9 research outputs found

    Improved handoff mechanism for infiltrating user equipments in composite networks

    Get PDF
    The wireless technology and communication plays a vital role in our daily life. The end users are expecting more Quality of Experience (QOE) rather than the Quality of Service (QOS). In order to provide full signal coverage the entire cellular network coverage is divided in to small cells called as femtocells, those femtocells are covered with femtocell antennas which are very small in size compared with regular antennas. With these femtocell coverage problem is solved but when a user moves from one location to another location the user has to switch from one base station to so many base station which cannot be maintained with present handoff methods. The present hand off methods working on distance calculation approach, the proposed method is based on the velocity and device direction calculated based on GPS location toward the Base Station (BS) of the device which may ping pong handoff effect

    Power-based topology control for mobile ad hoc networks

    Get PDF

    Medium Access Control Protocols for Ad-Hoc Wireless Networks: A Survey

    Get PDF
    Studies of ad hoc wireless networks are a relatively new field gaining more popularity for various new applications. In these networks, the Medium Access Control (MAC) protocols are responsible for coordinating the access from active nodes. These protocols are of significant importance since the wireless communication channel is inherently prone to errors and unique problems such as the hidden-terminal problem, the exposed-terminal problem, and signal fading effects. Although a lot of research has been conducted on MAC protocols, the various issues involved have mostly been presented in isolation of each other. We therefore make an attempt to present a comprehensive survey of major schemes, integrating various related issues and challenges with a view to providing a big-picture outlook to this vast area. We present a classification of MAC protocols and their brief description, based on their operating principles and underlying features. In conclusion, we present a brief summary of key ideas and a general direction for future work

    Bandwidth and Energy-Efficient Route Discovery for Noisy Mobile Ad-Hoc Networks

    Get PDF
    Broadcasting is used in on-demand routing protocols to discover routes in Mobile Ad-hoc Networks (MANETs). On-demand routing protocols, such as Ad-hoc On-demand Distance Vector (AODV) commonly employ pure flooding based broadcasting to discover new routes. In pure flooding, a route request (RREQ) packet is broadcast by the source node and each receiving node rebroadcasts it. This continues until the RREQ packet arrives at the destination node. Pure flooding generates excessive redundant routing traffic that may lead to the broadcast storm problem (BSP) and deteriorate the performance of MANETs significantly. A number of probabilistic broadcasting schemes have been proposed in the literature to address BSP. However, these schemes do not consider thermal noise and interference which exist in real life MANETs, and therefore, do not perform well in real life MANETs. Real life MANETs are noisy and the communication is not error free. This research argues that a broadcast scheme that considers the effects of thermal noise, co-channel interference, and node density in the neighbourhood simultaneously can reduce the broadcast storm problem and enhance the MANET performance. To achieve this, three investigations have been carried out: First, the effect of carrier sensing ranges on on-demand routing protocol such as AODV and their impact on interference; second, effects of thermal noise on on-demand routing protocols and third, evaluation of pure flooding and probabilistic broadcasting schemes under noisy and noiseless conditions. The findings of these investigations are exploited to propose a Channel Adaptive Probabilistic Broadcast (CAPB) scheme to disseminate RREQ packets efficiently. The proposed CAPB scheme determines the probability of rebroadcasting RREQ packets on the fly according to the current Signal to Interference plus Noise Ratio (SINR) and node density in the neighbourhood. The proposed scheme and two related state of the art (SoA) schemes from the literature are implemented in the standard AODV to replace the pure flooding based broadcast scheme. Ns-2 simulation results show that the proposed CAPB scheme outperforms the other schemes in terms of routing overhead, average end-to-end delay, throughput and energy consumption

    Distributed Space-Time Message Relaying for Uncoded/Coded Wireless Cooperative Communications

    Get PDF
    During wireless communications, nodes can overhear other transmissions through the wireless medium, suggested by the broadcast nature of plane wave propagation, and may help to provide extra observations of the source signals to the destination. Modern research in wireless communications pays more attention to these extra observations which were formerly neglected within networks. Cooperative communication processes this abundant information existing at the surrounding nodes and retransmits towards the destination in various forms to create spatial and/or coding diversity, thereby to obtain higher throughput and reliability. The aim of this work is to design cooperative communication systems with distributed space-time block codes (DSTBC) in different relaying protocols and theoretically derive the BER performance for each scenario. The amplify-and-forward (AF) protocol is one of the most commonly used protocols at the relays. It has a low implementation complexity but with a drawback of amplifying the noise as well. We establish the derivation of the exact one-integral expression of the average BER performance of this system, folloby a novel approximation method based on the series expansion. An emerging technology, soft decode-and-forward (SDF), has been presented to combine the desired features of AF and DF: soft signal representation in AF and channel coding gain in DF. In the SDF protocol, after decoding, relays transmit the soft-information, which represents the reliability of symbols passed by the decoder, to the destination. Instead of keeping the source node idling when the relays transmit as in the traditional SDF system, we let the source transmit hard information and cooperate with the relays using DSTBC. By theoretically deriving the detection performance at the destination by either using or not using the DSTBC, we make comparisons among three SDF systems. Interesting results have been shown, together with Monte-Carlo simulations, to illustrate that our proposed one-relay and two-relay SDF & DSTBC systems outperform traditional soft relaying for most of the cases. Finally, these analytic results also provide a way to implement the optimal power allocation between the source and the relay or between relays, which is illustrated in the line model

    Mac Layer And Routing Protocols For Wireless Ad Hoc Networks With Asymmetric Links And Performance Evaluation Studies

    Get PDF
    In a heterogeneous mobile ad hoc network (MANET), assorted devices with different computation and communication capabilities co-exist. In this thesis, we consider the case when the nodes of a MANET have various degrees of mobility and range, and the communication links are asymmetric. Many routing protocols for ad hoc networks routinely assume that all communication links are symmetric, if node A can hear node B and node B can also hear node A. Most current MAC layer protocols are unable to exploit the asymmetric links present in a network, thus leading to an inefficient overall bandwidth utilization, or, in the worst case, to lack of connectivity. To exploit the asymmetric links, the protocols must deal with the asymmetry of the path from a source node to a destination node which affects either the delivery of the original packets, or the paths taken by acknowledgments, or both. Furthermore, the problem of hidden nodes requires a more careful analysis in the case of asymmetric links. MAC layer and routing protocols for ad hoc networks with asymmetric links require a rigorous performance analysis. Analytical models are usually unable to provide even approximate solutions to questions such as end-to-end delay, packet loss ratio, throughput, etc. Traditional simulation techniques for large-scale wireless networks require vast amounts of storage and computing cycles rarely available on single computing systems. In our search for an effective solution to study the performance of wireless networks we investigate the time-parallel simulation. Time-parallel simulation has received significant attention in the past. The advantages, as well as, the theoretical and practical limitations of time-parallel simulation have been extensively researched for many applications when the complexity of the models involved severely limits the applicability of analytical studies and is unfeasible with traditional simulation techniques. Our goal is to study the behavior of large systems consisting of possibly thousands of nodes over extended periods of time and obtain results efficiently, and time-parallel simulation enables us to achieve this objective. We conclude that MAC layer and routing protocols capable of using asymmetric links are more complex than traditional ones, but can improve the connectivity, and provide better performance. We are confident that approximate results for various performance metrics of wireless networks obtained using time-parallel simulation are sufficiently accurate and able to provide the necessary insight into the inner workings of the protocols

    Quality of Service for Multimedia and Control System Applications in Mobile Ad-hoc Network

    Get PDF
    A Mobile Ad-Hoc Network (MANET) is a collection of randomly distributed infrastructure-less mobile nodes that form a wireless network. These Mobile nodes have the capability to act as a host or relay. As a host, the mobile nodes can be the source and/or destination of traffic, and when acting as a relay, they can be an intermediate node that forwards the traffic to its destination. Some of the challenges of a MANET include the dynamic network topology, device discovery, power constraints, wireless channel conditions and limited network resources. These challenges degrade the network performance and thus affect the network stability and robustness. Therefore, it is difficult for a MANET to attain the Quality of Service (QoS) of a wired network. This thesis aims to address the problem of the limited wireless network resources by proposing two adaptive scheduling algorithms that can adapt in real-time to the changes in the network. To achieve the aim; this thesis first analyses the behaviour of various application profiles in a queue. It models Voice, Email, and Internet Browsing traffic (by specifying packet sizes, and inter-arrival rates based on various distributions) separately and then simultaneously in a common network for uncongested and congested conditions, after which scheduling is applied in order to improve the overall network performance. The Voice traffic profile is then added to the UDP/IP protocol stack and the network performance is compared to a simple node without the UDP/IP protocol stack. A realistic wireless propagation model for the simulation is developed from a point-to-point open-field outdoor experiment. This thesis proposes two adaptive priority fuzzy based scheduler for a MANET, the priority of packets in the queue are determined based on the real-time available network resources. The methodology for transmitting a live-feed video stream over OPNET to validate the scheduler is also presented. An interface between the simulation and hardware is created to send real-time video traffic through the simulation network. This thesis concludes by showing that the performance of a MANET network can be improved by applying an adaptive scheduler

    Capacity-Optimized Topology Control for MANETs with Cooperative Communications

    No full text
    corecore