18 research outputs found

    Total Space in Resolution Is at Least Width Squared

    Get PDF
    Given an unsatisfiable k-CNF formula phi we consider two complexity measures in Resolution: width and total space. The width is the minimal W such that there exists a Resolution refutation of phi with clauses of at most W literals. The total space is the minimal size T of a memory used to write down a Resolution refutation of phi where the size of the memory is measured as the total number of literals it can contain. We prove that T = Omega((W - k)^2)

    Space proof complexity for random 3-CNFs

    Get PDF
    We investigate the space complexity of refuting 3-CNFs in Resolution and algebraic systems. We prove that every Polynomial Calculus with Resolution refutation of a random 3-CNF φ in n variables requires, with high probability, distinct monomials to be kept simultaneously in memory. The same construction also proves that every Resolution refutation of φ requires, with high probability, clauses each of width to be kept at the same time in memory. This gives a lower bound for the total space needed in Resolution to refute φ. These results are best possible (up to a constant factor) and answer questions about space complexity of 3-CNFs

    Polynomial calculus space and resolution width

    Get PDF
    We show that if a k-CNF requires width w to refute in resolution, then it requires space square root of √ω to refute in polynomial calculus, where the space of a polynomial calculus refutation is the number of monomials that must be kept in memory when working through the proof. This is the first analogue, in polynomial calculus, of Atserias and Dalmau's result lower-bounding clause space in resolution by resolution width. As a by-product of our new approach to space lower bounds we give a simple proof of Bonacina's recent result that total space in resolution (the total number of variable occurrences that must be kept in memory) is lower-bounded by the width squared. As corollaries of the main result we obtain some new lower bounds on the PCR space needed to refute specific formulas, as well as partial answers to some open problems about relations between space, size, and degree for polynomial calculus

    Supercritical Space-Width Trade-Offs for Resolution

    Get PDF

    Cumulative Space in Black-White Pebbling and Resolution

    Get PDF

    LIPIcs

    Get PDF
    We study space complexity and time-space trade-offs with a focus not on peak memory usage but on overall memory consumption throughout the computation. Such a cumulative space measure was introduced for the computational model of parallel black pebbling by [Alwen and Serbinenko ’15] as a tool for obtaining results in cryptography. We consider instead the non- deterministic black-white pebble game and prove optimal cumulative space lower bounds and trade-offs, where in order to minimize pebbling time the space has to remain large during a significant fraction of the pebbling. We also initiate the study of cumulative space in proof complexity, an area where other space complexity measures have been extensively studied during the last 10–15 years. Using and extending the connection between proof complexity and pebble games in [Ben-Sasson and Nordström ’08, ’11] we obtain several strong cumulative space results for (even parallel versions of) the resolution proof system, and outline some possible future directions of study of this, in our opinion, natural and interesting space measure

    Are Short Proofs Narrow? QBF Resolution is not so Simple

    Get PDF
    The ground-breaking paper “Short Proofs Are Narrow -- Resolution Made Simple” by Ben-Sasson and Wigderson (J. ACM 2001) introduces what is today arguably the main technique to obtain resolution lower bounds: to show a lower bound for the width of proofs. Another important measure for resolution is space, and in their fundamental work, Atserias and Dalmau (J. Comput. Syst. Sci. 2008) show that lower bounds for space again can be obtained via lower bounds for width. In this article, we assess whether similar techniques are effective for resolution calculi for quantified Boolean formulas (QBFs). There are a number of different QBF resolution calculi like Q-resolution (the classical extension of propositional resolution to QBF) and the more recent calculi ∀Exp+Res and IR-calc. For these systems, a mixed picture emerges. Our main results show that the relations both between size and width and between space and width drastically fail in Q-resolution, even in its weaker tree-like version. On the other hand, we obtain positive results for the expansion-based resolution systems ∀Exp+Res and IR-calc, however, only in the weak tree-like models. Technically, our negative results rely on showing width lower bounds together with simultaneous upper bounds for size and space. For our positive results, we exhibit space and width-preserving simulations between QBF resolution calculi

    Sherali-Adams and the binary encoding of combinatorial principles.

    Get PDF
    We consider the Sherali-Adams ( SA ) refutation system together with the unusual binary encoding of certain combinatorial principles. For the unary encoding of the Pigeonhole Principle and the Least Number Principle, it is known that linear rank is required for refutations in SA , although both admit refutations of polynomial size. We prove that the binary encoding of the Pigeonhole Principle requires exponentially-sized SA refutations, whereas the binary encoding of the Least Number Principle admits logarithmic rank, polynomially-sized SA refutations. We continue by considering a refutation system between SA and Lasserre (Sum-of-Squares). In this system, the unary encoding of the Least Number Principle requires linear rank while the unary encoding of the Pigeonhole Principle becomes constant rank
    corecore