42 research outputs found

    QoE in Pull Based P2P-TV Systems: Overlay Topology Design Tradeoff

    Get PDF
    Abstract—This paper presents a systematic performance anal-ysis of pull P2P video streaming systems for live applications, providing guidelines for the design of the overlay topology and the chunk scheduling algorithm. The contribution of the paper is threefold: 1) we propose a realistic simulative model of the system that represents the effects of access bandwidth heterogeneity, latencies, peculiar characteristics of the video, while still guaranteeing good scalability properties; 2) we propose a new latency/bandwidth-aware overlay topology design strategy that improves application layer performance while reducing the underlying transport network stress; 3) we investigate the impact of chunk scheduling algorithms that explicitly exploit properties of encoded video. Results show that our proposal jointly improves the actual Quality of Experience of users and reduces the cost the transport network has to support. I

    Experimental comparison of neighborhood filtering strategies in unstructured P2P-TV systems

    Get PDF
    P2P-TV systems performance are driven by the overlay topology that peers form. Several proposals have been made in the past to optimize it, yet little experimental studies have corroborated results. The aim of this work is to provide a comprehensive experimental comparison of different strategies for the construction and maintenance of the overlay topology in P2P-TV systems. To this goal, we have implemented different fully-distributed strategies in a P2P-TV application, called Peer- Streamer, that we use to run extensive experimental campaigns in a completely controlled set-up which involves thousands of peers, spanning very different networking scenarios. Results show that the topological properties of the overlay have a deep impact on both user quality of experience and network load. Strategies based solely on random peer selection are greatly outperformed by smart, yet simple strategies that can be implemented with negligible overhead. Even with different and complex scenarios, the neighborhood filtering strategy we devised as most perform- ing guarantees to deliver almost all chunks to all peers with a play-out delay as low as only 6s even with system loads close to 1.0. Results are confirmed by running experiments on PlanetLab. PeerStreamer is open-source to make results reproducible and allow further research by the communit

    Optimizing on-demand resource deployment for peer-assisted content delivery (PhD thesis)

    Full text link
    Increasingly, content delivery solutions leverage client resources in exchange for service in a peer-to-peer (P2P) fashion. Such peer-assisted service paradigms promise significant infrastructure cost reduction, but suffer from the unpredictability associated with client resources, which is often exhibited as an imbalance between the contribution and consumption of resources by clients. This imbalance hinders the ability to guarantee a minimum service fidelity of these services to the clients. In this thesis, we propose a novel architectural service model that enables the establishment of higher fidelity services through (1) coordinating the content delivery to optimally utilize the available resources, and (2) leasing the least additional cloud resources, available through special nodes (angels) that join the service on-demand, and only if needed, to complement the scarce resources available through clients. While the proposed service model can be deployed in many settings, this thesis focuses on peer-assisted content delivery applications, in which the scarce resource is typically the uplink capacity of clients. We target three applications that require the delivery of fresh as opposed to stale content. The first application is bulk-synchronous transfer, in which the goal of the system is to minimize the maximum distribution time -- the time it takes to deliver the content to all clients in a group. The second application is live streaming, in which the goal of the system is to maintain a given streaming quality. The third application is Tor, the anonymous onion routing network, in which the goal of the system is to boost performance (increase throughput and reduce latency) throughout the network, and especially for bandwidth-intensive applications. For each of the above applications, we develop mathematical models that optimally allocate the already available resources. They also optimally allocate additional on-demand resource to achieve a certain level of service. Our analytical models and efficient constructions depend on some simplifying, yet impractical, assumptions. Thus, inspired by our models and constructions, we develop practical techniques that we incorporate into prototypical peer-assisted angel-enabled cloud services. We evaluate those techniques through simulation and/or implementation. (Major Advisor: Azer Bestavros

    QoS monitoring in real-time streaming overlays based on lock-free data structures

    Get PDF
    AbstractPeer-to-peer streaming is a well-known technology for the large-scale distribution of real-time audio/video contents. Delay requirements are very strict in interactive real-time scenarios (such as synchronous distance learning), where playback lag should be of the order of seconds. Playback continuity is another key aspect in these cases: in presence of peer churning and network congestion, a peer-to-peer overlay should quickly rearrange connections among receiving nodes to avoid freezing phenomena that may compromise audio/video understanding. For this reason, we designed a QoS monitoring algorithm that quickly detects broken or congested links: each receiving node is able to independently decide whether it should switch to a secondary sending node, called "fallback node". The architecture takes advantage of a multithreaded design based on lock-free data structures, which improve the performance by avoiding synchronization among threads. We will show the good responsiveness of the proposed approach on machines with different computational capabilities: measured times prove both departures of nodes and QoS degradations are promptly detected and clients can quickly restore a stream reception. According to PSNR and SSIM, two well-known full-reference video quality metrics, QoE remains acceptable on receiving nodes of our resilient overlay also in presence of swap procedures

    Optimizing on-demand resource deployment for peer-assisted content delivery

    Full text link
    Increasingly, content delivery solutions leverage client resources in exchange for services in a pee-to-peer (P2P) fashion. Such peer-assisted service paradigm promises significant infrastructure cost reduction, but suffers from the unpredictability associated with client resources, which is often exhibited as an imbalance between the contribution and consumption of resources by clients. This imbalance hinders the ability to guarantee a minimum service fidelity of these services to clients especially for real-time applications where content can not be cached. In this thesis, we propose a novel architectural service model that enables the establishment of higher fidelity services through (1) coordinating the content delivery to efficiently utilize the available resources, and (2) leasing the least additional cloud resources, available through special nodes (angels) that join the service on-demand, and only if needed, to complement the scarce resources available through clients. While the proposed service model can be deployed in many settings, this thesis focuses on peer-assisted content delivery applications, in which the scarce resource is typically the upstream capacity of clients. We target three applications that require the delivery of real-time as opposed to stale content. The first application is bulk-synchronous transfer, in which the goal of the system is to minimize the maximum distribution time - the time it takes to deliver the content to all clients in a group. The second application is live video streaming, in which the goal of the system is to maintain a given streaming quality. The third application is Tor, the anonymous onion routing network, in which the goal of the system is to boost performance (increase throughput and reduce latency) throughout the network, and especially for clients running bandwidth-intensive applications. For each of the above applications, we develop analytical models that efficiently allocate the already available resources. They also efficiently allocate additional on-demand resource to achieve a certain level of service. Our analytical models and efficient constructions depend on some simplifying, yet impractical, assumptions. Thus, inspired by our models and constructions, we develop practical techniques that we incorporate into prototypical peer-assisted angel-enabled cloud services. We evaluate these techniques through simulation and/or implementation

    Network awareness in P2P-TV applications

    Get PDF
    Abstract. The increasing popularity of applications for video-streaming based on P2P paradigm (P2P-TV) is raising the interest of both broadcasters and network operators. The former see a promising technology to reduce the cost of streaming content over the Internet, while offering a world-wide service. The latter instead fear that the traffic offered by these applications can grow without control, affecting other services, and possibly causing network congestion and collapse. The “Network-Aware P2P-TV Application over Wise Networks” FP7 project aims at studying and developing a novel P2P-TV application offering the chance to broadcast high definition video to broadcasters and to carefully manage the traffic offered by peers to the network, therefore avoiding worries to Internet providers about network overload. In such context, we design a simulator to evaluate performance of different P2P-TV solutions, to compare them both considering end-users ’ and network providers ’ perspectives, such as quality of service perceived by subscribers and link utilization. In this paper, we provide some results that show how effective can be a network aware P2P-TV system.

    Improving P2P streaming in Wireless Community Networks

    Get PDF
    Wireless Community Networks (WCNs) are bottom-up broadband networks empowering people with their on-line communication means. Too often, however, services tailored for their characteristics are missing, with the consequence that they have worse performance than what they could. We present here an adaptation of an Open Source P2P live streaming platform that works efficiently, and with good application-level quality, over WCNs. WCNs links are normally symmetric (unlike standard ADSL access), and a WCN topology is local and normally flat (contrary to the global Internet), so that the P2P overlay used for video distribution can be adapted to the underlaying network characteristics. We exploit this observation to derive overlay building strategies that make use of cross-layer information to reduce the impact of the P2P streaming on the WCN while maintaining good application performance. We experiment with a real application in real WCN nodes, both in the Community-Lab provided by the CONFINE EU Project and within an emulation framework based on Mininet, where we can build larger topologies and interact more efficiently with the mesh underlay, which is unfortunately not accessible in Community-Lab. The results show that, with the overlay building strategies proposed, the P2P streaming applications can reduce the load on the WCN to about one half, also equalizing the load on links. At the same time the delivery rate and delay of video chunks are practically unaffected. (C) 2015 Elsevier B.V. All rights reserved
    corecore