
Multimedia Tools and Applications
https://doi.org/10.1007/s11042-020-10198-9

QoSmonitoring in real-time streaming overlays based
on lock-free data structures

Franco Tommasi1 ·Valerio De Luca1 ·Catiuscia Melle1

Received: 6 February 2020 / Revised: 7 October 2020 / Accepted: 24 November 2020 /

© The Author(s) 2021

Abstract
Peer-to-peer streaming is a well-known technology for the large-scale distribution of
real-time audio/video contents. Delay requirements are very strict in interactive real-time
scenarios (such as synchronous distance learning), where playback lag should be of the
order of seconds. Playback continuity is another key aspect in these cases: in presence
of peer churning and network congestion, a peer-to-peer overlay should quickly rearrange
connections among receiving nodes to avoid freezing phenomena that may compromise
audio/video understanding. For this reason, we designed a QoS monitoring algorithm that
quickly detects broken or congested links: each receiving node is able to independently
decide whether it should switch to a secondary sending node, called “fallback node”. The
architecture takes advantage of a multithreaded design based on lock-free data structures,
which improve the performance by avoiding synchronization among threads. We will show
the good responsiveness of the proposed approach on machines with different computa-
tional capabilities: measured times prove both departures of nodes and QoS degradations are
promptly detected and clients can quickly restore a stream reception. According to PSNR
and SSIM, two well-known full-reference video quality metrics, QoE remains acceptable
on receiving nodes of our resilient overlay also in presence of swap procedures.

Keywords Real-time streaming · P2P streaming · Peer churning · QoS ·
Playback continuity · Lock-free

1 Introduction

Peer-to-peer (P2P) streaming has been introduced to distribute live or on-demand mul-
timedia content over the Internet: end systems receiving a video stream simultaneously

� Valerio De Luca
valerio.deluca@unisalento.it

Franco Tommasi
franco.tommasi@unisalento.it

Catiuscia Melle
catiuscia.melle@unisalento.it

1 Department of Engineering for Innovation, University of Salento, Lecce, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-020-10198-9&domain=pdf
http://orcid.org/0000-0003-3018-7251
mailto: valerio.deluca@unisalento.it
mailto: franco.tommasi@unisalento.it
mailto: catiuscia.melle@unisalento.it

Multimedia Tools and Applications

upload that stream or some parts of it to other nodes, becoming peers in an application
layer structure called overlay. P2P streaming systems can be typically tree-based or mesh-
based. Tree-based overlays propagate multimedia contents through a tree graph rooted in
a streaming source. On the other hand, mesh-based overlays do not rely on a static graph
connecting nodes: the multimedia stream is divided into small temporal sequences, called
“chunks”, which are exchanged among several nodes. A detailed comparison between
these two topology categories can be found in [35], which presents also a survey on other
transmission schemes such as scalable video coding [40] and multiple description coding
(MDC) [54].

A key factor for P2P streaming is the Quality of Service (QoS), which consists in a
set of parameters (such as bandwidth, packet loss, delay and jitter) measuring the overall
performance of the service. Real-time scenarios require a low end-to-end delay between the
streaming source and any receiving node. A particular subcategory of real-time streaming
applications consists in interactive applications, which are the main target of our research
work. They impose even more strict requirements on delay and playback continuity, which
means the ability to play a stream with no interruption or frame freezing. This is the case, for
instance, of e-learning scenarios. A very low delay is a key factor to give users the possibility
to ask questions within a few seconds, before the lecturer moves on to a new subject. At the
same time, playback continuity is very important to allow a good understanding of a lecture:
unfortunately, network congestion and physical link problems may cause interruptions or
severe QoS degradations in the stream propagation over the Internet.

In our previous work [47] we presented a survey on some of the most efficient solu-
tions (based on meshes, trees, network coding and MDC) with a specific focus on real-time
streaming. In particular, we highlighted that mesh-based protocols are generally not suit-
able for real-time interactive streaming due to their long and unpredictable delays [17],
despite their better resource utilization [28]. A previous work [59] proved that mesh-based
overlays, where each node establishes connections with several neighbours, are nearly opti-
mal in terms of peer bandwidth utilization and system throughput even without intelligent
scheduling and bandwidth measurement. However, such analysis does not take into consid-
eration the low rate connections across different ISPs and the limitations deriving from the
presence of NATs and firewalls.

More generally, meshes are characterized by a tradeoff between control overhead and
delay [59]. Nodes need to exchange information about available chunks (the so-called
“buffer maps”) very frequently to retrieve packets quickly and reduce delay. Unfortunately,
this produces a significant increase of the control overhead. Moreover, frequent playback
discontinuities caused by missing chunks can severely affect the lecture understanding.
Users’ disappointment has been proven to increase exponentially with respect to the num-
ber of consecutive video frame losses [33]. However, users mainly perceive video freezing
during more than 200 ms and frame losses during more than 80 ms [9]. A larger receiving
buffer size could help facing with playback discontinuities, but it would also increase the
lag with a real-time event.

Also peer churning has serious consequences on playback continuity: peers are not sta-
ble during a streaming session, since they join and leave the overlay in an unpredictable
manner. Mesh-based overlays exhibit a better resilience in presence of peer churning due
to the multitude of neighbour connections from which a peer receives data chunks, but
they have also a higher playback delay, which further increases with the network size [58]:
this drawback makes them not suitable for interactive real-time applications, which have
very strict requirements in terms of playback lag. A typical example of interactive real-time

Multimedia Tools and Applications

streaming is synchronous e-learning, where learners should have the possibility to ask per-
tinent questions in real-time about a topic in a certain moment during the lesson [47]: in
this case, besides the end-to-end delay, another important factor is the intelligibility of the
speech, which derives from playback continuity.

For this reason, we chose a tree-based overlay to meet the requirements of an interactive
e-learning scenario, where students should have the possibility to ask questions in real-time
during a lesson. In such overlay, each node forwards packets as they arrive, without any
particular scheduling. This approach can reduce the possibility of frame losses, even though
the availability of more neighbours in mesh-based overlays can assure a lower loss ratio in
dynamic churning conditions [58].

The assumption of our work is that the performance of tree-based overlays can be
improved even under dynamic churning by assigning each node a secondary parent in
advance (proactive approach). Under such hypothesis, an optimized procedure for a quick
switch to the pre-assigned secondary parent is the key performance factor for a fast recovery
of the stream reception.

More specifically, this work describes:

– a QoS monitoring algorithm, which is able to quickly detect both QoS degradations and
node departures;

– a switch-to-fallback procedure, which allows a receiving node to switch to a secondary
relayer as soon as reception problems are detected by the QoS algorithm.

The whole architecture is based on a multithreaded design: we improved the system perfor-
mance by adopting lock-free data structures, which allows multiple threads a concurrent and
safe access to shared data without synchronization. A good responsiveness of the overall
system is indeed a key factor to reduce playback discontinuities.

In this paper we are focusing on a single-tree case, but our design could be also extended
to multiple tree overlays, where each tree is used to distribute a different description of
the same stream generated by multiple description coding. We considered a single-tree
overlay as a pilot study, but the experiments we have conducted could provide useful perfor-
mance insights also for other topologies (such as meshes): our approach based on lock-free
data structures can provide significant performance improvements every time there is
the need to rearrange the connections among nodes, regardless of the employed overlay
topology.

The rest of the paper is structured as follows: Section 2 summarizes the related work;
after a brief summary of our previous works in Sections 3.1 and 3.2 extends the above
concepts to resilient overlay design; Sections 3.4 and 3.5 describe our QoS monitoring algo-
rithm and the evaluation of QoS parameters; Section 3.6 describes the switch-to-fallback
procedure; Section 4 gives details about our lock-free implementation; Section 5 gives
some hints about the generalization of the proposed approach to multi-tree overlays; Sec-
tions 6 and 7 present the experimental testbed and the related results respectively; Section 8
concludes the paper and gives hints about some possible future developments.

2 Related work

Since we found no other work focusing on the optimization of the swap procedure, in
this section we will mention other studies proposing optimized strategies for the overlay
construction and maintainance.

Multimedia Tools and Applications

Some authors tried to minimize the consequences of a node leaving the overlay. To this
aim, they tried to model the behaviour of nodes and base the overlay construction and main-
tenance on such information. An example is the reconstruction method proposed in [3] to
cope with peer churning in tree overlays. It requires each new joining node to know in
advance the time it will leave the overlay. Unfortunately, this assumption is not realistic,
since the time a user participates to a streaming session is usually unpredictable by the very
same user.

Starting from the assumption that “the longer a node stays in the overlay, the longer it
would stay in the future” [2], some authors [55, 60] tried to investigate the presence of the
so-called “stable nodes” or “long-lived peers”. From the point of view of users’ behaviour,
this phenomenon can be described as a combination of multiple metrics (channel popularity,
session duration, online duration, arrival/departure), which are strongly related to environ-
mental factors (day-of-week, time-of-day, channel/content type) and network performance
parameters (delay, packet losses, bandwidth, discovery of partner peers, streaming quality,
failure rate) [52].

Simulations described in [53] considered a hybrid overlay, where peers with the highest
reputation (in terms of bandwidth, participation duration in the video session and local-
ity) are connected close to the nearest landmark nodes, which are nodes assumed to be
stable during the whole session, while low reputation peers are grouped into mesh clus-
ters to achieve a better resilience. Results proved such overlay outperforms other hybrid
approaches, such as TRMC (Tree, Ring and Mesh- Clusters), MTMC and mTreebone.

The cross layer design described in [39] involved scalable video codec, backup parents
and hierarchical clusters. It adopted a hierarchical organization of backup parents to prevent
loops in the tree and have higher bandwidth nodes in the upper layers of the tree.

Some multitree construction schemes [57] addressed flash crowd issues by putting near
the root new peers with higher bandwidth and longer waiting time.

Several works focused on the construction of disjoint backup paths to minimize the pos-
sibility a single-link failure could affect more than one of them. In particular, a combination
of capacity and diversity metrics was proposed in [1]. Such work highlighted also the impor-
tance of addressing the issue with a global scope rather than independently for each data
stream. It analyzed the impact of single and multiple link failures in different scenarios by
considering, in particular, the influence of the overlay size.

The study in [25] addressed the problems deriving from the simultaneous departure of
several peers in tree-based overlays: simulation results proved the possibility of reducing
the reconnection time by more than 400 ms by reserving a small capacity fraction when the
parent is selected and keeping an ancestor list at each peer.

VMCast [14] was designed to improve the stability of a tree-based overlay. It exploits
multicast virtual machines to distribute multicast data along a stable overlay tree and
compensation virtual machines for a further enhancement based on dynamic streaming
compensation.

Multiple routing path techniques, combined with video coding schemes such as MDC,
are widely adopted to provide fault tolerance in video streaming over MANETs (Mobile
Ad Hoc Networks), where frequent topology changes and limited bandwidth can seriously
compromise QoS. Some simulations under ns2 [41] compared the QoS performance of two
multipath routing protocols, M-AODV and MDSDV, for MPEG-4 video transmission in
MANET networks. However, such analysis does not focus on the performance of the swap
process (i.e. the change of a parent node that is forwarding a video to another node) and
evaluates only the effects of node mobility from a global point of view.

Multimedia Tools and Applications

The Search for Quality (S4Q) algorithm [43] is based on the exchange of stable peer
lists among overlay nodes. Each of these lists contains peers experimenting a better QoE,
measured as a function of the number of missing video pieces called stress level. Other
works described overlay construction strategies designed for QoS optimization.

The structured overlay described in [15] organizes the peers according to a “MinHeap
algorithm” based on the round trip time (RTT).

TURINstream [29] tries to overcome the limitations of tree-based overlays: it orga-
nizes peers into clusters, which are small sets of fully connected collaborating nodes, to
improve bandwidth utilization and resilience to peer churning. Clusters are connected in
turn to form up a tree overlay. Playback continuity is guaranteed by the fact that clusters
do not leave the overlay tree in case of peer departures and the stream propagation still
goes on.

A multi-tree overlay based on MDC is the key of the Dagster system [34]: the authors
focused on the construction scheme and on incentive rules that encourage nodes to share
their outgoing bandwidth.

The hybrid architecture proposed in [30] exploits the IP network to enhance the quality
of a base-layer video stream distributed through DVB-T2. IP multicast traffic is replicated
among various P2P high level peers that are responsible for the distribution of the traffic
to the peers in the same access network. Information on network resources and topol-
ogy is periodically updated. By delimiting P2P traffic within small geographical areas, the
system is able to mitigate the effects of peer churning, since also dynamical changes are
self-contained to such areas.

Another work [13], based on a locality-aware topology-optimizer oracle hosted by
the ISP, evaluated the possible benefits deriving from periodic topology optimizations in
presence of peer churning.

Some authors [6–8] designed a dynamic QoS architecture for scalable layered streaming
over OpenFlow software defined networks (SDNs). They employed network topology/state
information and extended their framework to provide end-to-end QoS over multi-domain
SDNs [5].

Two other examples of QoS-based dynamic overlay topologies addressed live streaming
in VANET (Vehicular Ad Hoc Networks) scenarios [21] and 3D Video Collaborative sys-
tems [56]. The former [21] allowed parent switching to improve QoS in terms of packet
losses and end-to-end delay. The latter [56] tried to optimize resource utilization and over-
lay stability under bandwidth constraints. However, none of the mentioned works analyzed
in detail the swap process from a parent node to another one and the possible effects on QoS
and playback continuity.

Most of the recent works proposed hybrid overlays, combining mesh and tree topologies.
In the peer selection strategy described in [4], each node chooses its peers among the ones
suggested by a tracker; then, during an adaptation phase, peers can change their positions
in the overlay for optimization purposes. Such strategy aims at mitigating the effects of
peer churning and takes into account propagation delay, upload capacity, buffering duration
and buffering level. It outperforms two older methods presented in [37] and [16]. The Fast-
Mesh [37] overlay tried to minimize delay by maximizing power, defined as the ratio of
throughput to delay. On the other hand, the Hybrid Live P2P Streaming Protocol (HLPSP)
[16] only considered upload capacity for peer selection. The overlay described in [12] is
based on redundant trees, where each node forwards to its siblings the video chunks received
from its parent.

Multimedia Tools and Applications

Our study can be seen as complementary to research work about backup/
multiple paths and peer selection strategies. Firstly, it provides peers with a method to mon-
itor their stream reception. Moreover, it analyzes the challenge of changing the sending
peer (the relaying node) as quickly as possible to minimize QoS degradation. An efficient
swap procedure is a key factor for the performance of an overlay for real-time streaming,
regardless of the adopted topologies and peer organizing strategies.

3 Tree-based overlay for real-time streaming

Our work has been partially inspired by switch-trees protocols [18]: they introduced par-
ent switching, which refers to the possibility of nodes to change their parents to reduce
the source-node latency or the tree cost. In our design, we extend the necessity of parent
switching to all cases of nodes experiencing a bad QoS.

The following special cases of switch-trees algorithms are known in literature [18]:

– switch-sibling, which allows a node to choose its new parent among its siblings (i.e. the
nodes receiving from the same parent);

– switch-one-hop and switch-two-hop, which allow a node to choose its new parent
among nodes within one hop and two hops from its current parent respectively;

– switch-any, that is the most general case, which allows a node to switch any non-
descendant node.

Without loss of generality, our reference scenario focuses on the last case.
Our study about the performance of a swap procedure in tree-based overlays starts from

the redesign of an architecture for real-time streaming we described in a previous work [48].
In this section we will focus on a single tree overlay where an entire stream is propagated
without any MDC decomposition. We will explain how the proposed approach could be
extended also to multi-tree overlays in Section 5.

We call “relaying” the process of propagating in real-time entire audio/video streams
over the RTP protocol1,2 through an overlay tree: some nodes, called relayers (R), recur-
sively forward the streams they are receiving from a video source (S) to other nodes, called
hosts (H), which can in turn act either as relayers or as leaf nodes.

In the following section we briefly summarize the working principles of such architec-
ture. Then, we describe in detail our QoS monitoring algorithm and our design based on
lock-free data structures, which are the new main contributions of this paper.

3.1 The CHARMS tree-based overlay

To support the development of tree-based overlays, in a previous work we designed ALRM
(Application Layer Relaying Module) [46], a library for RTP relaying of multimedia
streams over UDP.We used it to implement our own tree-based overlay for real-time stream-
ing [48]. We called it “Cooperative Hybrid Architecture for Relaying Multimedia Satellite
Streams” (CHARMS), because it was originally designed with the aim of propagating mul-
timedia streams received via satellite to other sites that are not equipped with a proper
receiving antenna. Later, the “satellite” term was dropped since the architecture proved

1RTP Topologies, RFC 5117, https://www.ietf.org/rfc/rfc5117.txt
2RTP Topologies, RFC 7667, https://www.ietf.org/rfc/rfc7667.txt

https://www.ietf.org/rfc/rfc5117.txt
https://www.ietf.org/rfc/rfc7667.txt

Multimedia Tools and Applications

effective also with terrestrial Internet sources. In general, relayers are nodes with a large
outgoing bandwidth and a good reception from the audio/video stream source, which are
able to forward the received packets to a certain number of host nodes. In this sense, relay-
ers could be also nodes receiving multimedia streams from a CDN service. In this way, the
platform can be employed as an extension to enable the reception also on nodes that have
no subscription to CDN services.

In the CHARMS architecture, we introduced some backup relayers, which we call fall-
back nodes, to allow a recovery of the stream transmission in case of node failures. Each
overlay node has a TCP connection with a server, which assigns a relayer to each host
and a fallback node that should replace the relayer in case of QoS problems. In a later
phase, we decided to improve the efficacy of such mechanism. To better support a quick
and smooth switch to a fallback node, we designed an enhanced version of ALRM, named
MSRM (Multi-Source Relaying Module) [49]. It allows a host to hold for a short time a
connection with two relayers (the fallback node and the relayer with the impaired link)
and discards replicated packets. The connection with the old relayer is maintained until the
reception from the new relayer (the ex-fallback node) properly starts to avoid any playback
interruption.

MSRM is instantiated by the CHARMS overlay manager after the opening of five UDP
channels between two peers by means of a NAT traversal procedure3: the first four channels
are used by MSRM, while the fifth channel is used by the QoS monitoring described in
the next sections. Each MSRM instance running on a client manages the relaying or the
reception of one stream.

All the internal logic of MSRM is based on lock-free data structures. After this section
summarizing our previous work, where we had just introduced lock-free structures [49], we
will extend in the next sections their adoption in the whole overlay software architecture: we
will describe the implementation of a global QoS monitoring algorithm (which goes beyond
the features provided by MSRM, as explained in Section 3.2) and evaluate the achieved
performance.

3.1.1 MSRM internal working

MSRM communicates with the CHARMS overlay manager through actions and responses:
actions are commands given by the overlay manager to add or drop sources or destinations,
while responses are feedbacks (mainly QoS feedbacks) delivered to the overlay manager.

MSRM QoS monitoring algorithm [46] combines audio/video packet loss ratio and jitter
retrieved from RTCP packets into a QoS parameter that represents a warning level based on
the recent QoS history. It computes the autocovariance γ (x) = E

[
(xi − μi) (xi+1 − μi+1)

]

of n jitter and loss ratio samples xi by using a Weighted Exponential Average in place of
E [·]. Then it normalizes such value by the sample variance to get an autocorrelation.

MSRM QoS responses use a three-level scale to express the connection quality of a
receiving peer: GOOD CONNECTION, CONGESTED CONNECTION and BAD CON-
NECTION. The QoS is labeled as CONGESTED or BAD when the warning level exceeds
the thresholds reported in Table 12 of Appendix A. The QoS warning level is decreased for
low jitter and loss ratio values. It grows up to notify a congestion when the means and auto-
correlations of jitter and loss ratio exceed the thresholds in Table 10. It assumes the highest

3NAT Behavior Discovery Using Session Traversal Utilities for NAT (STUN), RFC 5780, https://www.ietf.
org/rfc/rfc5780.txt

https://www.ietf.org/rfc/rfc5780.txt
https://www.ietf.org/rfc/rfc5780.txt

Multimedia Tools and Applications

values in case of an interruption in the RTCP packet exchange, which denotes a severe con-
gestion or even a broken link. The ALERT status occurs when mean values for jitter and
loss ratio are below the thresholds but the last samples are over the thresholds or when mean
values are over the thresholds but not both the autocorrelations are over the thresholds. The
warning rates, i.e. the values used to increment or decrement the QoS warning parameters,
are reported in Table 11 of Appendix A.

The MSRM framework provides six different implementations for switch-to-fallback
operations and Multiple Description Coding (MDC) scenarios in overlay networks for real-
time streaming. Only the fifth and the sixth one are based on lock-free data structures (the
former for switch-to-fallback and the latter for MDC), while the other ones still use tradi-
tional mutual exclusion locks. For this reason, we used the fifth MSRM implementation in
our lock-free architecture. Figure 1 depicts a schema of its internal working. It exploits four
lock-free queues, which form up the Queue Buffer in the figure, and four lock-free hash
tables to manage a stream transmission of four substreams (RTP audio, RTCP audio, RTP
video, RTCP video) on four UDP channels. In particular, it sets a flag for each received
packet into hash tables to avoid collecting double packets during a switch-to-fallback node
procedure, when a host is receiving from a new relayer without having yet closed the con-
nection with the old relayer. It uses queues as packet buffers: while some threads store the
received packets into queues, other threads concurrently read these queues and relay each
packet toward a destination. A particular destination of the stream relaying is represented
by the loopback interface of a client node: a multimedia player will be able to read packets
arriving on it and reproduce the received stream by opening a SDP file from a local video
player.

Also MSRM actions and responses are collected into lock-free queues. A concurrent
lock-free read access to QoS responses while they are pushed into the queue is crucial to
the efficient execution of the QoS monitoring algorithm. All the other internal structures,
such as those representing threads and nodes (sources and destinations), are also based on
lock-free queues.

For a comparative performance evaluation of the lock-free design, we implemented also a
lock-based version of the CHARMS platform. We based it on the third solution provided by
MSRM, since experimental tests proved it is the most efficient among the four lock-based
implementations [49]. In this solution, multiple receiving threads store packets arriving from
different sources into a joint buffer (Fig. 2). The buffer is implemented as a hash table of
packet lists: the hash key is the sequence number for RTP packets, the last sequence number

Fig. 1 Internal working of a lock-free MSRM instance handling a stream on a client

Multimedia Tools and Applications

Fig. 2 Internal working of a lock-based MSRM instance handling a stream on a client

for RTCP Receiver Report (RTCP RR) packets and the last RTP timestamp for RTCP Sender
Report (RTCP SR) packets. In this way, both read and write operations on the buffer can
take place in a constant time.

3.2 Resilient tree overlays

The QoS parameter computed by MSRM gives only warnings about the overall QoS on a
receiving node, without detecting which links of the overlay network are responsible for
a QoS degradation. The present paper extends our previous work by describing a global
QoS algorithm that monitors the entire overlay and takes the proper actions to restore an
acceptable QoS in the stream propagation. In the last sections of the paper we will analyze
the time spent to detect QoS degradations and perform the swap procedure and will evaluate
the effects on video quality according to PSNR and SSIM metrics.

A typical scenario is depicted in Fig. 3, where R and H denote relayer and host nodes
respectively. The design of a resilient tree overlay is based on a primary-backup approach:
when a host node experiences any problem compromising QoS during a stream reception,
it can eventually switch to the fallback node. In this way, the stream reception can go on
without the user realizing what happened. Since a periodical check of each connection state
performed by a central server would produce a sensible overhead on it, relayer and host

Fig. 3 A relaying scenario

Multimedia Tools and Applications

nodes should autonomously monitor connections toward their peers and compute statistic
analysis. In case of problems, a client node has the responsibility of informing the server
about its intention of changing relayer.

However, a bad QoS could not be directly related to the H-R link because it could be
also caused by a bad link between video source S and R. A careful analysis of overlay
traffic parameters is required to distinguish between these two situations and choose the
consequent actions to take.

Establishing a preliminary connection with the fallback node requires a periodical
keepalive action on the five UDP channels, which consists of receiving and sending XML
messages between two peers in order to keep the NAT mapping active on the edge routers
of the peer local networks: this traffic can be used also to get the QoS information of a
peer link based on the measurement of the Round Trip Time (RTT). On the other hand,
during the stream relaying performed by MSRM on the first four UDP channels of a H-R
link, an out of band fifth UDP channel is maintained to measure the RTT through periodical
XML message exchanges. RTT data, together with QoS information based on packet losses
and jitter, retrieved from RTCP packets analysis provided by MSRM, allow to attribute the
responsibility of bad quality to a specific network relaying link and to take the consequent
actions. In particular, the packet loss ratio can give insights on the average network con-
gestion level, while a jitter analysis provides information about the transient states and can
predict congestion problems before actual packet losses are experienced.

In the scenario depicted in Fig. 3, if H2 is experiencing a bad transmission quality there
are two possible causes:

1. a problem on H2-H1 link;
2. a problem on another link of the chain (R1-H1 or R1-S).

These two situations can also coexist. When H2 detects a bad transmission quality it has to
perform one of the following actions:

– in the first case, H2 must switch to H3 fallback node after waiting a short time interval
(which should assure the problem is not a transient one);

– in the second case,H2 can wait the problem being solved by the node with a problematic
link or switch to the fallback node (eventually waiting for a certain time to make sure the
problem is not a temporary one or it has not been quickly solved by the node affected
by link congestion).

In order to determine which is the case and thus to make an optimal choice, H2 needs to
directly estimate the link quality toward its relayer.

Accordingly, if R experiences a bad QoS it can denounce itself to the server, that will
tell all the descendant hosts to switch to the fallback node. Furthermore, R can monitor
the state of the links towards the host it is serving and inform the server about any perfor-
mance degradation. Table 1 summarizes the described scenario. The status of H-R links is
expressed by means of the same three-level scale used in MSRM QoS responses described
in the previous section.

In the same way, a node can analyze the QoS of its fallback link and request a new
fallback node when the link performance degrades. In order to detect the H-R link quality
we use keepalive packets to estimate the link round trip time and compare this value with a
threshold.

Each node is also able to get QoS information about video source transmission thanks to
the RTCP SR packets generated by the source and forwarded to the various R and H nodes

Multimedia Tools and Applications

Table 1 Relayer (R) and host (H) behaviour in presence of QoS problems

S-R link status R-H link status R action H action

GOOD QUALITY GOOD QUALITY None None

BAD QUALITY GOOD QUALITY Self-denounce to the server. Wait for good quality restoring

or switch to the fallback node.

GOOD QUALITY BAD QUALITY Server informed about H’s Switch to the fallback node.

bad quality.

BAD QUALITY BAD QUALITY Self-denounce to the server. Switch to the fallback node.

along the chain. A node compares its own loss rate and jitter values with those measured by
its peer: if values differ, the QoS variation should be attributed to the link connecting the
two nodes.

3.3 Host-relayer interaction

The interaction between a host and a relayer could be asymmetric or symmetric. The two
schemes are depicted in Fig. 4.

In asymmetric interaction the host takes care of retrieving and analyzing QoS informa-
tion: it sends keepalive messages as RTT requests to which the relayer replies. Bidirectional

Fig. 4 Asymmetric and symmetric interactions between a host and a relayer

Multimedia Tools and Applications

traffic allows the host to estimate the RTT from the timestamps measured for each request-
replay messages pair. Besides, if there is an active RTP transmission, quality information
about the received stream coming from RTCP RR packets can be added in the request and
reply packets. In asymmetric interaction the relayer just acknowledges the received pack-
ets: therefore it is not able to compute the round trip time and thus to estimate QoS. In
this scenario the host could inform the relayer about the detected QoS by means of reports
sent through RTT request packets, but such information could become obsolete as the time
interval between retransmissions could last more than a minute.

In symmetric interaction both relayers and hosts send request packets and acknowledge
received packets; besides, both the nodes have the responsibility of autonomously estimat-
ing the link quality. Therefore, in this scenario nodes really act as peers because they have
the same behaviour independently of their relayer or host role in the overlay. In this way
the system can better tolerate occasional losses thanks to the fact that both nodes directly
and independently estimate the link quality. The main drawback of this scenario is a greater
bandwidth consumption, even though request packets have a greater size in asymmetric
interactions (where, as said, they also carry report information from the relayer). Since a
relayer has to test several different links (as many as the hosts it is serving), it could decrease
the sending frequency to reduce the bandwidth consumption. We chose this kind of interac-
tion because it offers more flexibility for future extensions. We adopted a XML format for
the messages exchanged between relayers and hosts. The round trip time sample is mea-
sured by sending a probe packet to the host, which in turn replies with an acknowledgment
packet. The interval between sending and receiving timestamps is used for channel round
trip time estimation. The messages between a host and its fallback node contain an identifier
that allows matching requests and acknowledgments. On the other hand, messages between
a host and its primary relayer contain also four additional parameters about loss rate and
jitter for audio and video.

While hosts and fallback nodes exchange messages on five UDP channels to keep all
NAT entries active, hosts and relayers exchange messages only on the fifth out of the five
channel set because the first four ones carry RTP/RTCP audio/video packets.

3.4 QoS assessment

The assessment of channel quality is different between a host-fallback link and a host-
relayer link: on the former the analysis is only based on RTT measures, whereas on the latter
it is also based on loss rate and jitter information. When a degradation of the channel quality
is detected, a warning level is increased by a value reflecting the extent of the occurred
problem. We call it RTT status on the host-fallback link and QoS status on the host-relayer
link. When the warning level reaches a critic threshold, bad quality is signalled for the
monitored channel.

In particular, when a relayer leaves the CHARMS overlay, the server (which helps hosts
to get in touch with relayers) quickly detects a node departure (thanks to the TCP connection
each node has with it, handled by means of I/O multiplexing system calls) and immediately
informs the hosts that are receiving streams from it. Even though hosts can detect by them-
selves relayer departures through the QoS analysis we are describing, this measure allows to
speed up the discovery. On the contrary, simple link degradations without relayer departures
can be detected only by the QoS monitoring algorithm running on client nodes. However,
relayer departures have more severe effects on QoS because they can cause complete inter-
ruptions in stream playing. For this reason, they need to be detected more quickly than link
degradations.

Multimedia Tools and Applications

3.4.1 QoS parameters of the fallback link

In this case, QoS analysis is based on the estimate of a mean RTT and the comparison with
a threshold value, which is updated in an adaptive manner on the basis of the minimum
detected round trip time. The mean round trip time is computed by updating its previous
value through an exponentially weighted moving average:

RT TAV G = (1 − α)RT TAV G + αRT TSAMPLE (1)

This approach considers also the recent history of RTT values [22]: in this way, the RTT
estimate increases mainly in case of congestion rather than for occasional delays caused by
transient interferences. In particular we set α = 0.25, but we can set a higher value if we
want to give more importance to the last samples.

The adaptive threshold is estimated as RT TT HRESH = kRT TMIN , where we set k =
2.5.

The warning level is increased by a certain value when the estimated mean RTT exceeds
the threshold. However, also receiving a sample after some retransmissions or not receiving
it at all could mean channel congestion: therefore in these cases the warning level has to be
increased too.

Since a sudden degradation of the channel may not be quickly detected if the estimated
mean RTT is low, the warning level is increased also when the sample RTT is very high
compared to the threshold, that isRT TSAMPLE > KRT TT HRESH , where we choseK = 4.

The estimated mean RTT can be compared with the previous sample in order to check
whether the mean value is increasing or not. This information can be used to give a
lesser weight to cases where the estimated RTT is greater than the threshold but it is
decreasing. If none of the alert causes occurs, the warning level is decremented in order
to indicate a stabilization of the channel congestion level. Table 13 reports the incre-
ments and decrements of the warning level on the fallback link based on mean RTT and
sample RTT.

As reported in Table 15, the channel is considered unreliable when the warning level
exceeds a threshold, namely BAD THRESHOLD, equal to 15. We chose also a lower
threshold, namely CONGESTED THRESHOLD, that we set to 9: this identifies a channel
congestion level that does not yet require any countermeasure. Furthermore, an upper bound
should be imposed on the warning level as soon as the threshold has been exceeded: this is
necessary to allow a quick detection of any warning level reduction, which could indicate
an improvement on the link state.

3.4.2 QoS parameters of the relayer link

The analysis on the relayer link is not only based on RTT samples but also on loss rate and
jitter derived from the last RTCP RR packet sent to the stream source.

The jitter value is not an instantaneous measure, but it is already an estimate on a time
interval: therefore it provides meaningful information about the channel quality.

On the contrary, the loss rate value, event though it refers to a time interval, does not
consider losses before the last receiver report; furthermore it refers to a time interval that
is probably different for each peer. For this reason, a moving average is computed for this
value just as for RTT samples. The results are compared to the related values extracted from
RTCP RR packets:

Multimedia Tools and Applications

– if the difference between the two estimated mean loss rates is low, both the nodes are
experiencing the same losses, so any loss is caused by other network links and not by
the H-R link;

– if the difference between the jitter values is low, both the nodes are experiencing very
similar delay variations, so the delay variation caused by the H-R link is low.

When these differences exceed the thresholds in Table 15, the warning level is increased as
specified in Table 14.

We tried to use the same alert thresholds we set for the fallback node, that is 9 for con-
gestion (i.e. poor QoS) and 15 for bad quality (i.e. very bad QoS) respectively: we noticed
that in this way the threshold is reached more quickly because RTT, jitter and loss rate con-
tributions are cumulated. This is a desired behaviour because the control frequency for the
active link can be very lower and thus retrieving two samples may require also more than a
minute. The alert threshold or the increase values must be chosen on the basis of the time
interval between two transmissions. In particular, we considered a time interval between 20
and 30 s.

Furthermore for both links a higher warning level is defined: it can be accessed only
when the channel age exceeds the maximum allowed value. This level means no acknowl-
edgment to keepalive packets has arrived for such a long time that NATmapping is no longer
guaranteed. However, a new relayer will be requested before reaching this critical situation.

3.4.3 Retransmissions

The estimated mean RTT is used also to detect the retransmission timeout (RTO) as
following:

RT TV AR = (1 − β)RT TV AR + β |RT TSAMPLE − RT TAV G| (2)

RT ORT T = RT TAV G + 4RT TV AR (3)

RT O = max(RT ORT T , RT OMIN) (4)

We set a lower bound on the RTO value to RT OMIN = 1.5 sec to avoid too frequent
retransmissions and β = 0.25.

We did not implement a back-off technique for the retransmission timer like the one in the
TCP protocol because we do not need a reliable transmission but simply some information
about channel quality. A missed reply after a scheduled timeout (which however is never
less than 1.5 s) is enough to assign the channel a bad quality rate.

QoS information (represented by RTT status on the fallback link and by QoS status on
the relayer link) is also used to limit the number of possible retransmissions when RTT
request packets are not acknowledged to avoid further traffic on a heavily congestioned
link. The maximum number of retransmissions is decreased if rtt status is greater than some
thresholds, as shown in Table 16.

3.4.4 Actions to be taken after QoS evaluation

When a relayer client gets a BAD QUALITY QoS response from its MSRM module, it
reports the problem to the server, that consequently will label it as a bad relayer and will
avoid to assign it to hosts requesting streams.When the number of congested and bad quality

Multimedia Tools and Applications

links between a relayer and the hosts served by it exceeds a threshold, the relayer asks
the central server to take load balancing policies for a better distribution of hosts among
relayers. We set the load balancing threshold to 3 host links.

On the other hand, once a host client has the information about the links toward the
relayer and the fallback nodes, it can combine these values with the QoS data about the RTP
stream extracted from the MSRM module. When a host client experiences a bad QoS, it is
able to attribute the responsibility to the relayer link or other network links: in this way it can
take the best decision. Furthermore, it can compare the relayer link status with the fallback
link status to detect whether it is worth performing a relayer swap. Besides, regardless of
the experienced QoS, it can check the fallback link status and ask the server a new relayer
when the link quality is not good. The actions taken by a host based on the status of the
relayer link and of the fallback link are detailed in Appendix B.

3.5 QoSmonitoringmodule

The QoS monitoring module is based on three types of threads running on each R and H
client:

– a peer keepalive thread, which performs a RTT-based check of the link state on the five
UDP channels connecting the peers; this thread runs before the actual stream relaying
process starts;

– a mono keepalive thread, which monitors the link between the host and its primary
relayer during the stream relaying by checking the QoS responses provided by MSRM
and the RTT measures on the only fifth UDP channel (hence “mono”);

– a QoS check thread, which collects the information on the link analysis provided by the
other threads for a specific stream and contacts the server if necessary; it periodically
updates the number of good, congested and bad links for a node relaying the stream
and the relayer, fallback and MSRM status for a node receiving the stream.

As soon as a five channels UDP connection is established between a R and aH client, a peer
keepalive thread is launched on both the peers. Then, if R is designed as the primary relayer
for H, such thread is replaced by the stream relaying on the first four channels (RTP audio,
RTCP audio, RTP video, RTCP video) and a mono keepalive thread on the fifth channel. On
the contrary, if R has been chosen as a fallback node for H, the peer keepalive thread goes
on with RTT message exchanges to keep the five channels UDP connection active and at
the same time to monitor the link state between the peers.

The time line is splitted into multiple slots of Tc seconds within which a peer can wait
for an acknowledgement to a keepalive packet even after trying some retransmissions.

Tc =
⌈
2 ∗ PACKET SIZE

bandwidth

⌉
(5)

By considering the different size of the two keepalive messages, we set
PACKET SIZE = 2280 bits for the five channels handled by the peer keepalive thread
and PACKET SIZE = 2976 bits for the single channel handled by the mono keepalive
thread. We chose 300 bps as a value for the bandwidth limit.

Multimedia Tools and Applications

We define the channel age as the number of slots passed since the last acknowledgement.
We compute the maximum age as:

MAX AGE =
⌊

NAT T IME

Tc

⌋
− 1 (6)

Since the RFC 47874 defines a timeout for a NAT entry should be greater than 2 min,
we set NAT T IME = 120 s. This means a keepalive packet should be sent at least every
120 s on each channel. Moreover, a bidirectional packet exchange is necessary to maintain
NAT entries also for those natting systems that distinguish between outgoing and ingoing
traffic.

For the peer keepalive thread we use two FIFO queues to manage the scheduling of the
slots assigned to the channels: the thread starts from a main queue containing the indices of
all the five channels and an empty recovery queue, where channels receiving no acknowl-
edgement are inserted. When an acknowledgement is received for a keepalive message, the
channel is reinserted in the main queue, otherwise it is inserted in the recovery queue at the
end of the time slot. If no acknowledgement has been received within the slots of the chan-
nels, when the maximum age is reached, a last attempt is done with the first element of the
recovery queue. If the attempt succeeds, the extractions from the recovery queue go on, oth-
erwise the NAT mapping is considered as not assured anymore. If some recovery succeeds
before the first element in the recovery queue reaches the maximum age, the algorithm goes
on until the recovery queue is empty. This algorithm is represented by pseudocode 1.

The mono keepalive thread executes a similar algorithm on a single UDP channel (thus
without the need for queues to handle the channels). Moreover, the XML message sent by
the mono keepalive thread to measure the RTT contains also the QoS parameters provided
by MSRM (video loss rate, jitter loss rate, audio loss rate, audio jitter).

The diagrams in Figs. 5 and 6 show how the two keepalive threads work. The most
important operations, in the highlighted boxes, are:

– Check if peer is ready until recv ok: a node (R or H) periodically sends messages to
its peer and waits for a reply to detect when the peer is ready for reception;

– Get RTT/QoS sample: a RTT or QoS request packet is created and sent on a particular
channel; then the process waits for an ack on that channel until a timeout expiration; if
an out of order packet arrives the process discards it and returns to wait for the residual
time;

– Ack incoming RTT/QoS until timeout: it listens on all the five channels of the fallback
link and on the fifth channel of the relaying link and acknowledges all the arriving
request packets;

– Update RTT/QoS status: an index of the link congestion level is updated according to
the collected samples; pseudocode 2 describes the algorithm for updating the fallback
RTT status, while pseudocode 3 describes the algorithm for updating the relayer QoS
status (thresholds for loss rate and jitter are reported in Table 15, while warning incre-
ments for RTT status and QoS status are reported in Tables 13 and 14 of Appendix A
respectively);

– Update RTT/QoS link status: the link status is evaluated according to the congestion
index updated in the previous step; these data are made available to a thread that sends
messages to the server according to the estimated QoS level.

4Network Address Translation (NAT) Behavioral Requirements for Unicast UDP, RFC 4787, https://www.
ietf.org/rfc/rfc4787.txt

https://www.ietf.org/rfc/rfc4787.txt
https://www.ietf.org/rfc/rfc4787.txt

Multimedia Tools and Applications

Fig. 5 Flowcharts for the threads on the fallback link (peer keepalive thread)

Multimedia Tools and Applications

Fig. 6 Flowcharts for the threads on the relayer link (mono keepalive thread)

Multimedia Tools and Applications

3.6 Switch-to-fallback procedure

Each host node is able to perform switch-to-fallback operations atonomously. The server
intervenes just to provide a new fallback node once the swap procedure has been completed.
In particular, there are two feasible scenarios for the swap of a host node (H):

– session with the relayer (R) is definitively closed;
– relayer (R) and fallback node (F) are exchanged.

Multimedia Tools and Applications

Pseudocode 5 represents the algorithm implemented by the main QoS monitoring thread. A
separate instance of the thread is executed for each stream received and/or relayed to other
nodes.

The switchToFallback() call in the pseudocode represents the swap procedure with the
complete interruption of the R-H session.

The swap procedure requires the following messages to be exchanged:

– SWAP is sent by H on all the five UDP channels to ask F to start the stream relaying.
When F receives this message, it replies with a SWAP ACK;

– TERMINATE SESSION FOR SWAP is sent by H to R to close the UDP channels
and stop receiving the stream from it. When R receives this message, it replies with a
TERMINATE SESSION FOR SWAP ACK and stops the stream relaying towards H;

– SWAP EXECUTED is sent by H to inform the server about the completed swapping
process;

– REQUEST NEW FR is sent by H to inform the server that the stream reception from
R has been stopped. When the server receives this message, it assigns a new fallback
node to H.

Multimedia Tools and Applications

As soon as H receives the SWAP ACK message, it knows F is ready to relay the stream:
it stops the peer keepalive thread and then it replaces the old R source with the new F source.
Only at this stage it is worth sending the TERMINATE SESSION FOR SWAP message
to R, because stream reception is guaranteed: in this way the lag in the stream playing is
reduced and the swapping process is very fast.

The inversion process between R and F is activated when the QoS estimated on R link
is not bad but it is worse than the one estimated on F link. It is similar to the complete

Multimedia Tools and Applications

interruption, with only a little difference: resources are not deallocated and mono keepalive
thread is replaced by peer keepalive thread. In the same way, on H, once the acknowledge-
ment from R has been received, peer keepalive thread is launched; then SWAP EXECUTED
and INVERSION EXECUTED messages are sent to the server to notify the completion of
the operations.

4 Lock-free design and implementation

Both the MSRM library and the whole CHARMS application were developed in C with
Unix system calls (SUSv3 specifications).5 They rely on POSIX threads to performmultiple
operations concurrently and on lock-free data structures.

Mutual exclusion locks (mutex) are widely used in concurrent programming to syn-
chronize multiple threads concurrently accessing to some shared data. They preserve data
integrity, consistency and coherence by serializing concurrent read/write and write/write
operations. Despite such obvious benefits, possible races for lock acquisition among differ-
ent threads may cause sensibile performance degradations. Moreover, such coarse-grained
locks often serialize also non-conflicting operations. The consequence is a lower level of
concurrency and also a poor scalability in presence of high number of locks and several con-
current threads [11]. For these reasons, we improved the concurrent multithreaded design
of the QoS monitoring algorithm by adopting lock-free lists, queues and hash tables, which
allow safe concurrent accesses to data with no need for synchronization. Lock-free data
structures are based on built-in functions for atomic memory access: in our implementa-
tion we used built-in functions provided by the gcc compiler,6 which “are intended to be
compatible with those described in the Intel Itanium Processor-specific Application Binary
Interface”.7

5The Single UNIX Specification, Version 3. http://www.unix.org/version3/
6Built-in functions for atomic memory access. https://gcc.gnu.org/onlinedocs/gcc-4.4.3/gcc/Atomic-Builtins.
html
7Intel Itanium Architecture Developer’s Manual, Vol. 3. https://www.intel.com/content/www/us/en/processors/
itanium/itanium-architecture-vol-3-manual.html

http://www.unix.org/version3/
https://gcc.gnu.org/onlinedocs/gcc-4.4.3/gcc/Atomic-Builtins.html
https://gcc.gnu.org/onlinedocs/gcc-4.4.3/gcc/Atomic-Builtins.html
https://www.intel.com/content/www/us/en/processors/itanium/itanium-architecture-vol-3-manual.html
https://www.intel.com/content/www/us/en/processors/itanium/itanium-architecture-vol-3-manual.html

Multimedia Tools and Applications

switch

Multimedia Tools and Applications

By exploiting a hardware native support provided by modern multiprocessor archi-
tectures, an atomic instruction handles read-modify-write operations through a sort of
“implicit lock”, which allows a finer grain synchronization and thus a higher level of
concurrency [42]. Moreover, some empirical tests proved even in non-multiprogrammed
environments lock-free hash tables performance is not worse than that of the most effi-
cient traditional hash tables. The models described in [31, 42] and [51], which inspired the
lock-free implementations adopted in our architecture, benefit from the livelock-freedom
property, which assures that, if a thread is active, some thread (not necessarily the same
one) will complete its operation in a finite number of steps. On the other hand, live-
locks refer to situations when threads continue their operations forever without making any
progress [45].

Besides lock-free data structures, non-blocking programming can be based on wait-free
data structures [27]. Herlihy et al. [20] highlighted the difference between a lock-free and a
wait-free data structure: while the former ensures some process makes progress in a finite
number of steps, the latter ensures each process makes progress in a finite number of steps.

Due to the higher complexity of wait-free data structures, which exploit sophisticated
progress assurance algorithms [10], we chose lock-free data structures for our application.
In particular, we used the lock-free hash table described in [42] and lock-free lists and
queues provided by the RIG lock-free open source library,8 which exploits hazard pointers
to reclaim memory for arbitrary reuse [32].

QoSLinkStateManager instances, which are handles containing data of QoS check
threads, and MSRM instances are stored into lock-free hash tables, where the keys indexing
them are the identifiers of the streams they deal with.

A keepalive thread can be univocally identified by a relayed/received stream and by
the peer that is receiving from/relaying to the node. For this reason, each QoSLinkState-
Manager instance contains four hash tables, where peer keepalive and mono keepalive
data handles are indexed by the identifiers of the peers that are in contact with the node.
In particular, keepalive handles related to stream relaying and stream receiving activities
are stored into separate tables, namely peer keepalive table R/mono keepalive table R and
peer keepalive table H/mono keepalive table H.

Communications between two threads are based on some shared variables (flags): a
thread updates a flag value to trigger some action within another thread that periodically
checks the same flag. For instance, when the main thread of a H client sets a particular flag
inside a peer keepalive data handle, the corresponding peer keepalive thread breaks the cycle
that manages RTT monitoring toward a fallback node F. Then it starts the switch-to-fallback
procedure, by sending the proper message to F on the five UDP channels, and terminates.
We used the built-in functions for atomic memory access provided by the gcc compiler to
update and read flag values. In this way, we can avoid race conditions between reads and
updates performed by concurrent threads without the need of mutex locks. In a similar way,
all the other shared variables are accessed by more concurrent threads by means of built-in
atomic functions.

We used atomic variables also in the conditions of the loops performed by keepalive and
QoS check threads: in a lock-based design the need to acquire a lock before modifying the
value of such shared variables can cause a delay in thread termination, which could have a
performance impact during a swap procedure.

8RIG lock-free library. https://github.com/llongi/rig

https://github.com/llongi/rig

Multimedia Tools and Applications

In particular, values of shared variables are set by means of the sync val compare
and swap function, which atomically compares and swaps the current value of a variable
with a new one.

Increments of shared variables are computed safely by means of the
sync add and fetch function, which atomically sums a value to a variable and sets the

new computed value into that variable. The same atomic function can be used also to
implement lock-free read operations safely: by passing 0 as a value to sum, the function
becomes a simple read of the current value of a variable.

5 From single tree tomulti-tree overlay

The approach described in Section 3.2 can be generalized to multi-tree overlays, where the
stream is decomposed into multiple descriptions or substreams and each node receives a
certain number of substreams from various other nodes. In this case, each substream prop-
agation would be monitored independently by a different instance of the same QoS/RTT
monitoring algorithm. Even though a node can still receive a stream in presence of inter-
ruptions or QoS degradations affecting only some substreams, a quick switch-to-fallback
procedure could avoid a sensible QoE degradation caused by a reduced number of received
descriptions.

6 Experimental tests

To have an idea of the system performance in a real-world scenario, we carried out the
following preliminary test: we delivered a video stream from a source in the GARR network
via terrestrial unicast to a R node in the GARR network, which in turn relays it to a H node
in a Telecom ADSL network. Table 2 reports the minimum and maximum delay and jitter
measured for R and H.

However, the main goal of this study is the assessment of the efficiency of the swap
procedure. To this end, we considered a wired local network with a star topology, where
we disconnected overlay nodes to emulate peer churning and used the NetEm emulator to
emulate network problems that can rise in a real-world scenario.

We measured some temporal parameters to evaluate the effectiveness of the implemented
method. They consist in the time spent by the system:

– to detect a node has left the overlay, namely TRlef t ;
– to detect a QoS degradation on a R-H link (we focused on bandwidth narrowing),

namely TQoS ;
– to perform the actual switch-to-fallback operation, namely Tswap , once one of the above

problems has been detected;

Table 2 Delay and jitter in a
real-world scenario Network Delay Jitter

Video source GARR – –

R GARR 0.012–0.179 0.0–0.127

H Telecom ADSL 0.056–0.345 −0.001–0.214

Multimedia Tools and Applications

– to activate the stream reception from the new source, namely Trestore (which is just a
part of the whole swap procedure time).

TRlef t does not match exactly the time during which the stream reproduction is stopped,
since the buffer of 50 packets used for local playing on the H nodes partially mitigates
the effect of packet losses. Moreover, we should point out the exchange of SWAP and
SWAP ACK messages between the host and the fallback nodes theoretically depends on
network conditions. However, since our algorithm triggers the swap procedure only when
the host-fallback link is in a good state, we can assume the time spent for such small message
exchange to be almost negligible.

From the times defined above we derived the two most important temporal parameters
for QoS:

– Tblank := TRlef t +Trestore, which represents the time during which the stream reception
is stopped because R has left the overlay but reception from F has not started yet;

– Tweak := TQoS +Trestore, which represents the time during which the stream reception
is affected by packet losses due to a bandwidth limitation on the R-H link.

We tested these performance parameters on different multi-core Linux machines equipped
with Linux kernel 4.12.14 (on the openSuSE Leap 15.1 distribution) and gcc compiler 7.4.0
respectively: they both provide native support to the compare-and-swap operation, which is
the basis of the lock-free data structures we used in the procedure implementation.

Table 3 summarizes the hardware features of the machines involved in our testbed.

Table 3 Machines employed in the two tests

Processor Cores/ Cache Memory

threads

1 AMD Sempron 64 3200+ 1/1 128 KB L1 2 GB

1.8 GHz 128 KB L2

2 Intel Core i5-430M 2/4 3 MB SmartCache 8 GB

2.26-2.53 GHz

3 Intel Core 2 Quad Q6600 4/4 8 MB L2 8 GB

2.4 GHz

4 AMD A10-9600P 4/4 2 MB L2 8 GB

2.3-3.2 GHz

5 Intel Core i7-4960X 6/12 15 MB SmartCache 64 GB

3.6-4.0 GHz

6 Intel Core i7-3610QM 4/8 6 MB SmartCache 16 GB

2.3-3.3 GHz

7 Intel Core i5-3210M 2/4 3 MB SmartCache 8 GB

2.5-3.1 GHz

1: server

2: streaming source

3, 4: R clients

5, 6, 7: H clients

Multimedia Tools and Applications

We launched a client R1 in R mode and three clients in H mode. We disabled for the H
nodes the possibility to forward to other nodes the stream they would receive: in this way,
we were sure all the three H nodes would be attached to R1, which would perform a unicast
relaying of the stream towards each H node.

Then we launched another client R2 in R mode as a fallback node for the H nodes. We
synchronized the clocks of all the overlay clients through the NTP protocol.

After this first overlay construction, we started a multicast video session involving R1
and R2 by means of a modified version of EvalVid’s mp4trace9 tool [24], where we added
the delivery of RTCP SR packets. We used a MP4/H.264 video file of 20 min and 50 s
encoded with the x264 utility at a constant bitrate of 500 kbps, a frame rate of 24 fps, a
key frame every 24 frames and a resolution of 704x480. We set the size of RTP Maximum
Transmission Unit (MTU) to 1024 bytes to keep the overall size of the link MTU (including
UDP and IPv4 headers) below 1500 bytes and avoid packet fragmentation. We considered
only I frames and P frames in the encoding of our video, since B frame losses usually have
a negligible impact on the perceived quality [44]. We set the video buffer size of R and H
nodes to a maximum of 50 RTP video packets.

We performed two tests to assess the effectiveness of the swap procedure in the case of
nodes leaving the overlay and in the case of bandwidth narrowing respectively.

In the former, we alternately disconnected one node (R1 or R2) during the streaming
session to make all the H clients perform a switch to the other R node. After each swap
process we restarted the disconnected R, which was reassigned as a fallback node. In this
way, we studied the swap process of the H nodes from R1 to R2 and from R2 to R1.

In the latter, we limited with NetEm [19, 23, 38, 50] the outgoing bandwidth of one
node between R1 and R2 alternately to produce a QoS degradation and a consequent
switch of the H nodes to the other R node. NetEm is a Linux network emulator based
on a queuing discipline implemented as a kernel module between the protocol output
and the network device. It can reproduce network characteristics such as bandwidth con-
straints, packet losses, packet reordering, delay and jitter. In a previous work [50], we used
NetEm to emulate isolated packet losses to study the effects on some QoE video met-
rics. On the contrary, in this test scenario we chose to emulate bandwidth bottlenecks,
which cause various impairments (delay, packet loss, jitter) on a longer term, because our
QoS monitoring algorithm considers the recent QoS history and not isolated phenomena.
Indeed, some experiments [38] proved NetEm accuracy in emulating sequences of con-
tiguous and correlated losses (burst losses) is poor. Moreover, bandwidth bottlenecks can
encompass a combination of multiple QoS impairment factors, such as packet losses, delay
and jitter.

The aim of this experiment was to measure the time spent by the H nodes to detect
the bad quality on the R-H links. For a constant bitrate B, each R node should have
at least an outgoing bandwidth equal to NB to provide an efficient stream relaying
towards N H nodes. For this reason, we alternately limited the outgoing bandwidth of
R1 and R2 to NB

2 to produce a sensible QoS degradation. We executed the two tests for
N = 3 H clients.

The etmp4 utility, included in the EvalVid framework [24], allowed us to compute frame
losses [50] starting from data collected through the tcpdump command on the streaming
source and on the H receiving nodes. Moreover, it reconstructed video traces as they were
seen on the host nodes, affected by artifacts caused by packet losses.

9EvalVid with GPAC - Usage. http://www2.tkn.tu-berlin.de/research/evalvid/EvalVid/docevalvid.html

http://www2.tkn.tu-berlin.de/research/evalvid/EvalVid/docevalvid.html

Multimedia Tools and Applications

7 Results

During the streaming test conducted with the settings described in the previous section, we
measured the time TRlef t to detect a relayer departure, the time Trestore to restore the stream
reception, the time Tblank during which the stream reception is stopped and the time Tswap

to perform the switch-to-fallback procedure. Times measured for each switch-to-fallback
operation and the percentages of I and P lost frames on the three hosts are reported in
Table 4. Times measured during a run of a lock-based version of the application are reported
in Table 5: this version is based on the use of mutual exclusion (mutex) locks of POSIX
threads to synhcronize the access to traditional data structures. By comparing the two tables
we can notice a significant difference in TRlef t , Trestore, Tblank and Tswap values. The worse
performance of the lock-based version is caused by the contention for the acquisition of
locks between two different threads. In particular, the time for restoring the stream reception
is the parameter that highly benefits from the lock-free design, since it is reduced even by
three orders of magnitude compared to the value in the lock-based version. On the other
hand, the total time Tswap spent to perform the switch-to-fallback procedure is the least
influenced by the lock-free design. However, the time Tblank = TRlef t + Trestore during

Table 4 Times, expressed in seconds, elapsed during the six switch-to-fallback node operations and loss
percentages for I and P frames

Relayer disconnection scenario (lock-free version)

Host TRlef t (s) Trestore (s) Tblank (s) Tswap (s) Lost frames (%)

i5-3210M 2.824 0.008 2.832 17.378 I: 4.71

2.584 0.009 2.593 17.642 P: 3.48

1.123 0.008 1.131 19.100

2.680 0.009 2.689 17.503

4.592 0.009 4.601 15.607

0.968 0.009 0.977 19.350

i7-3610QM 0.660 0.009 0.669 2.470 I: 5.58

0.513 0.009 0.522 19.816 P: 4.57

1.224 0.010 1.234 19.098

2.780 0.009 2.789 17.523

4.715 0.010 4.725 15.609

1.092 0.010 1.102 19.326

i7-4960X 1.204 0.009 1.213 19.702 I: 7.25

3.407 0.009 3.416 17.034 P: 5.88

1.339 0.009 1.348 19.079

2.878 0.009 2.887 17.535

4.827 0.009 4.836 15.591

1.187 0.009 1.196 19.327

TRlef t := time to detect a relayer departure

Trestore:= time to restore the stream reception once the relayer departure has been detected

Tblank := time during which the stream reception is stopped

Tswap := time to perform the switch-to-fallback procedure once the relayer departure has been detected

Multimedia Tools and Applications

Table 5 Times, expressed in seconds, elapsed during the six switch-to-fallback node operations in a lock-
based version

Relayer disconnection scenario (lock-based version)

Host TRlef t (s) Trestore (s) Tblank (s) Tswap (s)

i5-3210M 8.775 20.001 28.776 20.002

15.086 10.001 25.087 24.669

15.458 5.000 20.458 15.103

15.964 5.000 20.964 23.712

10.310 5.000 15.310 15.120

16.536 15.001 31.537 15.521

i7-3610QM 22.416 10.001 32.417 17.379

6.167 10.000 16.167 14.471

11.341 15.000 26.341 15.038

11.781 15.001 26.782 22.924

5.339 20.001 25.340 20.002

11.447 5.000 16.447 15.633

i7-4960X 11.577 10.000 21.577 17.144

10.029 10.001 20.030 20.160

5.889 5.000 10.889 19.586

10.877 5.000 15.877 15.152

6.662 15.001 21.663 19.003

6.770 15.000 21.770 18.163

TRlef t := time to detect a relayer departure

Trestore:= time to restore the stream reception once the relayer departure has been detected

Tblank := time during which the stream reception is stopped

Tswap := time to perform the switch-to-fallback procedure once the relayer departure has been detected

which the video playing is stopped is significantly reduced by the lock-free design: this is
the parameter with the heaviest effects on the perceived QoE, whereas the time Tswap covers
the whole procedure represented in Fig. 7 of Section 3.6 and includes also the time spent
for the activation of the new thread for the R-H link monitoring.

Times for switch-to-fallback operations in the narrow bandwidth test and the percentages
of lost frames are reported in Table 6: it seems there is no significant correlation between
the TRlef t , TQoS , Tswap and Trestore times and the computing capabilities of each host.

Charts in Figs. 8 and 9 represent the ECDFs (Empirical Cumulative Distribution Func-
tions) of the end-to-end delay of the received frames in the relayer disconnection scenario
and in the narrow bandwidth scenario respectively.

By comparing the two charts, we can notice better performance in the relayer discon-
nection scenario than in the narrow bandwidth scenario. In the former the end-to-end delay
pratically never exceeds 0.5 s on the three hosts, while in the latter there are small probabil-
ities (about 5%) it could exceed 1 second. However, also in the narrow bandwidth scenario
the delay is lower than 4 s with very high probability. Especially in such scenario, the 6-core
machine (Core i7-4960x) exhibits slightly better performance than the other two hosts.

Multimedia Tools and Applications

Fig. 7 Interaction between peers for a definitive close of the R-H link

Table 6 Times, expressed in seconds, elapsed during the six switch-to-fallback node operations and loss
percentages for I and P frames

Narrow bandwidth scenario (lock-free version)

Host TQoS Trestore Tweak Tswap Lost frames (%)

i5-3210M 31.37 0.009 31.383 3.119 I: 11.81

29.211 0.009 29.220 2.697 P: 9.22

28.549 0.009 28.558 1.264

19.918 0.010 19.928 0.797

29.810 0.010 29.820 2.936

27.285 0.009 27.294 2.230

i7-3610QM 32.384 0.009 32.393 2.761 I: 13.99

24.863 0.010 24.873 3.492 P: 12.30

29.998 0.009 30.007 3.289

23.519 0.010 23.529 2.842

30.465 0.010 30.475 3.084

23.088 0.009 23.097 3.840

i7-4960X 27.215 0.008 27.223 2.649 I: 13.91

24.660 0.090 24.750 3.687 P: 11.83

29.987 0.009 29.996 0.730

20.809 0.009 20.818 1.461

31.372 0.008 31.380 2.971

23.879 0.009 23.888 2.790

TQoS := time to detect a QoS degradation on the R-H link

Trestore:= time to restore the stream reception

Tweak := time during which the stream reception is affected by packet losses

Tswap := time to perform the switch-to-fallback node procedure once the QoS degradation has been detected

Multimedia Tools and Applications

Fig. 8 ECDFs of the end-to-end
delay of the frames received by
the three hosts in the relayer
disconnection scenario

We evaluated also video quality in terms of PSNR and SSIM, which are two common
QoE metrics [50]: they are classified as Full-Reference metrics, since they compare the
received video, affected by the noise generated by compression artifacts and packet losses,
and the original uncompressed video. However, we should consider that frame losses and
video impairments partially depend also on video encoding instantaneous parameters, which
are related to specific features of video scenes. For each video frame we define�PSNR and
�SSIM QoE distortions as the differences between the metrics computed for the reference
compressed video and the metrics computed for the received video:

ΔPSNR := PSNRref erence − PSNRreceived (7)

ΔSSIM := SSIMref erence − SSIMreceived (8)

Both reference and received video QoE values were computed by comparing the video
to its original uncompressed form. In this way, the two aforementioned differences express
only the effects of network impairments on QoE degradation. Charts representing the
ECDFs of ΔPSNR and ΔSSIM for the two test scenarios are shown in Figs. 10 and 11.

It can be pointed out that the relayer disconnection scenario exhibits better performance
than the narrow bandwidth scenario. In particular, for all the three hosts there is a slightly

Fig. 9 ECDFs of the end-to-end delay of the frames received by the three hosts in the narrow bandwidth
scenario

Multimedia Tools and Applications

Fig. 10 ECDFs of the PSNR and SSIM degradations measured on the three hosts in the relayer disconnection
scenario

higher probability (about +3%) to have a PSNR degradation lesser than 20 db. This perfor-
mance gap is larger for SSIM metric. Surprisingly, the 6-core machine results in the worst
performance, while the 2-core machine (Core i5-3210M) has the highest probability to have
lower PSNR and SSIM degradations in most cases. For both PSNR and SSIM, this per-
formance gap is larger in the relayer disconnection scenario. Since times measured on the
6-core machine are not worse than those measured on the 2-core machine, but frame losses
are slightly higher, we think the reason of the performance gap involves the local relaying
threads. Indeed, we collected the traffic traces on the H nodes through tcpdump by listening
on the loopback network interface, which is the one used by MSRM to deliver RTP pack-
ets to the local video player (as we explained in Section 3.1.1). Thus, we can conclude that
on more powerful machines packets collected into the buffer are consumed faster by local
relaying threads, which therefore need a larger buffer or a buffer to be filled more quickly.

Multimedia Tools and Applications

Fig. 11 ECDFs of the PSNR and SSIM degradations measured on the three hosts in the narrow bandwidth
scenario

For this reason, further performance improvements should address a dynamic buffer dimen-
sioning and a thread priority balancing tailored to suit the specific computational capabilities
of the target machine.

7.1 Signalling overhead

Table 7 reports the signalling overhead on a R node during the relaying of a stream to a H
node. Table 8 reports the signalling overhead on aH node while it is receiving a stream from
a R node and handling a session with a fallback node. We have distinguished between the
traffic related to the exchange of standard RTCP SR/RR packets and the additional traffic
generated by our QoS monitoring algorithm, which is necessary to assess the state of the
R-H link and of the fallback link.

Multimedia Tools and Applications

Table 7 Signalling overhead on
a R node RTCP SR Additional signalling

500 bit/s 40 bit/s

7.2 System scalability

In the previous sections we have evaluated the benefits achieved through the adoption of
lock-free data structures in a small pilot study. However, we can expect substantial advan-
tages even for larger overlay sizes, involving a higher number of nodes, links and streams.
When the number of threads rises, due to a higher number of relaying links in the overlay
tree, a lock-free design could offer even more evident benefits compared to a lock-based
design, where synchronization among threads could accumulate delays having a significant
impact on the system performance.

Compared to the extensible lock-based hash table inspired by the Java Concurren-
tHashMap, the lock-free hash table employed in our architecture achieves the most
important performance improvements for more than 10 concurrent threads and reaches its
peak performance for 44 threads, when it is almost three times faster [42]. Compared to
generic lock-based queues, the lock-free queue we adopted achieves the most important per-
formance improvements for more than 10 concurrent threads, when it becomes at least four
times faster [51].

Here is a summary of the threads instantiated for each stream received/relayed by a node:

– A mono keepalive thread for the stream reception on the relayer link;
– A peer keepalive thread for the fallback link;
– Amono keepalive thread for each stream relaying (i.e. for each host receiving the stream

from the node);
– A peer keepalive thread for each host for which the node is acting as a fallback;
– A QoS monitoring thread;
– In MSRM, a receiving thread for each active source, a relaying thread for each

destination.

Also the adoption of a MDC schema would produce a higher number of threads. In
particular, it would require:

– A mono keepalive thread for each relayer link used for receiving one or more
descriptions;

– A peer keepalive thread for each fallback link that can be used to swap the reception of
one or more descriptions;

– A mono keepalive thread for each destination of the relayed descriptions;

Table 8 Signalling overhead on a H node

RTCP RR Additional signalling

RTCP RR from H to R 500 bit/s

Ack messages from H to R on the two RTP subsessions 54 bit/s

Signalling on the 5th UDP channel with a relayer node 34 bit/s

Signalling with a fallback node 200 bit/s

Total signalling overhead 500 bit/s 288 bit/s

Multimedia Tools and Applications

– A peer keepalive thread for each host for which the node is acting as a fallback;
– A QoS monitoring thread for each description;
– In MSRM, a receiving thread for each received description, a relaying thread for each

relayed description.

In the case of multiple descriptions relayed through a multi-tree overlay, a lock-free design
can bring significant improvements also in the merging process, which is responsible for
the reconstruction of the high quality original video.

Some future extensions could take even better advantage of the performance scalability
offered by lock-free data structures. A possible scenario could enable a simultaneous recep-
tion even from more than two source nodes that could last for all the streaming sessions and
not only for the transient phase of the swapping procedure. Moreover, a lock-free design
could be applied to the reduntant trees proposed in [12], where each node forwards to its
siblings the video chunks received from its parent. These solutions, which would exploit
the same internal MSRM architecture, would take advantage of several receiving threads
writing into the same buffer queue and the same hash table.

8 Conclusions and future work

In this paper we have presented a QoS monitoring algorithm for real-time streaming
overlays. The adoption of lock-free data structures allowed us to implement a fast switch-
to-fallback mechanism: as soon as QoS problems rise, a receiving node can quickly restore
the stream reception from a backup node (the so-called “fallback node relayer”). This
contributes in enhancing playback continuity in presence of peer churning and limited
bandwidth, two typical problems affecting overlay networks.

Experimental tests proved the good responsiveness of the implemented algorithm to
QoS degradations. Nevertheless, they also highlighted the possibility of further improve-
ments through a better exploitation of the most powerful machines, where the local relaying
threads run faster and tend to consume the buffer content before new packets arrive after a
switch-to-fallback procedure. To this aim, future work will focus on a dynamic fine tuning
of the buffer size to further reduce the probability of blank periods in the stream playing.
Of course an optimal buffer size should achieve a good trade-off between a smooth stream
reproduction and a reduced playback lag with the root video source. For this reason, the
scheduling of real-time threads with different priorities seems a more promising solution to
define an optimal configuration for playback continuity.

We will also evaluate a fine tuning of the empirically detected parameters of the mon-
itoring algorithm in our future work. Once we have compared the performance between
the lock-based and lock-free approaches, it could be interesting to evaluate how the perfor-
mance gap can change with different models and parametrizations. We will conduct more
accurate tests in a multitree scenario, where the source stream is splitted into substreams
(MDC descriptions) that can be propagated along different trees.

Furthermore, we will try to implement a real-time QoE monitoring algorithm based on
some no-reference and reduced reference QoE metrics [26, 36], to activate the switch-to-
fallback procedure in presence of video quality degradations. At the same time, we will
employ some metrics to assess audio playback continuity and understanding. In this way,
the monitoring algorithm will have a higher adherence to the actual human perception of
the stream quality.

Multimedia Tools and Applications

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommonshorg/licenses/by/4.0/.

Appendix A: Parameters for MSRMmonitoring algorithm

Tables 9 and 10 report the parameters and thresholds used in the QoS monitoring algorithm
included in the MSRM library, which is based on the analysis of RTCP packets.

Table 9 Parameters for MSRM
QoS monitoring algorithm Parameters Values

WEA factor (w) 0.125

Stream state buffer size (n) 5

Monitoring interval 5 s

Broken link threshold 10 s

Table 10 Thresholds for MSRM
QoS monitoring algorithm Thresholds Values

LOSS MEAN THRESHOLD 15

JITTER MEAN THRESHOLD 450 s

LOSS AUTOCORRELATION THRESHOLD 0.5

JITTER AUTOCORRELATION THRESHOLD 0.5

Table 11 reports the warning rates, i.e. the increment and decrement steps, used by
MSRM to update the QoS warning level according to the loss rate and jitter retrieved from
RTCP packets.

Table 11 Warning rates used to
increment/decrement the QoS
warning level in MSRM

Warning rates Values

GOOD WARNING RATE 1

ALERT WARNING RATE 2

CONGESTED WARNING RATE 3

BAD WARNING RATE 6

Table 12 Intervals used to
classify the QoS warning level
assessed by MSRM

QoS states Intervals

GOOD qos ≤ 3

CONGESTED 3 < qos ≤ 6

BAD qos > 6

http://creativecommonshorg/licenses/by/4.0/

Multimedia Tools and Applications

Appendix B: Parameters for QoSmonitoring algorithm

Tables 13 and 14 summarize the scenarios, addressed by algorithms 2 and 3, leading to an
increment or a decrement of the warning level on the fallback link and on the relayer link
respectively. While for the fallback link the variations of the warning level depend only
on RTT, for the relayer link they depend also on loss rate and jitter. Table 15 reports the
thresholds for loss rate and jitter variations (used by algorithm 3) and for congestion level
(used by Algorithm 4). Table 16 reports the maximum number of retransmissions based on
RTT/QoS status.

Table 13 Increment and decrement of the alert level on the fallback link

Situation Importance Increment/ decrement value

Sample available without NO WARNING −1

retransmissions, estimated mean RTT

and sample RTT lower than the

threshold

Sample available without LOW WARNING +2

retransmissions, estimated mean RTT

lower than the threshold, sample RTT

greater than the threshold

Sample available without LOW WARNING +2

retransmissions, estimated mean RTT

lower than the threshold, sample RTT

greater than the threshold

Sample available without MEDIUM WARNING +3

retransmissions, estimated mean RTT

greater than the threshold and lower

than the last measurement

Sample available after retransmissions MEDIUM WARNING +3

Sample not available HIGH WARNING +5

Table 14 Increment and decrement of the alert level on the relayer link

Situation Importance Increment/ decrement value

Sample available without NO WARNING −1

retransmissions, estimated mean RTT,

sample RTT, loss rate/jitter variations

lower than the threshold

Sample not available VERY HIGH WARNING +8

RTT problem

Sample available without LOW WARNING +2

retransmissions, estimated mean RTT

lower than the threshold, sample RTT

greater than the threshold

Multimedia Tools and Applications

Table 14 (continued)

Situation Importance Increment/ decrement value

Sample available without LOW WARNING +2

retransmissions, estimated mean RTT

lower than the threshold, sample RTT

greater than the threshold

Sample available without MEDIUM WARNING +3

retransmissions, estimated mean RTT

greater than the threshold and lower

than the last measurement

Sample available after retransmissions MEDIUM WARNING +3

Loss rate/jitter problem

One of the loss rate/jitter variations LOW WARNING +2

higher than the threshold

Two or three of the loss rate/jitter MEDIUM WARNING +3

variations higher than the threshold

All the loss rate/jitter variations HIGH WARNING +5

higher than the threshold

Table 15 Thresholds for updating the congestion level and the link status in the overlay manager

Thresholds Values

LOSS RATE THRESHOLD LOSS MEAN THRESHOLD·0.7 = 11

JITTER THRESHOLD JITTER MEAN THRESHOLD·0.7 s = 315 s

QOS MAX, RTT MAX 16

CONGESTED THRESHOLD 9

BAD THRESHOLD 15

Table 16 Maximum number of
retransmission based on
RTT/QoS status

RTT/QoS alert level Maximum number of retransmissions

RT T/QoS status < 6 Unchanged

6 ≤ RT T/QoS status < 9 3

9 ≤ RT T/QoS status < 12 2

12 ≤ RT T/QoS status < 15 1

RT T/QoS status15 0

Multimedia Tools and Applications

Appendix C: Actions on a host node

Table 17 summarizes the actions taken by a host according to the status of its links.

Table 17 Actions taken by a host node

MSRM QoS H − Rprimary link status H − Rf allback link status Consequent actions

GOOD QUALITY – – No one

CONGESTED GOOD QUALITY GOOD QUALITY Bad QoS in R reception.

A relayer change should

be considered.

CONGESTED GOOD QUALITY CONGESTED or Bad QoS in R reception.

BAD QUALITY The fallback link is worse

than the relayer link, so

it is not worth changing R.

CONGESTED CONGESTED GOOD QUALITY Bad QoS probably on H-R

link. Swap should be

performed.

CONGESTED CONGESTED CONGESTED or Bad QoS probably on H-R

BAD QUALITY link. The fallback link is

worse. Swap should not

be performed.

CONGESTED BAD QUALITY GOOD QUALITY or Bad QoS on H-R link.

CONGESTED Swap should be performed.

CONGESTED BAD QUALITY BAD QUALITY Bad QoS on H-R link. The

fallback link is not reliable.

A new relayer should be

requested.

BAD QUALITY GOOD QUALITY GOOD QUALITY Bad QoS in R reception.

A relayer change should

be considered.

CONGESTED GOOD QUALITY CONGESTED or Bad QoS in R reception.

BAD QUALITY The fallback link is worse

than the relayer link, so it is

not worth swapping.

BAD QUALITY CONGESTED GOOD QUALITY Bad QoS probably on H-R

link. Swap should be

performed.

BAD QUALITY CONGESTED CONGESTED or Bad QoS probably on H-R

BAD QUALITY link. The fallback link is

worse than the relayer one,

so it is not worth swapping.

BAD QUALITY BAD QUALITY GOOD QUALITY or Bad QoS on H-R link.

CONGESTED Swap should be performed.

Multimedia Tools and Applications

Table 17 (continued)

MSRM QoS H − Rprimary link status H − Rf allback link status Consequent actions

BAD QUALITY BAD QUALITY BAD QUALITY Bad QoS on H-R link. The

fallback link is not reliable.

A new relayer should be

requested.

– – BAD QUALITY A new fallback node should

be requested.

References

1. Backhaus M, Schafer G (2017) Backup paths for multiple demands in overlay networks. In: 2016 Global
information infrastructure and networking symposium, GIIS 2016

2. Bishop M, Rao S, Sripanidkulchai K (2006) Considering priority in overlay multicast protocols
under heterogeneous environments. In: Proceedings IEEE INFOCOM 2006. 25th IEEE international
conference on computer communications, pp 1–13

3. Bista BB (2009) A proactive fault resilient overlay multicast for media streaming. In: 2009 International
conference on network-based information systems, pp 17–23

4. Budhkar S, Tamarapalli V (2017) Delay management in mesh-based P2P live streaming using a three-
stage peer selection strategy. J Netw Syst Manag 26(2):401–425

5. Egilmez HE, Tekalp AM (2014) Distributed QoS architectures for multimedia streaming over software
defined networks. IEEE Trans Multimed 16(6):1597–1609

6. Egilmez HE, Gorkemli B, Tekalp AM, Civanlar S (2011) Scalable video streaming over OpenFlow
networks: an optimization framework for QoS routing. In: 2011 18th IEEE international conference on
image processing, pp 2241–2244

7. Egilmez HE, Dane ST, Bagci KT, Tekalp AM (2012) OpenQoS: an OpenFlow controller design for
multimedia delivery with end-to-end quality of service over software-defined networks. In: Proceedings
of the 2012 Asia Pacific signal and information processing association annual summit and conference,
pp 1–8

8. Egilmez HE, Civanlar S, Tekalp AM (2013) An optimization framework for QoS-enabled adaptive video
streaming over OpenFlow networks. IEEE Trans Multimed 15(3):710–715

9. Espina F, Morato D, Izal M, Magaña E (2014) Analytical model for MPEG video frame loss rates and
playback interruptions on packet networks. Multimed Tools Appl 72(1):361–383

10. Feldman S, LaBorde P, Dechev D (2015) A wait-free multi-word compare-and-swap operation. Int J
Parallel Program 43(4):572–596

11. Fraser K (2004) Practical lock-freedom. Tech. Rep. UCAM-CL-TR-579, University of Cambridge,
Computer Laboratory. http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-579.pdf

12. Fujita S (2019) Resilient tree-based video streaming with a guaranteed latency. J Interconnect Netw
19(4):1950009. https://doi.org/10.1142/S0219265919500099

13. Garroppo RG, Giordano S, Spagna S, Niccolini S, Seedorf J (2012) Topology control strategies on P2P
live video streaming service with peer churning. Comput Commun 35(6):759–770

14. Gu W, Zhang X, Gong B, Zhang W, Wang L (2015) VMCast: a VM-assisted stability enhanc-
ing solution for tree-based overlay multicast. PLoS ONE 10(11):e0142888. https://doi.org/10.1371/
journal.pone.0142888

15. Gupta AK, Singh M (2016) Structured p2p overlay networks for multimedia traffic. In: 2016 Interna-
tional conference on innovation and challenges in cyber security (ICICCS-INBUSH), pp 80–85

16. Hammami C, Jemili I, Gazdar A, Belghith A, Mosbah M (2014) Hybrid live P2P streaming protocol.
Procedia Comput Sci 32(Supplement C):158–165. The 5th international conference on ambient sys-
tems, networks and technologies (ANT-2014), the 4th international conference on sustainable energy
information technology (SEIT-2014)

17. Hei X, Liu Y, Ross KW (2007) Inferring network-wide quality in P2P live streaming systems. IEEE J
Sel Areas Commun 25(9):1640–1654

18. Helder D, Jamin S (2002) End-Host multicast communication using switch-trees protocols. In: 2nd
IEEE/ACM international symposium on cluster computing and the grid, 2002, pp 419–419

http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-579.pdf
https://doi.org/10.1142/S0219265919500099
https://doi.org/10.1371/journal.pone.0142888
https://doi.org/10.1371/journal.pone.0142888

Multimedia Tools and Applications

19. Hemminger S (2005) Network emulation with NetEm. In: Pool M (ed) LCA 2005, Australia’s 6th
national Linux conference (linux.conf.au). Linux Australia. Linux Australia, Sydney

20. Herlihy MP, Wing JM (1990) Linearizability: a correctness condition for concurrent objects. ACM Trans
Program Lang Syst 12(3):463–492

21. Hsieh YL, Wang K (2012) Dynamic overlay multicast for live multimedia streaming in urban VANETs.
Comput Netw 56(16):3609–3628

22. Jeyasekar A, Kasmir Raja SV, Annie Uthra R (2017) Congestion avoidance algorithm using
ARIMA(2,1,1) model-based RTT estimation and RSS in heterogeneous wired-wireless networks. J Netw
Comput Appl. https://doi.org/10.1016/j.jnca.2017.05.008

23. Jurgelionis A, Laulajainen JP, Hirvonen M, Wang AI (2011) An empirical study of NetEm net-
work emulation functionalities. In: 2011 Proceedings of 20th international conference on computer
communications and networks (ICCCN), pp 1–6

24. Klaue J, Rathke B, Wolisz A (2003) EvalVid—a framework for video transmission and quality evalu-
ation. In: Kemper P, Sanders WH (eds) Computer performance evaluation. Modelling techniques and
tools. Springer, Berlin, pp 255–272

25. Kouchi T, Fujita S (2015) Maintaining tree-structured P2P overlay being resilient to simultaneous leave
of several peers. IEICE Trans Inf Syst E98.D(9):1667–1674. https://doi.org/10.1587/transinf.2015EDP7
021

26. Kwon JC, Jang SH, Chin Y, Oh SJ (2010) A novel video quality impairment monitoring scheme over
an IPTV service with packet loss. In: 2010 second international workshop on quality of multimedia
experience (QoMEX), pp 224–229

27. Laborde P, Feldman S, Dechev D (2017) A wait-free hash map. Int J Parallel Program 45(3):421–448
28. Magharei N, Rejaie R, Guo Y (2007) Mesh or multiple-tree: a comparative study of live P2P

streaming approaches. In: IEEE INFOCOM 2007—26th IEEE international conference on computer
communications, pp 1424–1432

29. Magnetto A, Gaeta R, Grangetto M, Sereno M (2010) Turinstream: a totally push, robust, and efficient
p2p video streaming architecture. IEEE Trans Multimed 12(8):901–914

30. Marques H, Silva H, Logota E, Rodriguez J, Vahid S, Tafazolli R (2017) Multiview real-time media
distribution for next generation networks. https://doi.org/10.1016/j.comnet.2017.03.002

31. Michael MM (2002) High performance dynamic lock-free hash tables and list-based sets. In: Annual
ACM symposium on parallel algorithms and architectures. https://doi.org/10.1145/564879.564881,
pp 73–82

32. Michael MM (2004) Hazard pointers: safe memory reclamation for lock-free objects. IEEE Trans
Parallel Distrib Syst 15(6):491–504

33. Mwela JS, Adebomi OE (2010) Comparison of algorithms for concealing packet losses in the
transmission of compressed video

34. Ooi WT (2005) Dagster: contributor-aware end-host multicast for media streaming in heterogeneous
environment. In: Multimedia computing and networking 2005, vol 5680. International Society for Optics
and Photonics, pp 77–90. https://doi.org/10.1117/12.592088

35. Ramzan N, Park H, Izquierdo E (2012) Video streaming over P2P networks: challenges and opportuni-
ties. Signal Process: Image Commun 27(5):401–411

36. Reibman A, Vaishampayan V, Sermadevi Y (2004) Quality monitoring of video over a packet network.
IEEE Trans Multimed 6(2):327–334

37. Ren D, Li YTH, Chan SHG (2009) Fast-Mesh: a low-delay high-bandwidth mesh for peer-to-peer live
streaming. IEEE Trans Multimed 11(8):1446–1456

38. Salsano S, Ludovici F, Ordine A, Giannuzzi D (2012) Definition of a general and intuitive loss model for
packet networks and its implementation in the Netem module in the NetEm Module in the Linux Kernel

39. Sayit M, Demirci S, Kaymak Y, Tunali ET (2016) Adaptive, incentive and scalable dynamic tree overlay
for P2P live video streaming. Peer-to-Peer Netw Appl 9(6):1074–1088. https://doi.org/10.1007/s12083-
015-0390-7

40. Schwarz H, Marpe D, Wiegand T (2007) Overview of the scalable video coding extension of the
H.264/AVC standard. IEEE Trans Cir Sys Video Technol 17(9):1103–1120

41. Sedrati M, Benyahia A (2017) Multipath routing to improve quality of service for video streaming over
mobile ad hoc networks. Wirel Pers Commun 99(2):999–1013

42. Shalev O, Shavit N (2003) Split-ordered lists: lock-free extensible hash tables. In: Proceedings of the
twenty-second annual symposium on principles of distributed computing, PODC ’03. ACM, New York,
pp 102–111

43. Sousa P, Rocha AA, De Lucena S, Diniz MC, Menasche DS (2016) S4Q: searching for QoE in P2P
streaming neighborhoods. In: 2016 11th international conference on digital information management,
ICDIM 2016

https://doi.org/10.1016/j.jnca.2017.05.008
https://doi.org/10.1587/transinf.2015EDP7021
https://doi.org/10.1587/transinf.2015EDP7021
https://doi.org/10.1016/j.comnet.2017.03.002
https://doi.org/10.1145/564879.564881
https://doi.org/10.1117/12.592088
https://doi.org/10.1007/s12083-015-0390-7
https://doi.org/10.1007/s12083-015-0390-7

Multimedia Tools and Applications

44. Staelens N, Moens S, Van den Broeck W, Mariën I, Vermeulen B, Lambert P, Van de Walle R,
Demeester P (2010) Assessing quality of experience of IPTV and video on demand services in real-life
environments. IEEE Trans Broadcast 56(4):458–466. https://doi.org/10.1109/TBC.2010.2067710

45. Taubenfeld G (2017) Contention-sensitive data structures and algorithms. Theor Comput Sci 677:41–55.
https://doi.org/10.1016/j.tcs.2017.03.017

46. Tommasi F, De Luca V, Melle C (2013) A library for RTP relaying and QoS monitoring in Application
Layer Multicast. In: 2013 Fifth international conference on ubiquitous and future networks (ICUFN),
pp 418–423

47. Tommasi F, De Luca V, Melle C (2014) Are P2P streaming systems ready for interactive e-learning? In:
2014 International conference on education technologies and computers (ICETC), pp 49–54

48. Tommasi F, Melle C, De Luca V (2014) OpenSatRelaying: a hybrid approach to real-time audio-video
distribution over the internet. J Commun 9(3):248–261

49. Tommasi F, De Luca V, Melle C (2015) Efficient multi-source RTP stream relaying in overlay networks.
In: 2015 2nd world symposium on web applications and networking (WSWAN), pp 1–7

50. Tommasi F, De Luca V, Melle C (2015) Packet losses and objective video quality metrics in H.264 video
streaming. J Vis Commun Image Represent 27:7–27

51. Tsigas P, Zhang Y (2001) A simple, fast and scalable non-blocking concurrent FIFO queue for shared
memory multiprocessor systems. In: Annual ACM symposium on parallel algorithms and architectures,
pp 134–143. https://doi.org/10.1145/378580.378611

52. Ullah I, Doyen G, Bonnet G, Gaiti D (2012) A survey and synthesis of user behavior measurements in
p2p streaming systems. IEEE Commun Surv Tutor 14(3):734–749

53. Uma Maheswari B, Ramesh TK (2018) Location-aware resilient hybrid overlay structures
for peer-to-peer video streaming. In: Proceedings of the 4th international conference on
applied and theoretical computing and communication technology, iCATccT 2018, pp 255–260.
https://doi.org/10.1109/iCATccT44854.2018.9001285

54. Wang Y, Reibman A, Lin S (2005) Multiple description coding for video delivery. Proc IEEE 93(1):57–
70

55. Wang F, Liu J, Xiong Y (2008) Stable peers: existence, importance, and application in peer-to-peer live
video streaming. In: IEEE INFOCOM 2008—the 27th conference on computer communications

56. Wu W, Yang Z, Nahrstedt K (2009) Dynamic overlay multicast in 3D video collaborative systems. In:
Proceedings of the 18th international workshop on network and operating systems support for digital
audio and video, NOSSDAV ’09. ACM, New York, pp 1–6

57. Wu H, Xu K, Zhou M, Wong AK, Li J, Li Z (2013) Multiple-tree topology construction scheme for
p2p live streaming systems under flash crowds. In: 2013 IEEE wireless communications and networking
conference (WCNC), pp 4576–4581

58. Yong Goh C, Shyong Yeo H, Lim H, Kuan Hoong P, Lim JW, Tan IK (2013) A comparative study of
tree-based and mesh-based overlay P2P media streaming. Int J Multimed Ubiquitous Eng 8(4):97–105

59. Zhang M, Zhang Q, Sun L, Yang S (2007) Understanding the power of pull-based streaming protocol:
can we do better? IEEE J Sel Areas Commun 25(9):1678–1694

60. Zheng Q, Long Y, Qin T, Yang L (2011) Lifetime characteristics measurement of a p2p streaming
system: focusing on snapshots of the overlay. In: 2011 9th World Congress on Intelligent Control and
Automation, pp 805–810

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1109/TBC.2010.2067710
https://doi.org/10.1016/j.tcs.2017.03.017
https://doi.org/10.1145/378580.378611
https://doi.org/10.1109/iCATccT44854.2018.9001285

	QoS monitoring in real-time streaming overlays based on lock-free data structures
	Abstract
	Introduction
	Related work
	Tree-based overlay for real-time streaming
	The CHARMS tree-based overlay
	MSRM internal working

	Resilient tree overlays
	Host-relayer interaction
	QoS assessment
	QoS parameters of the fallback link
	QoS parameters of the relayer link
	Retransmissions
	Actions to be taken after QoS evaluation

	QoS monitoring module
	Switch-to-fallback procedure

	Lock-free design and implementation
	From single tree to multi-tree overlay
	Experimental tests
	Results
	Signalling overhead
	System scalability

	Conclusions and future work
	Appendix A A: Parameters for MSRM monitoring algorithm
	 B: Parameters for QoS monitoring algorithm
	Appendix B B: Parameters for QoS monitoring algorithm
	 C: Actions on a host node
	Appendix C C: Actions on a host node
	References

