know all the weak classifiers, i.e., the matrix H can be computed a priori, the original problem (5)
can be easily solved (at least in theory) because it is an optimization problem with simple nonnegativeness
constraints. In practice, however, we usually cannot compute all the weak classifiers since the size of the
weak classifier set H could be prohibitively large or even infinite. In convex optimization, column generation
(CG) is a technique that can be used to attack this difficulty. The crucial insight behind CG is: for a linear
program, the number of non-zero variables of the optimal solution is equal to the number of constraints,
hence although the number of possible variables may be large, we only need a small subset of these in the
optimal solution. For a general convex problem, CG can still be used to obtain an approximate solution. It
works by only considering a small subset of the entire variable set. Once it is solved, we ask the question
“Are there any other variables that can be included to improve the solution?”. So we must be able to solve
the subproblem: given a set of dual values, one either identifies a variable that has a favorable reduced cost,
or indicates that such a variable does not exist. In essence, CG finds the variables with negative reduced
costs without explicitly enumerating all variables.

We now only consider a small subset of the variables in the primal; i.e., only a subset of w is used. The
problem solved using this subset is usually termed restricted master problem (RMP). Because the primal
variables correspond to the dual constraints, solving RMP is equivalent to solving a relaxed version of the
dual problem. With a finite w, the set of constraints in the dual (8) are finite, and we can solve (8) that
satisfies all the existing constraints. If we can prove that among all the constraints that we have not added to
the dual problem, no single constraint is violated, then we can conclude that solving the restricted problem
is equivalent to solving the original problem. Otherwise, there exists at least one constraint that is violated.
The violated constraints correspond to variables in primal that are not in RMP. Adding these variables to
RMP leads to a new RMP that needs to be re-optimized.

The general algorithm to solve our boosting optimization problem using CG—hence the name CGBoost—
is summarized in Algorithm 5. A few comments on CGBoost are:

1. Practically, we set the stopping criterion as
∑m
i=1 uiyih

′(xi) ≤ ϑ+ ε where ε is a small user-specified
constant;

2. The core part of CGBoost is the update of u (Line 5). Standard CG in convex optimization typically
solves the dual problem. In our case, the dual problem (8) is a convex program that has m variables
and n constraints. The primal problem (5) has n variables and n simple constraints (the equality
constraints are only for deriving the dual and can be put back to the cost function). In boosting, often
we have more training examples than final weak classifiers. That is, m ≥ n. Moreover, n increases
by one at each iteration. At the beginning, only small-scale problems are involved in the primal (5).
As we will show, the simple constraints in (5) are also much easier to cope with. Quasic-Newton
algorithms like L-BFGS-B [19] can be used to solve (5). In contrast, usually sophisticated primal-dual
interior-point based algorithms are needed for solving the convex problem (8). All in all, (5) is easier
to solve. Given w, we can calculate u via the optimality condition (9). We do not need to know the
Fenchel conjugate of the loss l∗(·) explicitly. We list some popular classification and regression loss
functions and their first derivatives in Table 1.

Algorithm 5 terminates after a finite number of iterations at a global optimum. Theorem 3.1 guarantees
the convergence of Algorithm 5. Generally, the CG method’s convergence follows by standard CG algorithms
in convex optimization. We include this theorem for self-completeness.
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Algorithm 1 `1 norm regularized CGBoost for classification.

Input: Training data {(xi, yi)}, i = 1 · · ·m; a convergence threshold ε > 0.
1 Initialization: w = 0,u = 1

m1.
while true do

2 − Receive a weak classifier that most violates the dual constraint:

ĥ(·) = argmax
h(·)

m∑
i=1

uiyih(xi);

3 − Check for the stopping criterion:

if
∑m
i=1 uiyiĥ(xi) ≤ ϑ+ ε, then break;

4 − Add ĥ(·) into the primal problem that corresponds to a new variable;a

5 − Obtain w by solving the primal (5) and also using (9) to update the dual variable u.

Output: Output a convex combination of the weak classifiers.

aWe can also add ĥ(·) to the dual problem as a new constraint. Then one solves the dual problem in the next
step.

Theorem 3.1. Assume that we can exactly solve the subproblem ĥ(·) = argmax
h(·)

∑m
i=1 uiyih(xi) at each

iteration, then Algorithm 5 either halts on the round that the stopping criterion is met
∑m
i=1 uiyiĥ(xi) ≤

ϑ+ ε, up to the desired accuracy ε, or converges to some finite value.

The convergence follows the general column generation based technique in convex optimization, although
the convergence rate is not known.

From the KKT condition (9) we can derive some interesting results.

Result 3.1. At each iteration of LPBoost [3], a sample xi that has a negative margin γi ( i.e., miss-classified)
will have a nonzero weight ui; those samples that have positive margins (correctly classified) will all have
zero weights, and they are not considered in the next iteration.

We now show that AdaBoost and other boosting algorithms, for the appropriate choice of the regulariza-
tion parameter ϑ, loss function and optimization strategy are just specific cases of CGBoost in Algorithm 5.

−3 −2 −1 0 1 2 3

0

1

2

3

4

5

6

z

lo
ss

 

 
Exponential
Logistic
MadaBoost

−3 −2 −1 0 1 2 3

0

0.5

1

1.5

2

z

u

 

 

Figure 1: Some loss functions (first) and their first derivatives (second). Here the cost function of MadaBoost is defined as
l(z) = exp(−z) if z > 0; 1− z otherwise.
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Theorem 3.2. AdaBoostρ [29] minimizes the regularized AdaBoost’s cost function with the regularization
parameter ϑ = ρ via coordinate-descent.

AdaBoost is a special case of CGBoost with a very small regularization parameter ϑ (ϑ approaching zero),
and a coordinate-descent optimization strategy to minimize the primal problem (Step (3) of CGBoost).

Proof: To prove that AdaBoost is indeed CGBoost with loss l(y, F ) = exp(−yF ), let us examine each step
of CGBoost. Clearly, Step (1) of CGBoost is identical with AdaBoost. For the stopping criterion, when
ϑ→ 0, it is easy to verify that both algorithms stop at iteration t+ 1 when

$+ −$− < 0;

with
$+ =

∑
i:yiht+1(xi)>0

uti,

$− =
∑

i:yiht+1(xi)<0

uti;

i.e.5, the weighted error is larger than the weighted accuracy. Here we assume a discrete AdaBoost. It is
straightforward to extend to real-valued h(·) ∈ [−1,+1] as discussed in [30].

If we adopt coordinate-descent to optimize the primal at Step (3), at iteration t+ 1, we keep w1, · · · , wt
fixed. Given the chosen ht+1(·) we want to find wt+1 that minimizes

Cexp =

m∑
i=1

exp(−γti ) · exp(−yiwt+1ht+1(xi)) + ϑ1>w

=

m∑
i=1

uti exp(−yiwt+1ht+1(xi)) + ϑwt+1,

= $+ exp(−wt+1) +$− exp(wt+1) + ϑwt+1, (10)

subject to wt+1 > 0. We have dropped the terms that are irrelevant to the variable wt+1. Here we have used
the fact from (9) that

ui = exp(−γi), ∀i, (11)

To minimize Cexp, set its first derivative to zero:

−$+ exp(−wt+1) +$− exp(wt+1) + ϑ = 0. (12)

A closed-form solution for wt+1 is:

wt+1 = log

(√
$+

$−
+

ϑ2

4$2
−
− ϑ

2$−

)
. (13)

When ϑ is negligible, we have a solution for wt+1:

wt+1 =
1

2
log

$+

$−
, (14)

which is consistent with AdaBoost. The rule for updating u can be trivially seen from (11).
Note that in the above analysis, we do not need to normalize u. This is different from AdaBoost.

Actually if we replace the entire loss
∑m
i=1 exp(−γi) with its logarithmic version log(

∑m
i=1 exp(−γi)); i.e.,

we minimize log(
∑m
i=1 exp(−γi)) + ϑ1>w, we have

ui =
exp(−γi)∑m
i=1 exp(−γi)

,∀i,

5Hereafter, subscript t indexes the iteration of CGBoost.
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which results in 1>u = 1. The cost (10) becomes Cexp = log($+ exp(−wt+1) + $− exp(wt+1)) + ϑwt+1,
where we have dropped log(

∑m
i=1 exp(−γti )) that is independent of wt+1. It is easy to see that

wt+1 =
1

2

(
log

$+

$−
− log

1 + ϑ

1− ϑ

)
(15)

minimizes the new log-sum-exp cost function. This is the rule used in AdaBoostρ [29]. Clearly when ϑ is
small, (14) and (15) coincide. So, by simply replacing the update rule in AdaBoost with (15), we get an
explicitly `1-norm regularized AdaBoost. �

We now know that AdaBoost is indeed a `1-norm regularized algorithm [14]. It is mysterious that
AdaBoost does not have any parameter to tune and it works so well on many datasets. We have shown that
AdaBoost simply sets the regularization parameter ϑ to a very small value. Note that one cannot set the
regularization parameter ϑ to zero. Without this regularization term, the problem (1) is ill-posed. In the
case of the AdaBoost and logistic boosting losses, on separable data, one can always make the first term of
(1) approach zero by multiplying an arbitrarily large positive factor to w.

We conjecture that a carefully-selected ϑ would yield better performance, especially on noisy datasets.
This may partially explain why AdaBoost over-fits on noisy datasets. However, early stopping for AdaBoost
eliminates over-fitting to some extent [31].

For the normalized version (log-sum-exp loss), we have a simpler closed-form update rule and no com-
putation overhead is introduced compared with the standard AdaBoost. From (15), ϑ must be less than 1;
hence 0 < ϑ < 1. As long as the selected weak classifier ht+1(·) does not satisfy the stopping criterion, i.e.,
$+ − $− > ϑ, wt+1 calculated with (15) must be positive. Clearly a larger ϑ makes CGBoost converge
faster.

Strategies such as shrinkage [10] and bounded step-size [31] have been proposed to preventing over-fitting.
It is well known that these methods are other forms of regularization. In AdaBoost, shrinkage corresponds to
replacing the wt+1 with η′wt+1 where 0 < η′ < 1; while bounded step-size caps wt+1 by min{wt+1, η

′′} where
η′′ is a small value. Both of these two methods decrease the step-size for producing better generalization
performance. Starting from the general regularized statistical learning machine (1), we are able to show the
regularized AdaBoost takes the form of (15) for updating the step-size. The fundamental idea is consistent
with the two previous heuristics. Arc-Gv [32], proposed for producing larger minimum margins, modifies
AdaBoost’s updating rule as

wt+1 =
1

2

(
log

$+

$−
− log

1 + γ′t
1− γ′t

)
, (16)

where γ′t is the normalized minimum margin over all training samples of the combined classifier up to iteration
t: γ′t = mini{yi

∑t
j=1 wjhj(xi)/

∑t
j=1 wj}. Comparing (15) and (16), we have the following corollary.

Corollary 3.1. Arc-Gv [32] is a regularized version of AdaBoost with an adaptive regularization parameter,
which is the normalized minimum margin over all training examples.

From the viewpoint of regularization theory, there is no particular reason that we should relate the regular-
ization parameter ϑ to the minimum margin. Arc-Gv’s purpose is to maximize the minimum margin to the
extreme, which has been shown not beneficial for the final performance [33].

We can also design a fully-corrective AdaBoost easily according to the CGBoost framework. As described
in Algorithm 5, we can either optimize the dual or primal. With the log-sum-exp loss, the dual problem of
AdaBoost is

min
u

m∑
i=1

ui log ui, s.t. : (8b) and 1>u = 1,u < 0, (17)

which is an entropy maximization problem. This is a general constrained convex program. It can be solved
using primal-dual interior point algorithms like [34]. Alternatively we can also solve it in the primal. We
use L-BFGS-B [19] to solve the primal problem. L-BFGS-B is faster and more scalable. TotalBoost [18]
takes the same form as (17) except that the parameter ϑ is adaptively set to the minimum edge over all
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weak classifiers generated up to the current iteration. It is clear now that TotalBoost is also a regularized
AdaBoost:

Corollary 3.2. AdaBoost∗ϑ [29] and TotalBoost [18] minimize the regularized versions of AdaBoost’s loss
with an adaptive regularization parameter, which is the minimum edge over all weak classifiers (up to a
numerical accuracy ϑ).

AdaBoost∗ϑ employs an coordinate descent optimization strategy while TotalBoost optimizes the cost
function fully-correctively.

Again it remains unclear whether ϑ should be related to the minimum edge and how it is translated into the
final generalization performance, although it is very clear that the minimum margin is efficiently maximized
in AdaBoost∗ϑ and TotalBoost.

TotalBoost [18] failed to discuss the primal-dual relationship of AdaBoost’s cost function and (17), and
an LPBoost is solved to obtain the final strong classifier after iteratively solving (17). In other words, in
TotalBoost, the dual problem (17) is only used to generate weak classifiers.

As a conclusion of this section, we highlight that `1 norm regularized CGBoost in Algorithm 5 is consistent
with AnyBoost of [11].

Theorem 3.3. In Algorithm 5, if we set the regularization parameter ϑ = 0, and solve the primal problem
using coordinate descent (Line 5 of Algorithm 5), i.e., keep w1, . . . , wj fixed at iteration j+1, then Algorithm
5 is the same as AnyBoost of Mason et al. [11]. Therefore, AnyBoost can be seen as a special of Algorithm
5.

Proof: The proof shares similarities with the proof of Theorem 3.2. It is straightforward to establish this
connection. �

Mason et al .’s AnyBoost is not immediately applicable to regression while our CGBoost can be used
for regression without any modification. Also, for CGBoost, we may add multiple weak classifiers into the
boosting optimization problem at each iteration to accelerate the convergence. However, AnyBoost can only
include one weak learn at each iteration. Moreover, it is possible for CGBoost to work with some constraints.
The optimization problem of AnyBoost is an unconstrained problem and cannot have additional constraints.
We will discuss these issues in the following context.

4. A More General Formulation

Let us consider a more general formulation of the optimization problem (5):

min
w,γ

m∑
i=1

l(γi)

s.t. :Qw ≤ r, γi = yiHi:w (∀i = 1 . . .m),w < 0, (18)

where Q ∈ Rp×n and r ∈ Rp encode the regularization term and prior information when available. it is
trivial to show (18) covers (5) as a special case. If we take Q = 1> ∈ R1×n and write the first constraint as
1>w ≤ r. We know that for a certain ϑ, one can always find a r such that the solution of (5) also solves
(18).

The Lagrange dual of (18) is

min
u,s

m∑
i=1

l∗(−ui) + r>s (19a)

s.t. : u> diag(y)H 4 s>Q, (19b)

s < 0. (19c)

10



Here the dual variables are u ∈ Rm and s ∈ Rp.
The optimality condition (9) also holds.
`∞ norm regularization is also a special case of the above formulation. `∞-norm regularization has been

used in kernel classifiers [35]. If we let Q = I ∈ Rn×n and r = r1, this is ‖w‖∞ ≤ r.
Let us have a close look at the `∞-norm regularized boosting. `∞-norm regularized boosting can be

written as

min
w,γ

m∑
i=1

l(γi) (20a)

s.t. : 0 4 w 4 r1, γi = yiHi:w (∀i = 1 . . .m). (20b)

The Lagrangian is

L =

m∑
i=1

l(γi) + s>(w − r1)− q>w − u>(γ − diag(y)Hw)

=
(
s> + u> diag(y)H − q>

)
w −

(
u>γ −

m∑
i=1

l(γi)

)
− r1>s,

with q < 0 and s < 0.
Therefore, its corresponding Lagrange dual is

min
u,s

m∑
i=1

l∗(−ui) + r1>s (21a)

s.t. : u> diag(y)H 4 s>, (21b)

s < 0. (21c)

Note that here we have reversed the sign of u too. Essentially the above dual problem can be converted
into the following unconstrained problem

min
u

m∑
i=1

l∗(−ui) + r

n∑
j=1

[
m∑
i=1

uiyiHij

]
+

, (22)

where [z]+ = max(0, z) is the hinge loss. That means, if the edge of a weak classifier is non-positive, it does
not have any impact on the optimization problem. The first term can be seen as a regularization term that
makes the sample weight u uniform and the second term encourages the edge of a weak classifier to become
non-positive. Let us define a symbol, the nonnegatively-clipped edge of weak classifier j,

d+j =

[
m∑
i=1

uiyiHij

]
+

(23)

for convenience. As we will see, with the notation of this nonnegatively-clipped edge, we are able to unify
the Lagrange dual formulations of `p (p = 1, 2,∞) regularized boosting. So (22) is

min
u

m∑
i=1

l∗(−ui) + r
∥∥d+∥∥

1
, (24)

with d+ = [d+1 , · · · , d
+
j , · · · , d+n ]>. To establish the connection with the `1 regularized boosting, we have the

following result:
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Proposition 4.1. The Lagrange dual of `1-norm regularized boosting can be equivalently written as the
following unconstrained optimization

min
u

m∑
i=1

l∗(−ui) + r
∥∥d+∥∥∞ . (25)

Proof: Let us start from rewriting the primal problem (5) of the `1 norm regularized boosting. Clearly we
can also write the regularization as an explicit constraint

min
w,γ

m∑
i=1

l(γi), s.t. : ‖w‖1 ≤ r,w < 0, γi = yiHi:w,∀i. (26)

Given the regularization constant ϑ in (5), one can always find a r such that (5) and (26) have the same
solution. It is easy to see that the optimal w? is always located at the boundary of the feasibility set:
‖w?‖1 = r [13]. We use the inequality constraint here. The Lagrange dual of (26) is

min
u,s

m∑
i=1

l∗(−ui) + rs, s.t. : u> diag(y)H 4 s1>, s ≥ 0. (27)

Here the dual variables are u and s ≥ 0. From the first constraint, it is clear that

s = max
j=1...n

{∑m
i=1 uiyiHij

}
= max
j=1...n

{dj},

if the largest edge maxj {dj} ≥ 0. Here dj =
∑m
i=1 uiyiHij is the edge of weak classifier j. Otherwise s = 0

must hold because of the constraint s ≥ 0. Hence, using the concept of clipped edges (23), we have

s = max
j

{
d+j
}

= ‖d+‖∞.

Now we can eliminate s and rewrite the above problem into (25). �

Comparing (24) and (25), the only difference is the norm employed in the second term. This is not a
surprising result if one is aware of `1 norm and `∞ norm being dual to each other. We also know that the
concept of margin that is associated with a sample and the concept of edge associated with a weak classifier
are dual to each other in boosting.

From the KKT conditions for the `∞-norm regularized boosting, we have the following equalities at
optimality:

ui = −l′(γi),∀i = 1 · · ·m, (28)

which is the same as (9). From the complementary conditions, we also have

s>(w − r1) = 0;

q>w = 0.

Therefore, if wj 6= r, then sj = 0 must hold. If wj = r, then qj = 0; hence sj −
∑m
i=1 uiyiHij = qj = 0. In

summary, we can obtain both the dual variables u and s from the primal variables w using the following
relationships

sj =

{
0 if wj < r,∑m
i=1 uiyiHij if wj = r;

(29)

and (28).
Although the Lagrange dual problems of `1-norm and `∞-norm regularized boosting can both be rewritten

into unconstrained problems, Neither of them is not differentiable, hence still difficult to solve. That is
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why we solve the primal problems (5) and (20) instead (as long as the loss function l(·) is convex and
differentiable), and using the optimality conditions to recover the dual variables from the primal variables.

However, we know that the `2 norm is dual to itself and it is differentiable, unlike the `1 and `∞
norms. There is hope that the Lagrange dual problem of `2 norm regularized boosting can be written as
an unconstrained differentiable problem so that it is much easier to solve. We discuss this case in the next
section.

4.1. Arbitrary Regularization

Let us consider the following very general case. Now we not only assume a general loss function, we
also assume that the regularization term is any popular regularization function. Concretely, we have the
following form,

min
w

m∑
i=1

l(yiHi:w) + ϑ · Ω(w) s.t. : w < 0. (30)

We rewrite (30) into the following equivalent form by introducing another auxiliary variable η:

min
w,γ,η

m∑
i=1

l(γi) + ϑ · Ω(η)

s.t. : γi = yiHi:w,∀i = 1 . . . n, η = w, w < 0. (31)

The Lagrangian is

L =

m∑
i=1

l(γi) + ϑΩ(η)− u>(γ − diag(y)Hw)

− s>(ϑη − ϑw)− p>w, (32)

with p < 0.
The Lagrange dual is

max
u,s

−
m∑
i=1

l∗(ui)− ϑ · Ω∗(s) (33)

s.t. : ϑs> + u> diag(y)H < 0.

It is important to introduce the auxiliary variable η; otherwise we are not able to arrive at this meaningful
dual formulation. As before, we reverse the sign of u, and we obtain

min
u,s

n∑
i=1

l∗(−ui) + ϑ · Ω∗(s) (34)

s.t. : u> diag(y)H 4 ϑs>.

Next we discuss a special case, namely, `2 regularization. In the case of `2 regularization, we set Ω(w) =
1
2 ‖w‖

2
2, and the Fenchel conjugate Ω∗(s) = 1

2 ‖s‖
2
2. So the primal problem is

min
w

m∑
i=1

l(γi) + 1
2ϑ‖w‖

2
2, s.t. : γi = yiHi:w, w < 0. (35)

The Lagrange dual can be written into an unconstrained problem again:

min
u

m∑
i=1

l∗(−ui) + r
∥∥d+∥∥2

2
, (36)

with r = 0.5/ϑ.
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Table 2: The primal and dual problems of `p (p = 1, 2,∞) norm regularized boosting algorithms. Samples’ margins γ and
weak classifiers’ clipped edges d+ are dual to each other. `p regularization in primal corresponds to `q regularization in dual
with 1/p + 1/q = 1. Note that γ is a function of w and d+ is a function of u.

Primal Dual

`1 min
∑m
i=1 l(γi) + ϑ ‖w‖1 min

∑m
i=1 l

∗(−ui) + r‖d+‖∞
`2 min

∑m
i=1 l(γi) + ϑ ‖w‖22 min

∑m
i=1 l

∗(−ui) + r‖d+‖22
`∞ min

∑m
i=1 l(γi) + ϑ ‖w‖∞ min

∑m
i=1 l

∗(−ui) + r‖d+‖1
l(γ): loss in primal ‖d+‖q: loss in dual

‖w‖p: regularization in primal l∗(u): regularization in dual

Result 4.1. The cost function in (36) is differentiable everywhere. Hence gradient descent methods like
L-BFGS can be used.

This result follows the fact that the squared hinge loss is differentiable. So we have answered the conjecture
in the last section: we indeed obtain a convex, differentiable unconstrained dual problem for the `2 norm
regularized boosting problem. Note that the Fenchel conjugate l∗(·) may have extra constraints on its
variable u. For example, in the case of exponential loss, u has nonnegative-ness constraints, which still can
be solved by L-BFGS-B. In practice, it is still better to solve the primal problem because the size of the
primal problem is usually smaller than the size of the dual problem (n < m).

Table 2 summarizes our results. Note that it may be possible to extend the analysis to the case of a more
general `p, in general it is not of interest for p /∈ {1, 2,∞} in the machine learning community. Moreover,
when p /∈ {1, 2,∞} the optimization problem becomes much more difficult.

The RKHS regularization term is Ω(w) = w>Kw where K is the kernel matrix, usually being strictly
positive definite. We can easily show its Lagrange dual by noticing the dual of w>Kw being w>K−1w.

4.2. How the Fenchel Conjugate of the Primal Loss Regularizes the Dual Variable

Firstly, we have the following theorem.

Theorem 4.1. The dual variable u in classification is always a probability distribution up to a normalization
factor. This normalization factor has no influence on the CGBoost algorithms.

Proof: In classification, the relationship between the margin in the primal and the sample weight in the
dual is ui = −l′(γi),∀i. This equation holds for all the three `1, `2 and `∞ regularization cases.

We know that typically the classification loss function is convex and monotonically decreasing. Therefore,
ui = −l′(γi) must be nonnegative. This is guaranteed as long as we infer u from the primal. So we do not
need explicit constraints to make the sample weights nonnegative if working in the primal.

For some loss functions, e.g ., AdaBoost’s log-sum-exp function, u is normalized ‖u‖1 = 1. u is a
probability distribution on the samples. However, the normalization of u does not have any impact on the
algorithm in our framework. It does not affect the selection of weak classifiers or the update of u in the
iteration. �

Let us have a close look at the loss function l(γ) and its role in the Lagrange dual. From Table 2, we
know that l∗(−u) works as a regularization term. Shen and Li discussed the cases when l(·) is exponential
loss, logistic loss and generalized hinge loss, l∗(·) is Shannon entropy, binary entropy and Tsallis entropy,
respectively [13]. All of them make the dual variable u uniform. In LPBoost that employs the non-
differentiable hinge loss, the Fenchel conjugate is an indicator function that caps the dual variable u so that
u is confined in a box. u is uniformed in a hard way. The hinge loss is an exception in that it is not strongly
convex and non-differentiable. It is important because we can view hinge loss as the extreme of many loss
functions, e.g ., the logistic loss. Theorem 4.2 generalizes the theoretical results of [13].

Theorem 4.2. Let us assume that l(γ) is strictly convex and differentiable everywhere in (−∞,+∞). The
Fenchel conjugate

∑m
i=1 l

∗(−ui) penalizes the divergence of u; i.e.,
∑
i l
∗(−ui) encourages u become uniform.
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Proof: Because l(γ) is strictly convex and differentiable everywhere, we know that the first derivative l′(γ) is
continuous and monotonically increasing for increasing γ. In this case, the Fenchel duality has the following
analytic expression:

l∗′(−ui) = γi, ∀i. (37)

Here l∗′(·) is the first derivative of l∗(·). Because Theorem 4.1 holds for all the three cases considered, u
take values in (0, κ) with κ > 0 (κ could be +∞). So l∗(−ui) is defined in the domain of (−κ, 0). Equations
ui = −l′(γi) and (37) hold at the same time for a pair of {ui, γi}, ∀i. When γ → +∞, u→ 0 from left side.
With (37),

l∗′(u→ 0)→ +∞. (38)

When γ → −∞, u→ −κ, so
l∗′(u→ −κ)→ −∞. (39)

Therefore, l∗′(−u�) = 0 for a certain 0 < −u� < κ. In other words, l∗(−u) must be “∪-shaped” in
0 < −u < κ.

l∗(−u) is convex and has a unique minimum at 0 < −u� < κ. Clearly,
∑m
i=1 l

∗(−ui) penalizes those ui’s
that deviate from u�. �

In the above theorem, we have assumed that l(·) has no non-differentiable points, it should not be difficult
to extend it to the case that l(·) has non-differentiable points using the definition of Fenchel conjugate.

It has been shown in [13] that minimizing the exponential loss function results in minimizing the di-
vergence of margins too. The authors theoretically proved that AdaBoost (also its fully corrective version)
approximately maximizes the unnormalized average margin and at the same time minimizes the variance
of the margin distribution under the assumption that the margin follows a Gaussian distribution. They
have proved this result by analyzing the primal optimization problem. Now with Theorem 4.2, we can show
this result from the dual problem. With u = −l′(γ), minimizing the divergence of u also minimizes the
divergence of l′(γ). But generally it cannot be translated into minimizing the divergence of γ unless l′(·)
is strictly monotonic. When the exponential loss is used, u = −l′(γ) = exp(−γ), in which l′(·) is indeed
strictly monotonic. See Fig. 1 for a demonstration of this relationship. For the logistic loss, this conclusion
also holds. For those loss functions whose first derivatives are truncated from above, e.g ., the MadaBoost
loss, this conclusion applies only approximately. For instance, in the case of the MadaBoost loss, as long as
the margin γi is positive, the corresponding ui equals a constant.

As mentioned before, the hinge loss is an extreme case. The regularization term
∑
i l
∗(−ui) in the dual of

LPBoost is a hard indicator function. Essentially they are a set of box constraints on u; The first derivative
of the hinge loss is a non-continuous step function. Unlike the exponential or logistic loss, to minimize the
divergence of u does not effectively minimize the divergence of the margins. If a small margin divergence
does contribute to a better generalization capability, the hinge loss would not be an ideal choice for boosting.

Note that the optimization strategy of boosting is entirely different from support vector machines (SVMs).
In SVMs, the hypotheses/dictionary for building the final classifier is fixed. In boosting, the weak hypotheses
could be infinitely large.

4.3. Confidence-rated Predictions

The derivations of the last sections do not depend on the condition that the output of the weak classifier
(the matrix H) must be discrete {−1,+1}. Therefore, as in the case of LPBoost [3], the proposed methods
can use a weak learner belonging to a finite set of confidence-related functions. The outputs of the weak
learner can be any real values.

Indeed, it is not difficult to show that the same framework can be applied to learn a mixture of kernels as
in [36]. It is also possible to include an offset in the learned strong classifier, in which case the optimization
problem is only slightly different. However, this topic is beyond the scope of this paper.
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4.4. CGBoost for Regression

In this section, we extend the presented framework to regression problems. The presented framework
can be easily extended to regression. The difference is the concept of margin γ = yF (x). In classification,
one tries to push this margin as large as possible. In regression, instead one tries to minimize the distance
of predicted response F (x) and the given response y, i.e., min l(F (x)−y). Here l(·) is usually a convex loss
function that penalizes the deviation between F (x) and y. Let us consider the arbitrary regularization. We
rewrite the problem in (31):

min
w,γ,η

m∑
i=1

l(γi) + ϑ · Ω(η)

s.t. : γi = yi −Hi:w (∀i = 1 . . . n),η = w, w < 0. (40)

Compared with (31), the only difference is the first constraint, i.e., the definition of margins. Using the
same technique, we arrive at the corresponding Lagrange dual:

min
u,s

n∑
i=1

l∗(ui) + ϑΩ∗(s)− y>u, s.t. : u>H 4 ϑs>. (41)

The KKT condition is
ui = l′(γi), ∀i = 1 . . .m. (42)

We list a few special cases in the Appendix.
The dual Lagrange multiplier u here could be negative from (42) because the regression loss function

must not be monotonic. The derivative of the loss function could be negative or positive. Therefore, in
regression, the dual variable u cannot be viewed as a sample weight that measures the importance of the
training sample. Generally, the regression loss function l(·) is symmetric, hence the absolute value of |u|
might be seen as the weight associated with the training samples. This is different from the classification
case as we have shown in the last section.

5. Experiments

In this section, we run some experiments to verify the performance and efficiency of CGBoost with
various loss functions and regularization terms. More specifically, exponential loss (l(y, F ) = exp(−yF ))
and hinge loss (max(0,−yF )) are used as loss function candidates, while the regularization term is either `1,
`2, or `∞ norm. Consequently, there are 6 combinations of the loss function plus the regularization term. In
order to control the complexity of weak classifiers, we have used decision stumps. CGBoost based on all the
loss-regularizer pairs are implemented. AdaBoost is also compared as the baseline. A 5-fold cross-validation
procedure is used for each CGBoost to tune the regularization parameter. For fair comparison, the stopping
iteration for AdaBoost is also cross-validated.

The first experiment is carried out on the 13 UCI datasets obtained from [37, 38]. Each dataset is
randomly split into two groups. 60% of data samples are used for training and validation and the remaining
ones are used for test6. L-BFGS-B is used to solve the primal optimization problem with the exponential
loss, while Mosek [34] is used to solve the ones with hinge loss, which are not differentiable. The convergence
threshold ε is 10−5 for the exponential loss case and 10−3 for the ones with hinge loss because Mosek is
much slower than L-BFGS-B. All the experiments are repeated 40 times and both the mean and standard
deviations are reported. Both test and training errors of boosting algorithms are reported in Table 8. In
the case that an algorithm converges earlier than any pre-selected iterations, we simply copy the converged
results to this iteration and the latter ones.

6For the datasets ringnorm, twonorm and waveform, only 10% of data samples are selected for training and validation due
to the extreme large amount of samples.
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Table 3: Training and test errors of linear SVM over 40 runs, with the regularization parameter C being selected using 5-fold
cross validation from {10−2, 10−1, 100, 101, 102, 103}. The errors and standard deviations are shown in percentage (%).

Error banana b-cancer diabetis f-solar german heart image ringnorm splice thyroid titanic twonorm waveform

Train 9.3±0.4 17.6±4.7 16.2±2.1 21.9±5.3 13.4±3.4 7.9±3.0 0.9±0.5 0.8±0.6 0.2±0.5 1.0±1.3 15.9±7.0 1.3±0.6 4.0±2.5

Test 9.6±0.6 26.8±3.5 24.3±2.1 36.9±5.3 25.0±2.1 17.1±2.9 3.5±0.6 1.7±0.2 9.6±0.8 4.8±1.9 21.8±11.7 2.4±0.2 10.4±1.0

Table 4: Results of the Wilcoxon Signed-Ranks Test (WSRT) [39]. The test is processed pairwisely among the compared
boosting methods. The block where “Better” takes place indicates that the algorithm corresponding to its row is better than
the algorithm corresponding to its column. “No” suggests that the row algorithm is not better than the column algorithm.
The inequality in the parenthesis is the comparison between the Wilcoxon statistic (l.h.s.) and the critical value (r.h.s.). The
critical value depends on the number of data sets yielding different performances. Hence it is not fixed. The hypothesis is
rejected When the statistic is larger than the critical value.

AdaBoost CG exp, `1 CG exp, `2 CG exp, `∞ CG hinge, `1 CG hinge, `2 CG hinge, `∞

AdaBoost – No (27 < 61) No (51 < 53) No (19 < 70) No (21 < 70) No (17 < 70) No (23 < 70)

CG exp, `1 No (51 < 61) – No (62 > 61) No (37 < 70) No (47 < 70) No (43 < 70) No (45 < 70)

CG exp, `2 No (15 < 53) No (16 < 61) – No (15 < 70) No (20 < 70) No (16 < 70) No (45 < 70)

CG exp, `∞ Better (72 > 70) No (54 < 70) Better (76 > 70) – No (59 < 70) No (62 < 70) No (67 < 70)

CG hinge, `1 No (70 ≤ 70) No (44 < 70) No (71 > 70) No (32 < 70) – No (16 < 45) No (47 < 61)

CG hinge, `2 Better (74 > 70) No (48 < 70) Better (75 > 70) No (29 < 70) No (39 < 45) – No (56 > 61)

CG hinge, `∞ No (68 < 70) No (46 < 70) No (62 < 70) No (24 < 70) No (31 < 61) No (22 < 61) –

As demonstrated in the table, the first observation is that all the methods perform similarly. In terms
of the test error, standard AdaBoost only wins once, which is almost the worst performance among all the
methods. Considering that cross-validation is also performed for AdaBoost, we may draw the conclusion
that in general, CGBoost could be slightly better if the regularization is carefully selected.

Here, we also run the linear SVM on the same datasets for comparison. The training and test results are
reported in Table 3. Compared with the results of boosting in Table 8, as we can see, boosting and SVM
have achieved comparable overall classification accuracy.

In order to verify the performance of CGBoost statistically, we implement the Wilcoxon signed-rank test
on the experimental results. The Wilcoxon signed-ranks test (WSRT) [39] is a non-parametric alternative
of the paired t-test, which can rank the difference in performance of two classifiers for each data set. In this
paper, the WSRT test is used for pairwise comparison of all the boosting algorithms in terms of empirical
test error. The null-hypothesis declares that an algorithm is not better than the comparisons in terms of
performance. Thus, it is a one-tail test. We set conventional confidence level to be 95% and the rejection
region is {w ∈ R | w > 70}, considering the number of datasets with different performance is 13.7 The
output of WSRT is illustrated in Table 4.

We can see that statistically (at a confidence level of 95%), 1) CGBoost with exponential loss and `∞,
and CGBoost with hinge and `2 are marginally superior to AdaBoost and CGBoost with exponential and
`2; This hypothesis test also suggests that AdaBoost is never significantly better than any form of CGBoost.

We have also performed another statistical test, namely, the Bonferroni-Dunn test [39]. The result shows
that no algorithm statistically outperforms the other one. The comparison results are in Table 5. Note that
the Bonferroni-Dunn test is a post-hoc manner to verify whether a classifier over-performs the others under
the circumstance of multiple comparison [39]. It is not a pair-wise comparison. In general, on these standard
benchmark datasets, we would expect most methods perform similarly. We have also plotted boxplots of
different methods on a few datasets. Boxplots present an easy-to-interpret graphical representation of the
experiment results [40]. Figure 2 shows the plots on a few datasets. We see that there is no significant
difference between different methods.

The computational complexity of AdaBoost is trivial due to the closed-form solution at each iteration.
In contrast, many fully-corrective boosting methods [3, 13, 18, 41] are computationally demanding because

7Here the critical value is not fixed since it depends on the number of datasets with different performance of two algorithms.
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Table 5: Results of the Bonferroni-Dunn Test (BDT) [39]. Each algorithms is compared with other 6 boosting methods.
The block where “Better” takes place indicates that the algorithm corresponding to its row is better than the algorithm
corresponding to its column. “No” means the row algorithm cannot be considered better than the column algorithm. The
inequality in the parenthesis is the comparison between the Bonferroni statistic (l.h.s.) and the critical value (r.h.s.). The
critical value depends on the number of comparing classifiers, thus it is fixed (here it is 2.693). The hypothesis is rejected when
the statistic is larger than the critical value.

AdaBoost CG exp, `1 CG exp, `2 CG exp, `∞ CG hinge, `1 CG hinge, `2 CG hinge, `∞

AdaBoost – No (−1.725 < 2.693) No (−0.317 < 2.693) No (−2.496 < 2.693) No (−1.225 < 2.693) No (−1.861 < 2.693) No (−1.044 < 2.693)

CG exp, `1 No (1.725 < 2.693) – No (1.407 < 2.693) No (−0.772 < 2.693) No (0.499 < 2.693) No (−0.136 < 2.693) No (0.680 < 2.693)

CG exp, `2 No (0.317 < 2.693) No (−1.407 < 2.693) – No (−2.178 < 2.693) No (−0.908 < 2.693) No (−1.542 < 2.693) No (−0.726 < 2.693)

CG exp, `∞ No (2.496 < 2.693) No (0.771 < 2.693) No (2.178 < 2.693) – No (1.271 < 2.693) No (0.635 < 2.693) No (1.452 < 2.693)

CG hinge, `1 No (1.225 < 2.693) No (−0.499 < 2.693) No (0.908 < 2.693) No (−1.271 < 2.693) – No (−0.635 < 2.693) No (0.181 < 2.693)

CG hinge, `2 No (1.861 < 2.693) No (0.136 < 2.693) No (1.542 < 2.693) No (−0.635 < 2.693) No (0.635 < 2.693) – No (0.817 < 2.693)

CG hinge, `∞ No (1.044 < 2.693) No (−0.680 < 2.693) No (0.726 < 2.693) No (−1.452 < 2.693) No (−0.181 < 2.693) No (0.817 < 2.693) –

Table 6: Test and training errors of AdaBoost, CGBoost algorithms with three types of loss function (exponential loss, logistic
loss and MadaBoost loss) and `1-norm regularization. The errors are shown in percentage. All the algorithms are run 8 times.
In all the cases, the logistic or MadaBoost loss outperforms the exponential loss, as expected.

Data Method Train 10 Train 50 Train 100 Train 500 Train 1000 Test 10 Test 50 Test 100 Test 500 Test 1000

image

AdaBoost 28.8± 1.8 22.9± 0.5 21.6± 0.8 20.8± 1.2 20.8± 1.2 19.2± 3.2 9.8± 1.6 9.6± 1.5 10.0± 1.5 10.0± 1.5

CG, exp 25.6± 0.5 20.5± 0.2 17.2± 1.1 8.9± 3.8 8.9± 3.8 12.9± 1.1 13.6± 2.5 15.8± 3.6 19.6± 2.2 19.6± 2.2

CG, logit 25.1± 0.6 20.9± 0.4 20.0± 0.5 19.7± 0.7 19.7± 0.7 12.2± 0.9 8.3± 0.6 8.2± 1.3 8.9± 1.8 8.9± 1.8

CG, Mada 24.2± 0.7 20.9± 0.8 21.4± 1.9 21.2± 2.1 21.2± 2.1 10.7± 2.0 8.5± 1.2 9.4± 1.7 10.7± 1.7 10.7± 1.7

ringnorm

AdaBoost 29.5± 1.7 19.6± 0.9 17.4± 1.5 13.5± 5.0 13.0± 5.7 27.8± 1.0 17.4± 1.1 17.3± 1.1 17.8± 1.2 17.8± 1.2

CG, exp 27.3± 0.8 17.7± 0.8 10.2± 3.0 4.3± 3.5 4.3± 3.5 23.4± 0.8 19.9± 1.3 21.8± 2.2 21.6± 1.1 21.6± 1.1

CG, logit 26.9± 1.1 17.8± 1.0 16.1± 1.1 15.7± 1.7 15.7± 1.7 23.9± 1.5 15.2± 1.1 14.7± 1.3 16.2± 1.9 16.2± 1.9

CG, Mada 26.4± 1.2 17.1± 1.8 15.6± 3.1 14.7± 3.4 14.7± 3.4 23.6± 1.4 14.6± 1.4 14.3± 2.3 14.6± 3.3 14.6± 3.3

twonorm

AdaBoost 24.5± 1.2 20.8± 1.8 20.1± 2.7 19.7± 3.3 19.7± 3.3 16.2± 0.6 13.2± 0.7 13.6± 1.0 13.7± 1.2 13.7± 1.2

CG, exp 23.6± 1.2 18.7± 1.2 15.3± 3.7 11.6± 4.6 11.6± 4.6 15.0± 0.4 13.5± 3.9 14.5± 4.6 22.9± 4.6 22.9± 4.6

CG, logit 22.9± 1.1 19.7± 1.0 19.5± 0.8 19.5± 0.8 19.5± 0.8 14.8± 0.6 7.6± 0.5 7.6± 0.5 7.8± 0.6 7.8± 0.6

CG, Mada 23.0± 1.1 18.8± 0.5 18.8± 0.5 18.6± 0.5 18.6± 0.5 14.4± 0.4 6.9± 0.5 6.8± 0.5 7.9± 1.4 7.9± 1.4

waveform

AdaBoost 26.3± 1.6 23.8± 4.2 23.8± 4.2 23.8± 4.2 23.8± 4.2 20.1± 1.6 19.5± 1.3 19.5± 1.3 19.5± 1.3 19.5± 1.3

CG, exp 26.0± 1.4 22.9± 3.9 22.5± 5.7 19.7± 6.1 19.7± 6.1 17.3± 1.0 17.7± 2.5 18.0± 2.5 26.0± 5.7 26.0± 5.7

CG, logit 25.0± 1.1 23.2± 1.7 22.8± 1.9 23.0± 1.9 23.0± 1.9 16.2± 1.3 15.2± 0.9 15.2± 0.8 15.3± 0.9 15.3± 0.9

CG, Mada 24.4± 1.7 22.3± 4.0 22.0± 3.9 22.7± 3.6 22.7± 3.6 16.3± 1.0 15.6± 0.7 15.8± 0.9 18.2± 2.7 18.2± 2.7

complicated convex problems are usually involved. By explicitly establishing the primal and dual problems,
we can solve the primal that has some special structure to exploit. We use L-BFGS-B to solve the primal.
Compared with conventional fully-corrective algorithms that use standard convex solvers, ours is much
faster. Fig. 3 illustrates the time consumption of training for AdaBoost, CGBoost (exponential loss with
`1) that solves the primal with L-BFGS-B and that solves the dual with Mosek, respectively. Note that
with this loss-regularization combination, CGBoost solves the essentially same problem as AdaBoost. We
can clearly see the advantage of solving the primal.

The second experiment is to evaluate the classification performance of different loss functions on noisy
data. The exponential loss is generally sensitive to noise owing to the “over-penalty” for the training samples
with negative margin (see the loss function shape in Fig. 1). In contrast, logistic loss and MadaBoost loss
are supposed to be much more robust on noisy data. This experiment is performed on several artificial
noisy datasets to confirm this assumption. The noise is generated by randomly flipping the labels of a
subset of the original dataset. Our test is carried out with AdaBoost and `1 norm regularized CGBoost
with logistic loss and MadaBoost loss on 4 noisy datasets originated from image, ringnorm, twonorm and
waveform respectively. 20% of the labels are flipped. Experimental results are displayed in Table 6. We can
see that after 1000 rounds, AdaBoost always ranks first in terms of the training error. In terms of test error,
The exponential loss is almost always inferior to the MadaBoost loss and logistic loss. The MadaBoost loss
and Logistic loss show their superiority on classification with the noisy data over other algorithms. Standard
AdaBoost over-fits on all the noisy datasets progressively.

One of the appealing properties of the proposed fully corrective CGBoost is that at each iteration, more
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Table 7: Two weak classifiers are added at each step of CGBoost with exponential loss and `1 or `2 regularization. Each case
is run 5 times. Training and test error in percentage (%) are reported at iteration 25, 50, 250 and 500. The parameter setting
for cross validation is the same as the first experiment.

Data Method Train 25 Train 50 Train 250 Train 500 Test 25 Test 50 Test 250 Test 500

banana
CG, `1 24.1± 0.3 22.9± 0.4 19.5± 0.7 19.5± 0.7 27.4± 1.0 28.4± 0.9 30.1± 1.8 30.1± 1.8

CG, `2 24.2± 0.5 22.7± 0.6 18.6± 1.5 18.6± 1.5 28.3± 1.3 29.3± 1.2 29.6± 0.8 29.6± 0.8

b-cancer
CG, `1 21.9± 2.0 22.4± 2.0 23.0± 2.3 23.0± 2.3 26.1± 2.0 25.5± 1.9 25.0± 2.1 25.0± 2.1

CG, `2 22.2± 1.1 24.2± 6.2 23.4± 6.4 23.4± 6.4 25.7± 1.6 29.1± 3.9 30.3± 4.1 30.3± 4.1

diabetis
CG, `1 15.3± 1.3 12.9± 2.2 12.2± 1.8 12.2± 1.8 23.4± 1.2 24.6± 1.9 26.0± 1.9 26.0± 1.9

CG, `2 15.3± 2.4 12.1± 6.7 17.0± 15.8 17.0± 15.8 24.6± 3.5 27.9± 4.4 32.8± 7.8 32.8± 7.8

f-solar
CG, `1 29.8± 1.2 29.8± 1.2 29.1± 1.6 29.1± 1.6 36.9± 6.1 37.6± 5.8 37.9± 4.6 37.9± 4.6

CG, `2 29.5± 1.6 29.1± 1.6 30.0± 3.5 30.0± 3.5 39.0± 5.1 35.2± 2.1 33.8± 3.6 33.8± 3.6

german
CG, `1 18.5± 0.2 17.7± 0.8 16.0± 1.0 16.0± 1.0 25.9± 1.4 25.8± 1.7 27.5± 1.9 27.5± 1.9

CG, `2 18.4± 0.3 15.7± 0.5 12.2± 1.4 12.2± 1.4 25.6± 1.0 26.6± 1.6 27.8± 1.6 27.8± 1.6

heart
CG, `1 4.9± 5.8 4.8± 5.9 5.4± 6.7 5.4± 6.7 19.6± 2.7 19.8± 3.1 20.2± 2.8 20.2± 2.8

CG, `2 5.7± 4.2 3.6± 3.8 0.7± 1.5 0.7± 1.5 20.2± 2.3 21.9± 2.9 21.5± 3.2 21.5± 3.2

image
CG, `1 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 3.8± 0.5 3.0± 0.5 2.9± 0.5 2.9± 0.5

CG, `2 0.8± 0.7 0.5± 0.5 0.3± 0.5 0.3± 0.5 3.8± 0.5 3.4± 0.5 3.1± 0.7 3.1± 0.7

ringnorm
CG, `1 0.4± 0.4 0.1± 0.1 0.0± 0.0 0.0± 0.0 8.2± 1.1 6.2± 0.6 5.9± 0.6 5.9± 0.6

CG, `2 0.4± 0.5 0.1± 0.1 0.0± 0.0 0.0± 0.0 9.5± 1.2 7.2± 0.8 5.8± 0.2 5.8± 0.2

splice
CG, `1 7.2± 0.4 6.3± 0.3 6.3± 0.3 6.3± 0.3 8.8± 0.7 8.1± 0.4 8.3± 0.1 8.3± 0.1

CG, `2 7.2± 0.5 6.2± 0.3 5.9± 0.5 5.9± 0.5 8.5± 0.7 8.6± 0.4 9.4± 0.3 9.4± 0.3

thyroid
CG, `1 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 7.4± 2.4 7.7± 2.6 7.4± 2.4 7.4± 2.4

CG, `2 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 7.7± 2.0 7.4± 2.7 7.2± 3.1 7.2± 3.1

titanic
CG, `1 12.9± 8.3 12.9± 8.3 12.9± 8.3 12.9± 8.3 24.0± 10.2 24.0± 10.2 24.0± 10.2 24.0± 10.2

CG, `2 12.9± 8.3 12.9± 8.3 12.9± 8.3 12.9± 8.3 24.0± 10.2 24.0± 10.2 24.0± 10.2 24.0± 10.2

twonorm
CG, `1 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 4.6± 0.2 4.0± 0.2 3.9± 0.2 3.9± 0.2

CG, `2 0.0± 0.1 0.0± 0.0 0.0± 0.0 0.0± 0.0 4.4± 0.3 3.8± 0.1 3.8± 0.2 3.8± 0.2

waveform
CG, `1 1.1± 1.2 0.6± 0.8 0.9± 1.0 0.9± 1.0 13.5± 1.1 12.9± 0.8 13.2± 0.7 13.2± 0.7

CG, `2 2.2± 2.1 1.0± 1.7 1.7± 3.4 1.7± 3.4 12.9± 0.4 12.7± 0.4 13.6± 1.6 13.6± 1.6
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Figure 2: Box plots of test errors with 1000 weak learners for different methods on the datasets of “banana”, “breast cancer”,
“diabetis”, “heart”, “thyroid”, and “twonorm”.

than one weak learners can be added into the optimization problem, as long as each weak learner corresponds
to a violated constraint in the dual problem. In contrast, stage-wise boosting can only include one weak
learner at each iteration. Adding multiple weak learners at each iteration can improve the convergence rate
in general, as demonstrated in the following experiment. Here we add two weak learner at each iteration of
CGBoost. Decision stump is used as the weak classifier, again, because of its simplicity. The strategy for
choosing the two weak classifiers at each iteration is as follows. We train the decision stump with minimum
weighted error at each dimension and the top two decision stumps are added into the primal problem. That
is, the first weak classifier is actually selected same as in the standard CGBoost. The experiment setup is
the same as the first experiment that we have run. Table 7 reports the results (the exponential loss with
`1 or `2 regularization). Compared with the results of the standard CGBoost in Table 8, the test errors are
comparable. One some datasets, the new strategy is even slightly better. Only on the dataset “titanic”, the
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Figure 3: Cumulative training time needed for AdaBoost, CGBoost (exponential loss and `1 norm regularization) that solves
the primal using LBFGS-B and that solves the dual using Mosek. We can see that using LBFGS-B to solve the primal is much
faster. Here we have used 80% of the banana dataset for training. A standard desktop PC is used here.

new strategy is slightly worse. We can draw the conclusion that, in CGBoost, adding multiple weak learners
at each iteration may produce comparable test accuracy with much faster convergence. For applications like
boosting based face detection [8], to reduce half of the training time could be desirable.

6. Conclusion and Discussion

In this work, we have presented an abstract fully-corrective boosting framework (CGBoost) that can
be used to minimize a broad range of regularized risk. An objective in the form of an arbitrary convex
loss function plus an arbitrary convex regularization term can be minimized using the boosting technique
developed here. We have also shown that a few existing boosting algorithms can be interpreted within our
framework.

Like the seminal work of AnyBoost [11], which has been extensively used to design new stage-wise
boosting methods, the proposed CGBoost framework may inspire new fully-corrective boosting algorithms.
For example, Shen et al . has designed FisherBoost for asymmetric learning in a cascade classifier [42].
Compared with stage-wise boosting, fully-corrective boosting is more flexible in the sense that domain
knowledge in the form of additional constraints may be taken into consideration. The stage-wise AnyBoost
cannot deal with constraints. Another flexibility of fully-corrective boosting is that multiple weak learners
can be added into the strong learner. As long as the added weak learners violate the current solution, it is
guaranteed that the primal cost will be reduced. In contrast, stage-wise boosting can only include one weak
classifier per iteration. Our preliminary experiments on training a face detector show that the training time
can be reduced when two weak classifiers are added at each iteration, without compromising the detection
performance.

We believe that the proposed CGBoost framework will help to understand how boosting works in general.
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Appendix

`p-regularized CGBoost Regression

We list the special cases of CGBoost for regularization (primal (40) and dual (41)).
The `1 regularized primal can be written as

min
w,γ

m∑
i=1

l(γi), s.t. : ‖w‖1 ≤ r,w < 0, γi = yi −Hi:w (∀i). (43)

Its corresponding dual is

min
u,s

m∑
i=1

l∗(ui)− y>u+ rs, s.t. : u>H 4 s1>, s ≥ 0. (44)

Similar to (23), we define

d+j =

[
m∑
i=1

uiHij

]
+

. (45)

The dual (44) can be written into

min
u

∑m
i=1l

∗(ui)− y>u+ r‖d+‖∞.

The `∞ regularized primal writes

min
w,γ

m∑
i=1

l(γi), s.t. : ‖w‖∞ ≤ r,w < 0, γi = yi −Hi:w (∀i). (46)

Its dual is
min
u

∑m
i=1l

∗(ui)− y>u+ r‖d+‖1.

The `2 regularized primal writes

min
w,γ

m∑
i=1

l(γi) + 1
2ϑ‖w‖

2
2, s.t. : w < 0, γi = yi −Hi:w (∀i). (47)

The dual is
min
u

∑m
i=1l

∗(ui)− y>u+ 1
2ϑ‖d

+‖22.
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Table 8: Training and test errors of AdaBoost, CGBoost with two types of loss functions (exponential and hinge) and three
types of regularization (`1 norm, `2 norm and `∞ norm). The errors are shown in percentage (%). All the methods are run 40
times.

Method Train 50 100 500 1000 Test 50 100 500 1000

b
a
n
a
n
a

AdaBoost 27.0±1.5 26.1±0.8 24.6±0.7 23.9±0.7 29.0±1.2 28.4±1.0 27.8±0.8 27.7±0.8
CG exp, `1 25.2±0.6 24.0±0.5 17.9±2.4 17.9±2.4 27.9±1.1 28.4±1.2 31.8±0.9 31.8±0.9
CG exp, `2 24.4±0.8 23.1±0.5 18.7±0.7 18.7±0.7 28.1±0.9 28.7±0.7 30.1±1.0 30.1±1.0
CG exp, `∞ 27.8±1.0 28.1±1.2 24.5±0.9 24.5±0.9 29.7±1.1 29.8±1.3 27.5±0.7 27.5±0.7
CG hin, `1 22.9±0.8 22.6±1.2 22.4±1.5 22.4±1.5 25.8±1.2 25.8±0.9 25.9±0.9 25.9±0.9
CG hin, `2 27.0±1.0 24.2±1.3 23.0±1.0 23.0±1.0 28.3±1.5 26.3±1.5 25.4±0.9 25.4±0.9
CG hin, `∞ 33.9±7.0 33.0±8.1 21.9±2.3 21.9±2.3 35.5±6.8 35.0±7.5 26.0±1.0 26.0±1.0

b
-c
a
n
c
e
r

AdaBoost 20.9±2.9 20.4±2.8 20.2±2.5 20.3±2.7 29.3±4.2 30.1±4.4 31.2±4.5 31.6±4.0
CG exp, `1 22.2±3.1 22.3±2.9 22.3±3.2 22.3±3.2 26.7±3.2 26.9±3.3 26.7±3.3 26.7±3.3
CG exp, `2 20.8±3.1 20.8±2.7 21.0±3.4 21.0±3.4 29.9±5.0 30.4±5.0 32.4±4.3 32.4±4.3
CG exp, `∞ 25.2±5.0 22.5±2.3 21.3±2.7 21.3±2.7 30.8±6.9 27.7±5.0 29.2±5.2 29.2±5.2
CG hin, `1 22.5±3.6 22.5±3.6 22.5±3.6 22.5±3.6 30.7±4.8 30.7±4.8 30.7±4.8 30.7±4.8
CG hin, `2 24.8±2.5 25.8±5.0 24.6±5.8 24.6±5.8 29.1±3.9 30.0±6.2 30.0±6.2 30.0±6.2
CG hin, `∞ 25.0±1.5 24.8±1.6 22.3±3.9 22.3±3.9 29.4±3.2 29.5±2.6 30.5±3.4 30.5±3.4

d
ia
b
e
ti
s

AdaBoost 17.7±1.6 15.4±1.2 9.4±0.7 4.8±1.2 25.8±1.9 25.9±2.1 26.4±2.6 27.8±2.3
CG exp, `1 17.3±1.8 17.5±1.8 17.0±1.8 17.0±1.8 25.0±2.5 25.3±2.5 27.7±3.0 27.7±3.0
CG exp, `2 15.2±2.2 11.3±5.6 8.2±6.8 8.2±6.8 26.5±1.6 27.4±2.8 29.0±3.3 29.0±3.3
CG exp, `∞ 24.0±2.1 22.8±1.2 19.2±1.5 19.2±1.5 27.1±2.0 26.4±3.3 24.5±2.2 24.5±2.2
CG hin, `1 19.5±4.0 19.1±4.6 19.1±4.6 19.1±4.6 26.5±2.2 26.7±2.3 26.7±2.3 26.7±2.3
CG hin, `2 23.4±1.9 21.8±2.5 18.3±3.8 18.3±3.8 27.1±2.4 26.1±2.9 26.7±2.2 26.7±2.2
CG hin, `∞ 23.9±1.6 23.9±1.6 17.6±4.0 17.6±4.0 27.1±2.4 27.1±2.4 26.6±1.6 26.6±1.6

f-
so

la
r

AdaBoost 30.6±4.8 29.8±5.8 30.2±6.0 30.5±5.5 34.0±4.3 35.3±5.3 35.0±5.5 35.0±5.8
CG exp, `1 30.0±5.3 29.9±5.4 30.1±5.6 30.1±5.6 34.8±5.3 34.7±5.5 35.5±4.9 35.5±4.9
CG exp, `2 30.0±5.6 29.5±5.8 30.4±6.5 30.4±6.5 36.1±5.9 36.1±6.1 35.9±6.7 35.9±6.7
CG exp, `∞ 33.8±7.6 30.5±6.1 30.0±5.9 30.0±5.9 37.9±5.3 34.4±5.3 34.2±4.7 34.2±4.7
CG hin, `1 28.4±5.7 28.4±5.7 28.4±5.7 28.4±5.7 33.8±5.3 33.8±5.3 33.8±5.3 33.8±5.3
CG hin, `2 29.9±6.2 29.2±5.9 27.4±5.0 27.4±5.0 35.5±5.8 34.8±7.1 34.9±5.7 34.9±5.7
CG hin, `∞ 36.5±5.4 34.9±6.8 27.4±6.0 27.4±6.0 41.2±7.6 41.1±6.2 34.6±5.0 34.6±5.0

g
e
r
m

a
n

AdaBoost 20.2±1.1 19.0±1.1 15.6±1.1 13.9±1.7 25.0±1.6 24.5±2.1 26.2±2.3 27.1±2.0
CG exp, `1 19.8±1.7 19.5±1.8 19.0±2.3 19.0±2.3 25.0±2.0 25.2±1.7 26.3±1.9 26.3±1.9
CG exp, `2 18.9±1.5 15.9±2.3 11.1±4.2 11.1±4.2 26.3±2.0 27.2±2.1 28.0±2.1 28.0±2.1
CG exp, `∞ 26.2±1.7 24.2±2.1 19.7±1.6 19.7±1.6 27.8±2.5 26.0±2.1 24.2±1.9 24.2±1.9
CG hin, `1 18.8±2.0 18.4±2.5 18.4±2.5 18.4±2.5 25.7±1.9 25.7±1.7 25.7±1.7 25.7±1.7
CG hin, `2 24.3±3.0 21.3±2.5 17.4±1.8 17.4±1.8 27.5±2.2 26.1±2.4 25.7±2.2 25.7±2.2
CG hin, `∞ 28.1±1.1 28.1±1.1 17.8±1.3 17.8±1.3 30.0±2.0 30.0±2.0 25.6±2.4 25.6±2.4

h
e
a
r
t

AdaBoost 5.7±1.1 2.0±1.2 0.0±0.0 0.0±0.0 20.6±2.6 21.2±2.9 21.7±3.2 22.3±3.6
CG exp, `1 11.4±1.6 11.5±1.6 11.4±1.5 11.4±1.5 18.1±2.2 17.8±2.4 17.7±1.8 17.7±1.8
CG exp, `2 7.2±4.6 5.4±4.0 2.2±2.3 2.2±2.3 19.4±3.3 20.1±3.0 21.2±3.1 21.2±3.1
CG exp, `∞ 16.0±3.7 13.8±2.2 11.2±1.6 11.2±1.6 20.4±5.5 18.2±3.1 17.8±2.3 17.8±2.3
CG hin, `1 11.7±4.4 11.9±4.2 11.9±4.2 11.9±4.2 20.2±4.8 20.3±4.9 20.3±4.9 20.3±4.9
CG hin, `2 16.4±4.3 15.1±4.9 11.2±4.3 11.2±4.3 21.6±5.5 20.6±4.8 19.3±4.3 19.3±4.3
CG hin, `∞ 20.9±5.3 16.2±5.8 7.2±5.3 7.2±5.3 26.5±2.0 23.8±3.6 22.0±3.6 22.0±3.6

im
a
g
e

AdaBoost 4.1±0.6 2.3±0.3 0.0±0.0 0.0±0.0 5.8±1.0 4.3±0.6 2.9±0.6 2.9±0.7
CG exp, `1 0.0±0.1 0.0±0.0 0.0±0.0 0.0±0.0 4.2±0.5 3.2±0.7 3.0±0.8 3.0±0.8
CG exp, `2 0.5±0.7 0.2±0.3 0.0±0.0 0.0±0.0 4.1±0.8 3.2±0.7 2.9±0.7 2.9±0.7
CG exp, `∞ 5.9±2.3 2.4±1.5 0.1±0.2 0.1±0.2 7.6±2.5 5.0±1.5 3.0±0.7 3.0±0.7
CG hin, `1 1.9±0.5 1.2±0.6 1.0±0.6 1.0±0.6 4.1±1.0 3.5±1.1 3.3±0.5 3.3±0.5
CG hin, `2 2.7±1.2 1.7±0.6 0.8±0.6 0.8±0.6 4.1±1.5 3.3±0.9 3.3±0.5 3.3±0.5
CG hin, `∞ 8.3±2.1 3.6±1.4 0.0±0.0 0.0±0.0 9.6±1.7 5.1±1.1 3.7±0.7 3.7±0.7

r
in

g
n
o
r
m

AdaBoost 4.6±0.5 1.6±0.5 0.0±0.0 0.0±0.0 10.5±0.7 7.4±0.6 5.4±0.3 5.4±0.4
CG exp, `1 0.5±0.6 0.1±0.4 0.1±0.3 0.1±0.3 11.6±1.8 7.0±0.8 5.7±0.7 5.7±0.7
CG exp, `2 0.9±0.9 0.1±0.1 0.0±0.0 0.0±0.0 10.4±1.9 7.8±1.6 5.7±0.5 5.7±0.5
CG exp, `∞ 9.3±3.2 4.7±2.0 0.3±0.4 0.3±0.4 14.6±3.1 10.2±2.1 6.1±0.5 6.1±0.5
CG hin, `1 2.4±0.5 1.4±0.4 1.0±0.5 1.0±0.5 7.4±0.4 5.9±0.5 5.8±0.4 5.8±0.4
CG hin, `2 6.1±1.6 3.4±0.9 1.8±0.5 1.8±0.5 11.3±1.5 7.9±1.0 6.0±0.3 6.0±0.3
CG hin, `∞ 26.1±11.5 24.5±13.8 3.2±2.1 3.2±2.1 30.5±10.8 29.0±13.1 8.9±1.1 8.9±1.1

sp
li
c
e

AdaBoost 7.4±0.2 6.5±0.5 5.6±0.3 5.7±0.3 9.3±0.7 9.0±0.9 9.7±0.6 10.1±0.6
CG exp, `1 6.7±0.4 6.2±0.3 6.2±0.2 6.2±0.2 9.0±1.5 8.7±1.0 8.7±0.8 8.7±0.8
CG exp, `2 6.6±0.2 5.8±0.3 5.7±0.3 5.7±0.3 9.4±1.1 9.8±0.8 10.1±0.6 10.1±0.6
CG exp, `∞ 14.4±0.1 10.8±0.4 6.7±0.2 6.7±0.2 14.7±0.4 11.8±0.4 8.5±0.6 8.5±0.6
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CG hin, `1 6.0±0.3 5.4±0.3 5.4±0.3 5.4±0.3 8.8±0.5 8.5±0.4 8.3±0.3 8.3±0.3
CG hin, `2 7.5±0.3 6.2±0.2 5.4±0.2 5.4±0.2 9.2±0.7 8.6±0.8 8.3±0.4 8.3±0.4
CG hin, `∞ 22.9±0.9 22.8±0.8 6.2±0.2 6.2±0.2 23.2±1.4 23.1±1.5 8.5±0.6 8.5±0.6

th
y
r
o
id

AdaBoost 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 7.8±2.3 7.6±2.2 8.1±2.3 8.3±2.4
CG exp, `1 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 8.1±1.9 8.1±1.9 8.1±1.9 8.1±1.9
CG exp, `2 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 8.4±2.6 8.3±2.4 8.5±2.4 8.5±2.4
CG exp, `∞ 2.3±2.4 1.0±1.0 0.0±0.0 0.0±0.0 9.2±2.9 8.4±2.3 8.4±2.1 8.4±2.1
CG hin, `1 1.3±1.7 1.3±1.7 1.3±1.7 1.3±1.7 10.1±2.7 10.1±2.7 10.1±2.7 10.1±2.7
CG hin, `2 2.6±4.4 1.0±1.3 0.7±1.3 0.7±1.3 10.3±4.9 9.2±3.3 9.3±2.6 9.3±2.6
CG hin, `∞ 2.6±4.8 1.6±4.9 0.2±0.5 0.2±0.5 10.2±5.3 9.7±5.3 7.9±2.2 7.9±2.2

ti
ta

n
ic

AdaBoost 19.3±9.1 19.3±9.1 19.3±9.1 19.3±9.1 19.0±9.4 19.0±9.4 19.0±9.4 19.0±9.4
CG exp, `1 19.3±9.1 19.3±9.1 19.3±9.1 19.3±9.1 19.0±9.4 19.0±9.4 19.0±9.4 19.0±9.4
CG exp, `2 19.3±9.1 19.3±9.1 19.3±9.1 19.3±9.1 19.0±9.4 19.0±9.4 19.0±9.4 19.0±9.4
CG exp, `∞ 17.9±8.0 17.9±8.0 18.6±8.0 18.6±8.0 20.0±11.0 21.0±11.4 21.0±11.4 21.0±11.4
CG hin, `1 17.1±7.3 17.1±7.3 17.1±7.3 17.1±7.3 19.0±12.2 19.0±12.2 19.0±12.2 19.0±12.2
CG hin, `2 17.9±8.0 17.9±8.0 17.9±8.0 17.9±8.0 19.0±12.2 19.0±12.2 19.0±12.2 19.0±12.2
CG hin, `∞ 17.1±7.3 17.1±7.3 17.1±7.3 17.1±7.3 19.0±12.2 19.0±12.2 19.0±12.2 19.0±12.2

tw
o
n
o
r
m

AdaBoost 0.3±0.4 0.0±0.0 0.0±0.0 0.0±0.0 4.5±0.2 4.0±0.3 3.8±0.2 3.9±0.3
CG exp, `1 0.1±0.1 0.0±0.0 0.0±0.1 0.0±0.1 5.0±0.3 4.2±0.3 4.1±0.3 4.1±0.3
CG exp, `2 0.1±0.3 0.0±0.0 0.0±0.0 0.0±0.0 4.2±0.2 3.8±0.2 3.9±0.2 3.9±0.2
CG exp, `∞ 1.3±1.3 0.4±0.7 0.0±0.0 0.0±0.0 5.0±0.7 4.2±0.3 3.8±0.2 3.8±0.2
CG hin, `1 0.9±0.6 0.5±0.5 0.5±0.6 0.5±0.6 4.7±0.4 4.2±0.3 4.2±0.3 4.2±0.3
CG hin, `2 1.3±0.7 0.6±0.6 0.3±0.4 0.3±0.4 4.4±0.1 3.8±0.2 3.8±0.3 3.8±0.3
CG hin, `∞ 12.7±13.9 11.2±13.7 0.5±0.6 0.5±0.6 15.9±13.6 15.2±13.2 4.0±0.4 4.0±0.4

w
a
v
e
fo
r
m

AdaBoost 3.7±0.9 0.7±0.5 0.0±0.0 0.0±0.0 13.2±0.6 13.1±0.7 13.4±0.8 13.7±0.8
CG exp, `1 2.0±1.1 1.6±1.0 1.7±1.1 1.7±1.1 13.3±1.4 12.7±0.8 12.7±0.8 12.7±0.8
CG exp, `2 2.2±2.2 1.1±1.6 0.2±0.3 0.2±0.3 13.1±0.8 12.9±0.5 13.1±0.6 13.1±0.6
CG exp, `∞ 10.2±3.8 7.8±3.6 2.2±2.5 2.2±2.5 14.8±1.6 13.9±1.2 12.9±0.8 12.9±0.8
CG hin, `1 3.9±1.5 3.0±1.5 2.9±1.7 2.9±1.7 12.8±0.8 13.1±1.0 13.1±1.0 13.1±1.0
CG hin, `2 9.5±6.2 6.2±4.3 3.3±2.6 3.3±2.6 15.8±4.0 13.7±1.5 12.9±0.8 12.9±0.8
CG hin, `∞ 14.9±6.5 13.0±7.5 2.8±1.9 2.8±1.9 19.3±4.3 19.2±3.4 13.2±1.1 13.2±1.1
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