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Abstract

During wireless communications, nodes can overhear other transmissions through the

wireless medium, suggested by the broadcast nature of plane wave propagation, and may

help to provide extra observations of the source signals to the destination. Modern research

in wireless communications pays more attention to these extra observations which were

formerly neglected within networks. Cooperative communication processes this abundant

information existing at the surrounding nodes and retransmits towards the destination in

various forms to create spatial and/or coding diversity, thereby to obtain higher throughput

and reliability.

The aim of this work is to design cooperative communication systems with distributed

space-time block codes (DSTBC) in different relaying protocols and theoretically derive the

BER performance for each scenario.

The amplify-and-forward (AF) protocol is one of the most commonly used protocols at

the relays. It has a low implementation complexity but with a drawback of amplifying the

noise as well. We establish the derivation of the exact one-integral expression of the average

BER performance of this system, followed by a novel approximation method based on the

series expansion.

An emerging technology, soft decode-and-forward (SDF), has been presented to combine

the desired features of AF and DF: soft signal representation in AF and channel coding

gain in DF. In the SDF protocol, after decoding, relays transmit the soft-information, which

represents the reliability of symbols passed by the decoder, to the destination. Instead of

keeping the source node idling when the relays transmit as in the traditional SDF system,

we let the source transmit hard information and cooperate with the relays using DSTBC.
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By theoretically deriving the detection performance at the destination by either using or

not using the DSTBC, we make comparisons among three SDF systems. Interesting results

have been shown, together with Monte-Carlo simulations, to illustrate that our proposed

one-relay and two-relay SDF & DSTBC systems outperform traditional soft relaying for most

of the cases. Finally, these analytic results also provide a way to implement the optimal

power allocation between the source and the relay or between relays, which is illustrated in

the line model.
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Chapter 1
INTRODUCTION

1.1 Cooperative Communications

Traditionally, wireless communications considers the transmission of information between

two points that are physically not connected. Current wireless networks goes beyond this

point-to-point or point-to-multipoint paradigms of classical networks. One can think of a

current wireless system as a virtual antenna array42,109,21,18, where each antenna in the array

corresponds to one node of the entire network. During communication, nodes can overhear

other transmissions through the wireless medium and may help to provide extra observations

of the source signals to the destination. These observations are usually not considered in

current implementations of cellular, wireless LAN or ad hoc systems.

Motivated by the information existence of abundant in wireless networks, modern re-

search in wireless communications pays more attention to this extra observations which

were formerly neglected within networks. This information can be utilized by cooperation

among nodes in order to improve the performance of communication. Cooperative com-

munications91,64,40,102,11,68,107,72,33,63 based on relaying nodes have emerged as a promising

approach to increase spectral and power efficiency, network coverage, and to reduce outage

probability.

Diversity techniques are known as the effective means to cope with fading in wireless

channels. The fundamental philosophy behind diversity techniques is to produce indepen-

dent replicas of the desired signal over fading channels so that the receiver can utilize the

multiple faded copies to restore the original signal with higher reliability. For a long time,

the concept of diversity has been substantiated in various forms, such as spatial (antenna)

diversity97, temporal diversity and frequency diversity17.
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Antenna diversity, also known as space diversity, is one of several wireless diversity

schemes that uses two or more antennas to improve the quality and reliability of a wireless

link. In point-to-point communication links, multiple antenna systems have been widely used

to achieve spatial (antenna) diversity. When multiple antennas are employed at the receiver,

selective combining (SC)85,84,57,105,106, Equal Gain Combing (EGC)2,29, or maximum ratio

combining (MRC)93,4,23,43 schemes are usually used to provide antenna diversity gain65,26.

Unfortunately, nowadays, antenna diversity becomes less competitive since transmission

nodes in modern wireless networks are required to be of small size and weight so that it

is more likely to use single antenna in each node. In order to overcome this limitation, a

new form of spatial diversity, whereby diversity gains are achieved via the cooperation of

nodes, has been proposed25,101,100. The main idea behind this approach, which is called

cooperative diversity110,101,88, is to use orthogonal relay transmission to achieve diversity

gain. In particular, each node has one or several partners. The node and its partner(s) are

responsible for transmitting not only their own information, however, also the information

of their partner(s). Therefore, a virtual antenna array is obtained through the use of the

relays’ antennas without complicated signal design or adding more antennas at the nodes25.

Due to this advantage, cooperative diversity application finds its way into the cellular

network and other modern telecommunications framework. The broadcast nature of wireless

communications suggests that a source signal transmitted towards the destination can take

advantage of neighboring nodes. Cooperative communication processes information at the

surrounding nodes and retransmits towards the destination in various forms to create spatial

and/or coding diversity, thereby to obtain higher throughput and reliability.

To facilitate study, a classical wireless cooperative communications network is simplified

as basic units consists of a source (S), a relay (R), and a destination (D), as shown in Fig. 1.1.

The essential form of cooperative cooperation in the physical layer is signal relaying, where

the relay augments transmission by forwarding part or all of the signals originated from the

source to the destination. The destination receives information both from the source and the

2
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Figure 1.1. The system model of cooperative diversity system.

relay and then decodes the information from the combination of these two signals. Hence,

it can be seen that cooperative diversity is an evolution of traditional antenna diversity that

uses distributed antennas belonging to each node in a wireless network.

Simplified one-relay system has later been extended to a four-node-network which con-

sists of one source ‘S’, one destination ‘D’ and two relays ‘R1’ and ‘R2’ as shown in Fig.

1.2. The relays demodulate and decode the received data stream and generate the reliability

values of the source. These values are forwarded to the destination and combined with signal

from the direct link to construct an entire distributed codeword. Turbo decoding is adopted

afterwards at the destination to recover the source information.

1.2 Relaying Strategies

Despite the large amount of techniques proposed in wireless cooperative cooperation

systems, practical signal relaying strategies have not evolved much out of the three basic

forms, namely, Amplify-and-Forward (AF), Decode-and-Forward (DF) and Soft-Decode-

and-Forward (SDF).

1.2.1 Amplify-and-Forward (AF)

Amplify-forward lets the relay scale, retransmit or reflect the analog signal waveforms

received from the source92,46,24. The application of AF is straight-forward, requiring a lower

implementation complexity in digital signal processing than its two counterparts.

3
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Figure 1.2. The system model of two-relay SDF & DSTBC system.

The prototype of the AF technique is an end-to-end communication system with the as-

sistance of one or multiple relays. The performance of two-hop relayed transmission was first

analyzed by Hasna et al. in38 39, and further in58, where the moment generating function

(MGF) of the Harmonic Mean of two exponential random variables (RV) is used to evalu-

ate the average BER of the end-to-end system over independent Rayleigh fading channels.

These works have been extended in92 where the link between the source and destination

is also considered, and the destination combines received signals from both the relay link

and the direct link using the Maximum Ratio Combining (MRC) technique. Multiple relays

using Amplify-and-Forward (AF) protocol are also considered in the cooperative communi-

cations46 24 and different processing strategies are proposed at the destination. Ikki et al.46

used the generalized selection combining while Costa et al.24 considered both equal-gain and

maximum ratio combining.

4



1.2.2 Decode-and-Forward (DF)

Decode-forward performs better than AF in most cases for signal relaying, where the

source signals received at the relay are demodulated, decoded and possibly re-encoded using

a different code before being forwarded to the destination.

There are a considerable numbers of works79,80,103,104,34,44,108 published on the general

theme of the DF cooperative diversity focusing on the capacity, diversity gain, and outage

performance analysis, mainly for the cooperation with single relay.

Examination of the bit error probability (BEP) of DF cooperative systems has been done

by many researchers51. In90,78,59, the symbol error probability (SEP) of DF cooperative

systems was studied assuming that the relay does not send a signal when the decision at

the relay is incorrect. In71, the SEP for multihop transmission was analyzed assuming

that there is no direct link between the source and the destination. In89, the BEP for DF

cooperative systems was analyzed assuming that the channel gain amplitude is real and

Gaussian distributed.

Depending on whether and what code is used to re-generate the relay message, decode-

forward extends from its basic mode of repetition54, to more sophisticated modes that exploit

space time codes53,47 and network codes10.

For multiple nodes joining into the cooperation, opportunistic relaying (OR) technique

has been introduced into DF relaying strategy. It has been proposed that only the best

relay from a set of available candidate relays is selected to cooperate12,99,52,13. The selection

strategy is to choose the relay with the best equivalent end-to-end channel gain which is

calculated as the minimum of the channel gains of the first and the second hops under the

DF protocol.

1.2.3 Soft-Decode-and-Forward (SDF)

As illustrated in the previous two subsections, AF and DF are the two basic strategies

in cooperative communications. AF keeps itself from any premature decision and in fact

5



preserves the soft information content of the received signal. However this scheme fails to

benefit from error correction possibility at relay and also amplifies and forwards the front

end noise at relay receiver .

On the other hand, the disadvantage of DF is also obvious. When the SNR between the

source and the relay is not high enough to ensure almost error-free transmission, the relay

will obtain and send wrong information to the destination. This will cause error propagation

and degrade the overall decoding performance at the destination.

To deal with this problem, a new relay technique, called Soft-Decode-and-Forward (SDF),

is proposed in86 and61. In SDF, instead of making hard decision, the relay first demodulates

the received signal from the source, soft-decodes and re-encodes to get the soft-information

of the source with a different code. This soft-information is usually a-posterior probability

from the output of the second encoder and represents the soft reliability for the parity bits

of the new code.

1.3 Space-Time Block Code (STBC)

Space-Time Block Code (STBC)94 uses multiple antennas at both ends of wireless links

in order to increase the communication rate and to exploit the diversity67,20. It is a com-

bination of modulation and coding across the space and the time dimensions and has been

introduced by Alamouti6 and Tarokh94,95 et al. A well known example of STBC is the

so-called Alamouti code6 which takes advantage of two transmit antennas over two symbol

periods. The Alamouti code, remarkable for having an elegant and simple linear receiver, has

become a standard code in STBC. Alamouti’s idea for two transmit antennas was based on

the orthogonal designs96,95, which have full diversity and simple linear maximum-likelihood

(ML) detectors that decouple the transmitted symbols.

The system model for classical Alamouti’s code is shown in Fig. 1.3. Information bits x1

and x2 are transmitted cooperatively by two antennas from a source node. Suppose these

two antennas have no interferences and the wireless paths between each of them and the
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Figure 1.3. System Model for classical Alamouti’s code.

destination has Rayleigh fading. Denote h1 and h2 as the fading coefficients for these two

paths and assume the fading of each path is constant across two consecutive symbols. Two

carriers used by two source nodes are with the same frequency. In the first time slot, one

antenna transmits x1 and the other transmits −x∗2. In the second time slot, they forward

x2 and x∗1, respectively. Suppose that communications synchronization is achieved between

the two received signals at the receiver. The destination shown in Fig. 1.3 receives two

combined signals as follows:

y1 =
√
Esh1x1 −

√
Esh2x

∗
2 + v1 (1)

y2 =
√
Esh1x2 +

√
Esh2x

∗
1 + v2 (2)

where v1, v2 are the Gaussian noise at the destination node with vi ∼ CN (0, σ2
v) for i = 1, 2.

By writing it in the matrix form, the received signals are:

Y =
√
EsHX + V (3)

7



where Y = [y1, y
∗
2]T , X = [x1, x

∗
2]T , V = [v1, v

∗
2]T ,

H =

 h1 −h2

h∗2 h∗1

 .

The maximum-likelihood (ML) decoding can be implemented by multiplying the received

data with H+, i.e., decoding with its matched filter. For a general matrix of size m×n, the

pseudo-inverse for the matrix H is defined as:

H+ = (HHH)−1HH , (4)

whereHH represent the Hermitian transpose of the matrixH, which is equal to the conjugate

transpose of the matrix. The term

HHH =

 |h1|2 + |h2|2 0

0 |h1|2 + |h2|2

 , (5)

is a diagonal matrix. Therefore, the inverse is just the inverse of the diagonal elements, i.e.:

(HHH)−1 =

 1
|h1|2+|h2|2 0

0 1
|h1|2+|h2|2

 . (6)

Therefore, the estimates of the transmitted symbols [x̂1, x̂
∗
2]T at the destination can be

obtained as follows:  x̂1

x̂∗2

 = (HHH)−1HH

 y1

y∗2


=

√
Es

 x1

x∗2

+ (HHH)−1HH

 v1

v∗2

 (7)

The result above shows that Space-Time coding combines all the copies of the received

signal in an optimal way to extract as much information as possible from each of them. The

redundancy from this scheme provides diversity in both space and time domain.

8



1.4 Distributed Space-Time Block Codes (DSTBC)

Antenna diversity, introduced from STBC, offers significant improvement in link reliabil-

ity and spectral efficiency through the use of multiple antennas at the transmitter or receiver

side5,69. The idea of combining the space diversity from STBC with cooperative diversity

from cooperative communications has gained broad interest. This new application of Space-

time block coding (STBC) in a distributed fashion is termed as Distributed Space-Time

Block Code (DSTBC)53,54,27,82,73,44,70. There has been a considerable research effort on this

new technique over the past few years, especially for single antenna systems, such as wireless

sensor networks and ad hoc wireless networks. The classical DSTBC system model is shown

in Fig. 1.4 which includes two-time-phase transmissions. In the first time phase, the source

radiates to both the relay(s) and the destination, while in the second time phase, the relay

and the source cooperatively forward information to the destination by using distributed

STBC code.

2

1 2

1 2

2
*

1 2

1 2

Time Phase 1
Time Phase 2

11

12

1
*

1 2

Figure 1.4. System Model for classical Distributed Space-Time Block Code (DSTBC).

Differences between DSTBC and STBC

The differences between DSTBC and classical STBC exist both in infrastructure and

transmission symbols. The multiple transmission antennas are deployed on a single source
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in classical STBC, while in DSTBC, antennas are put both on source and relay nodes and

usually each node has only one antenna. In classical STBC, since all antennas are deployed

on the source, each of them transmit error free symbols or its conjugate. For DSTBC,

what the relays transmit in the second time phase are a hard/soft copy or conjugate of the

source information, and, in most cases, they contain errors which are introduced from the

source-to-relay link transmission.

Advantages of DSTBC

DSTBC has wide application in future cellular (as shown in Table 1.11), ad hoc, wireless

sensor networks (WSN) and surpasses traditional STBC for several reasons.

Table 1.1. Spacial coding and user cooperation in cellular mobile networks

Generation 3G Future
Deployment 2003/4 2015˜2020
Standard WCDMA Beyond IMT-Adv
Total rate 384kbit/s >10Gbit/s
Bandwidth 5 MHz >100 MHz
Spatial coding Spatial diversity coding Ambient intelligence coding
Examples Alamouti coding Such as cooperative MI-

MO

The traditional STBC gains are typically realized at the physical layer and require colo-

cated antenna elements at the base station in cellular system. Multiple-antenna techniques

are very attractive for deployment in cellular applications at base stations and have already

been included in the third-generation wireless standards. Unfortunately, the use of multi-

ple antennas might not be practical at the cellular mobile devices. The same situation is

confronted in ad hoc mobile networks due to the size and power constraint in the wireless

nodes. This is the dominant reason that DSTBC has been widely studied in one antenna

systems and is expected to be widely adopted in the next generation networks.

Wireless environment has its own advantage of broadcasting information during commu-

nication between nodes. The signal transmitted by the source nodes is overheard by other

nodes, which can be defined as partners. With this ”redundant” observation, the source and
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its partners can jointly process and transmit their information, creating a virtual antenna

array although each of them is equipped with only one antenna.

In distributed relay applications (for example sensor networks) wireless devices often

deploy low-speed CPUs and power-constrained batteries. With its simple linear calculation

and fast encoding/decoding speed, DSTBC has its advantage in application in wireless sensor

networks.

Challenges

Although DSTBC has several advantages beyond classical STBC, the challenge of DST-

BC should also be considered. The challenge comes from the infrastructure differences of

two protocols. In classical STBC, antennas at the source transmit error-free information

symbols, while in DSTBC, the relays do not have the exact same information from the

source. Thus, the system performance of DSTBC is usually very complex to analyze.

1.5 Objective of this dissertation

The objective of this dissertation is two-fold: the first is to discuss the DSTBC with AF

relaying system, while, the second is to analyze DSTBC with SDF relaying system.

For AF based DSTBC system, we first provide an theoretic model to describe this co-

operative system. Then we evaluate the exact average BER performance in a one-integral

form and derive a novel approximation method in the form of series expansion. At the end

of this paper, various operation scenarios with different channel quality and modulations are

used to check the system performance and validate our analytic results.

Soft-Decode-and-Forward system is introduced thereafter. We evaluate the averaged

BER after Space-time decoding in SDF system. After that, we discuss the power allocation

and optimization of this system based on the line simulation model. The overall system

performance after iterative decoding is provided with different channel qualities based on

Monte-Carlo simulations.
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1.5.1 AF based DSTBC System

Among the most widely used cooperative strategies is amplify-and-forward (AF). The

application of DSTBC in AF uses a two-phase ‘listen-and-transmit′ protocol. In the first

time phase, the source radiates to both the relay and the destination, while, in the second

time phase, the relay and the source cooperatively forward information to the destination

by using distributed STBC code. The signal sent by the relay in the second phase is a linear

function of its received signal and its conjugate.

Related work and Motivation

The AF based DSTBC has been studied for a long time and we enumerate several

references both on multiple relays and single relay.

We classify AF as regenerative or non-regenerative by the operation at the relay. For

regenerative AF relays, threshold detection is introduced at the relay on the scaled sig-

nal98,81,8. While, if relays only amplify voltage of the analog signal received from the source

and forward it to the destination, they are called non-regenerative AF relays45,3,7.

Alamouti’s code6 used in two relays which have symmetric attributes are considered

in49,3,48. Ju et al.49 have shown a closed-form BER performance with fixed amplifying

coefficients at relays. Abouei et al.3 focused on a non-regenerative dual-hop system where

relays remain silent when the inter-user channel gain is less than a predetermined threshold.

The pairwise error probability (PEP) for high SNR is considered in48 where a Chernoff

upper bound is developed under Rayleigh fading channels.

The distributed Alamouti’s code system with one regenerative relay is treated in98,81,8.

Tourki et al. considered a scheme in which a regenerative relay chooses to cooperate only

if its source-relay channel is of an acceptable quality98. They evaluated the usefulness of

relaying when the source acts blindly and ignores the decision of the relays whether they

may cooperate or not. In81, Barbarossa et al. considered regenerative relays and derived the

optimal maximum-likelihood (ML) detector at the final destination in case of binary phase-
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shift keying (BPSK) transmission. The performance of the distributed Alamouti system

with one regenerative relay is also analyzed in8.

Our work treats the problem with one non-regenerative relay. Among all the previous

works with one non-regenerative relay, Anghel and Kaveh’s work7 has the same infrastruc-

ture as that in our research. In their paper, they have characterized the symbol error rate of

DSTBC systems by using bounds based on a few channel approximation in high signal-to-

noise ratio (SNR). Nevertheless, to the best of our knowledge, no exact BER performance

analysis has been reached for this type of systems. This motivates our interest on the

research of one non-regenerative relaying system with Distributed STBC.

Contributions of this work

1. One-integral BER Performance

Different from Anghel and Kaveh’s result7 with approximate asymptotic bounds at

high SNR, our priority is to obtain the exact average BER performance formula which

can be numerically calculated. As shown in Chapter 2, we calculate the symbol SNR

at the output of the MRC receiver. After that, based on this SNR, a one-integral form

of BER is derived when all three channels are assume to have Rayleigh fading. With

different channel conditions (SNR of each channel), the exact system performance can

be readily obtained from the one-integral form of BER formula numerically, such as

through mathematics softwares, like, Mathematica or Matlab.

2. Approximation Method

Though the BER of this exact one-integral form can be readily obtained from some

professional tools, it still involves complicated integration calculations. From this

point, we try to find out a series solution to get a satisfying result on the expected

system performance. We accomplish this task by proposing a new approximate method

for Marcum Q-Function. Based on this method, an approximate BER result in the

form of series expansions is derived so that the average BER can be expressed and
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tightly up-bounded as a summation of a number of terms that can be readily evaluated.

1.5.2 SDF based DSTBC System

As stated in the previous part of this chapter, Soft-Decode-and-Forward (SDF) com-

bines the best features of soft signal representation in AF and channel coding gain in DF.

Therefore, DSTBC could also be applied to SDF systems. Similar to AF based DSTBC, the

application of DSTBC in SDF also uses a two-phase protocol. While in the first time phase,

the source radiates to both the relay and the destination, in the second time phase, the re-

lay demodulates the received signal from the source, soft-decodes and re-encodes to get the

soft-information possibly in a different code. Then the relay and the source cooperatively

radiate to the destination by using distributed STBC code.

Related Work and Motivation

Among several papers on applying SDF in different coded cooperative communications

systems and analyze their performances, Li et al.62 study distributed turbo coding two-hop

relay system with SDF at the relay. They derived the average upper bound on the bit-error

rate (BER) at high SNR by using Harmonic mean and weight enumerating function (WE-

F). Bao et al.10 focus on the system with same physical infrastructure as Li et al62. They

compare the achievable rate for different relaying strategies: AF, DF, SDF, and coded coop-

eration (CC) on BI-AWGN channels under the definition of Shannon’s capacity. Hoshyar et

al.41 extend SDF strategy into higher order MQAM modulation. They prove that the pro-

posed SDF scheme attains the same level of diversity as amplify and forward (AF) scheme

while improves the overall system spectrum efficiency through forwarding with higher order

modulations.

For SDF based coded cooperative communications systems, in order to fully explore the

functionality of the source, instead of keeping it idle as in9,41 and in our previous work75,

we proposed a cooperative communications system76 that the source and the relay can

cooperatively send their information to the destination using Space-Time codes36. From
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Monte-Carlo simulations, our proposed system has better performance than the traditional

SDF system without DSTBC. But no analysis work is shown in76 to verify this performance

improvement.

Contributions of this work

To analyze the DSTBC in SDF, we adopt the Gaussian approximation22 of log likelihood

ratio (LLR), which is formerly proposed for the research of message-passing in the sum-

product decoder for low-density parity-check (LDPC) codes.

We presented two DSTBC based SDF systems which include one relay and two relays,

respectively. They are named as one-relay SDF & STBC system and two-relay SDF & STBC

system. We compare the performance of these two systems with classic SDF system without

DSTBC, which is called one-relay SDF system. For our proposed one-relay scenario, the

signal transmission consists of two time phases and in the first time phase, it does exactly

the same work as the classic system with SDF alone: the source radiates to both the relay

and the destination. In the second time phase, in our one-relay DSTBC & SDF system, the

source and the relay cooperatively transmit parity stream to the destination. The source

sends the error-free vertical parity bits (Pv), while the relay amplifies and forwards the LLRs

of the vertical parity bits (P̂v) to the destination in the same carrier frequency.

This one-relay SDF & STBC system has later been extended to a two-relay DSTBC &

SDF system. In the first time phase, the source radiates to both relays. The relays demod-

ulate and decode the received data stream and generate the reliability values of the source.

In the second time phase, in our two-relay DSTBC & SDF system, relays cooperatively

transmit parity stream to the destination.

Based on the Central Limit Theorem, the log-likelihood ratios of the vertical parity

bits P̂v can be approximated as Gaussian distributed random variables. Therefore, the

combination of the inter-user channel and the soft-decoder and soft-encoder at the relay

(before amplifying/ scaling) can be modeled as a virtual fading channel.
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1. BER Performance of DSTBC decoding

Although relay strategies are considered and Space-time codes are introduced to in-

crease power efficiency and reduce outage probability, it is not clear a priori how much

the benefits of cooperative diversity would be, since the nodes are not co-located and

are connected via noisy, fading links in wireless networks. The main objective of our

work on SDF based DSTBC is to mathematically derive bit error rate (BER) per-

formance of both one-relay and two-relay systems and study how much gain can be

obtained with the DSTBC enhancement.

Regarding the decoders at relays which take the message-passing algorithms, if the

channel-LLRs at the input to the decoder are independent and identically Gaussian

distributed, then the output log likelihood ratio (LLRs) from the decoder will follow

an approximated Gaussian distribution. Even if the inputs are not Gaussian, e.g. for

wireless channels experiencing fast Rayleigh fading, by the central limit theorem, the

sum would still be a Gaussian if many independent random variables are added. There-

fore, the LLR values can be approximated as Gaussian. The exact one-integral form of

BER performance at the destination is derived based on the Gaussian approximation

on the LLR values for the vertical parity bits at the relays.

2. Power Allocation and Optimization

A line simulation model is introduced to evaluate the BER performance at the receiver

for all three systems: one-relay SDF, one-relay SDF & DSTBC, and two-relay SDF &

DSTBC systems. Therefore, the derived one-integral BER is tested against all possible

SNR values for all three channels to obtain a fully understanding of the systems’

behavior. Furthermore, for the one-relay SDF & DSTBC system, the source transmits

in the second time phase may reduce the transmit power of the relay in order to

make the total transmission power equal. As a result, a natural question risen in

cooperative systems with distributed coding is that how to fully utilize all channels to
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achieve better performance. For the proposed two-relay SDF & DSTBC system, there

is a tradeoff between relay positions and decoding effects. When relays locate nearer

to the destination than to the source, they can hardly provide clean sets of parity

LLR messages as the source does though they can deliver this information easily to

the destination. Another question risen is that in which position the relays should be

located to make the proposed two-relay SDF & DSTBC system outperform our two

one-relay systems.

We tried to exploit the performance improvement of our one-relay SDF & DSTBC and

two-relay SDF & DSTBC systems stated above by allocating different ratio of power in

the second time phase. Numerical results indicate that the proposed two SDF systems

with DSTBC are superior to the one-relay system without DSTBC for most of the

power ratios. Results also show that in the two-relay SDF & DSTBC system, when

two relays cannot provide good LLR messages, the proposed one-relay SDF & DSTBC

system may outperform especially when more power are allocated at the source which

can transmit error-free parity symbols.

Numerical method on optimization is introduced to look for the value of power al-

location ratio where the optimal Space-Time decoded performance is achieved. The

numerical results show that the optimal results of power allocation ratio are consistent

with the best performance points on the obtained performance curves.
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Chapter 2
DISTRIBUTED SPACE-TIME CODE WITH
AMPLIFY-AND-FORWARD (AF) RELAYING

SYSTEM

In this chapter, we consider the distributed Alamouti’s code for cooperative diversity

networks with Amplify-and-Forward protocol. Based on the conditional expectation, the

exact average BER performance is derived in a one-integral form so that the system perfor-

mance can be numerically calculated. Furthermore, a novel approximation method in the

form of series expansion is presented and the BER performance can be tightly bounded with

a summation of a number of terms.

The rest of the chapter is organized as follows. In Section 2.1, the model of the distributed

Alamouti’s code system with one non-regenerative relay is described. In Section 2.2, we

establish the derivation of the exact one-integral form of the average BER performance of

the system. In addition, we present a novel approximation method for the BER performance

based on the series expansion. In Section 2.3, both numerical and simulation results are

provided to demonstrate the accuracy of the analysis.

2.1 System Model

The system consists of a source node, a non-regenerative node and a destination node.

We denote the link between the source and the destination, the source and the relay, and

the relay and the destination, as direct link, inter-user link and relay link, respectively. The

transmission of one data frame from the source to the destination is divided into two time

phases and, for each time phase, it has two time slots. Let h11 and h channel coefficients

along the direct link and inter-use link in the 1st time phase, and h12 and h2 be the channel
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Figure 2.1. The system model of the considered distributed Alamouti’s code cooperative diversity system.

fading of the direct link and relay link in the 2nd time phase. All channels are independent,

flat Rayleigh fading channels that follow circularly symmetric complex Gaussian distribution

with zero mean and different variances. Assume that E[|h|2] = Ω, E[|h11|2] = E[|h12|2] = Ω1

and E[|h2|2] = Ω2.

The process in the first time phase of the distributed system is shown in Fig. 2.1 with

the dash lines. Let xi, i = 1, 2, be the symbols transmitted by the source at the first and

second time slots in the first time phase to both the relay and the destination nodes. The

signals received at the relay are given by

ri =
√
Eshxi + ni where i = 1, 2 (1)

where h is the channel gain of the inter-use link with h ∼ CN (0,Ω). n is the AWGN at the

relay node with distribution of the zero-mean circularly symmetric complex Gaussian, i.e.,

ni ∼ CN (0, σ2
n), and Es stands for the average transmission energy per symbol.

In the meantime, the signals received at the destination are:

di =
√
Esh11xi + wi where i = 1, 2 (2)
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where h11 ∼ CN (0,Ω1) and wi ∼ CN (0, σ2
w). In the matrix form, we can write (2) as

D =
√
EsH11X +W

where D = [d1, d
∗
2]T , H11 =

 h11 0

0 h∗11

, X = [x1, x
∗
2]T and W = [w1, w

∗
2]T .

The SNR for the direct link in the 1st time phase is therefore γ1 = γw|h11|2, where

γw = Es
σ2
w

.

The difference between the distributed STC system and the conventional AF system

exists in the second phase. In the considered system, the relay node cooperates with the

source to build up a space-time coding system in a distributed way. It uses the amplify-and-

forward (AF) protocol that multiplies a tunable coefficient α to the formerly received signals

and then transmits to the destination in the second phase. Due to the use of distributed

Alamouti’s code, −αr∗2 and αr∗1 are the transmitted symbols at the relay. In the meantime,

the source radiates the same information symbols as those transmitted in the first phase by

multiplying with another coefficient β, i.e., β
√
Esx1 and β

√
Esx2. The model in the second

time phase of the proposed system is shown as the solid lines in Fig. 2.1. The receiver

observations y1 and y2 corresponding to the two symbol periods are given by

y1 =
√
Esβh12x1 − αh2r

∗
2 + v1 (3)

y2 =
√
Esβh12x2 + αh2r

∗
1 + v2 (4)

where v1, v2 are the AWGN at the destination node with vi ∼ CN (0, σ2
v) for i = 1, 2.

Substituting ri and writing in the matrix form, the received signals are:

Y =
√
EsHX +N + V (5)
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where Y = [y1, y
∗
2]T , X = [x1, x

∗
2]T , V = [v1, v

∗
2]T ,

H =

 βh12 −αh2h
∗

αh∗2h βh∗12

 and N =

 −αh2n
∗
2

αh∗2n1

 .
Since HHH = ||H||2I2/2 where HH is the Hermitian of H, the maximum-likelihood (ML)

decoding can be implemented by multiplying the received data with HH , i.e., decoding with

its matched filter. We have

HH

 y1

y∗2

 =
√
Es(β

2|h12|2 + α2|h|2|h2|2)

 1 0

0 1


 x1

x∗2


+HH

 −αh2n
∗
2

αh∗2n1

+HH

 v1

v∗2

 (6)

From the above equation, y1 and y2 have symmetric form and it can be found that they

have the same signal-to-noise ratio as

γ2 =
β2|h12|2 + α2|h|2|h2|2

α2|h2|2 1
γn

+ 1
γv

(7)

where γn = Es
σ2
n

and γv = Es
σ2
v
.

The final optimal detection should be conducted based on the maximal ratio combining

(MRC) of what have been obtained from both time phases.

It is known that the MRC combining coefficient for each copy of information is the

Hermitian matrix of the signal coefficient divided by the noise power. Therefore,

C
(1)
MRC =

√
EsH

H
11

σ2
w

and C
(2)
MRC =

√
EsH

H

α2|h2|2σ2
n + σ2

v

(8)

22



The combined signal then is,

XMRC = C
(1)
MRC ·D + C

(2)
MRC · Y =

√
EsH

H
11

σ2
w

 d1

d∗2

+

√
EsH

H

α2|h2|2σ2
n + σ2

v

 y1

y∗2


=

(
Es||H11||2/2

σ2
w

+
Es||H||2/2

α2|h2|2σ2
n + σ2

v

)
X

+

√
EsH

H
11

σ2
w

W +

√
EsH

H

α2|h2|2σ2
n + σ2

v

(N + V ) (9)

In order to estimate [x̂1, x̂2
∗]T of the transmitted data from XMRC , normalization should be

taken as follows before final decisions are made.

X̂ = XMRC/

(
Es||H11||2/2

σ2
w

+
Es||H||2/2

α2|h2|2σ2
n + σ2

v

)
= X +

[√
EsH

H
11

σ2
w

W +

√
EsH

H

α2|h2|2σ2
n + σ2

v

(N + V )

]
/

(
Es||H11||2/2

σ2
w

+
Es||H||2/2

α2|h2|2σ2
n + σ2

v

)
. (10)

where X̂ = [x̂1, x̂2
∗]T and || · ||2 is the squared Frobenius norm of a certain matrix. Detection

can then be directly based on vector X̂.

The objective of this work is to analyze the BER of this cooperative communications

system with the distributed Alamouti’s code. With the fact that the considered distributed

system reduces to the conventional AF cooperative system when α = 1 and β = 0, the

distributed Alamouti’s code system can be considered as a generalization of the convention-

al cooperative communication system. Therefore, an accurate average BER performance

analysis of this system is of high interest.
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2.2 BER Performance Analysis

The instantaneous SNR per symbol γT at the output of the MRC combiner is given as

γT =
2∑
l=1

γl = γ1 + γ2 =
Es
σ2
w

|h11|2 +
Esβ

2

α2|h2|2σ2
n + σ2

v

|h12|2 +
Esα

2|h2|2

α2|h2|2σ2
n + σ2

v

|h|2

= γw|h11|2 + µβ2|h12|2 + µα2|h2|2|h|2 (11)

where γw = Es
σ2
w

, γn = Es
σ2
n
, γv = Es

σ2
v

and µ = 1
α2|h2|2
γn

+ 1
γv

. Average BER is then determined by

this γT .

2.2.1 The Exact BER expression in One-Integral Form

For a SNR value γs (i.e., energy per symbol over noise), the bit error probability Pb for

coherent binary signals is given as31

Pb(γs) ≈ c1Q (
√
c2γs)

where c1 is the number of the nearest neighbors to a constellation at the minimum distance,

and c2 is a constant that relates the minimum distance to the average symbol energy. For

example, the specific values for coherent BPSK are c1 = 1 and c2 = 2, and in this case

Pb(γs) = Q
(√

2γs
)

whereQ(·) is the Gaussian Q-function. Whereas, for rectangular MQAM,

the approximate bit error probability for coherent modulation is [31 p167, Table 6.1]

Pb(γs) ≈
4(
√
M − 1)√

M log2M
Q

(√
3γs

M − 1

)
. (12)

The performance for BPSK is exact and that for MQAM is a close approximation based on

the nearest neighbor approximation [31 p164]. Since γs is often a random variable, in order

to evaluate the performance of the system in terms of average BER, the above BER has to

be statistically averaged over the density distribution. Two approaches are well known to

24



solve this problem: the classical PDF-based approach and the MGF-based approach.

PDF-based and MGF-based approaches

The unconditional average probability of error in the considered system can be found as

Pb(E) =

∫ ∞
0

c1Q
(√

c2γT

)
pγT (γT )dγT

where γT represents the total SNR of the combined signal at the receiver. However, since the

PDF of γT is usually very difficult to obtain, another method, i.e., the MGF-based method,

is more often used.

Using the alternative representation of the Gaussian-Q function

Q(x) =
1

π

∫ π/2

0

exp

(
− x2

2 sin2 θ

)
dθ

and assuming γT =
∑L

l=1 γl, where L is the number of diversity paths and the γl are inde-

pendent random variables, we have

Pb(E) =

∫ ∞
0

...

∫ ∞
0

c1Q(
√
c2γT ) ·

L∏
l=1

pγl(γl) · dγ1...dγL

=

∫ ∞
0

...

∫ ∞
0

c1

π

∫ π/2

0

L∏
l=1

exp
(
− c2γl

2 sin2 θ

)
· pγl(γl)dθdγ1...dγL

=
c1

π

∫ π/2

0

L∏
l=1

Mγl

(
− c2

2 sin2 θ

)
dθ (13)

whereMγl(s) =
∫∞

0
pγl(γl)e

sγldγl is the moment-generating function (MGF) of the SNR per

symbol γl associate with path l.

To use the MGF method, it is required that γT can be expressed as a summation of

γl, 1 ≤ l ≤ L which must be independent random variables whose MGF can be found

explicitly. The final γT of our considered system, as shown in (11), is a summation of three
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terms. However, the 2nd and 3rd terms are clearly not independent. Furthermore, it is much

involved to find either the PDF or the MGF based on the expression of γT . As a result, both

the PDF-based and the MGF-based approaches cannot be directly applied to our problem.

In the following, we solve this BER problem based on the conditional-expectation method.

The Conditional Expectation Approach

Theorem 1. Let Y = f(X1, X2, · · · , Xn), where Xi, 1 ≤ i ≤ n are independent Random

variables, then the expectation of Y satisfies

E[Y ] = EXn [EX1,...,Xn−1 [Y |Xn]].

This equation [with minor modification from77 p106 eqn(3.3)] is known as the theorem

of conditional expectation. From (11), it can be found that when h2 is fixed, γT can be

represented as a summation of three independent and exponentially distributed terms in-

volving h, h11, h12, and therefore the MGF-based method can be used to find this conditional

average BER. The final average BER can further be obtained by averaging over the random

variable h2. That is,

Pb(E) = Eh11,h12,h,h2

[
c1Q

(√
c2γT

)]
= Eh11,h12,h,h2

[
c1

π

∫ π/2

0

exp
(
− c2γT

2 sin2 θ

)
dθ

]

=
c1

π

π/2∫
0

Eh2

[
Eh11,h12,h

[
exp

(
− c2

2 sin2 θ
· γT
)
|h2

]]
dθ

=
c1

π

π/2∫
0

Eh2

[
Eh11,h12,h

[
exp

(
− c2

2 sin2 θ
·

(γw|h11|2 + µβ2|h12|2 + µα2|h2|2|h|2)

)
|h2

]]
dθ. (14)

Therefore, the solving process includes two steps. The first is to, for given h2, average

the conditional BER over h, h11, h12 respectively. The second is to average the resultant over
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h2. To obtain Eh11,h12,h[·|h2] in the first step, the following Lemma (with minor modification

of [55 Theorem 4.1]) can be employed.

Lemma 1. Assume a K × 1 vector a = [a1, a2, · · · , ak]T ∼ CN (0K×1,Ξ). Let {λ1, ..., λr}

be the nonzero eigenvalues of Ξ. Then the moment generating function (MGF) of ||a||2 is

given by

M||a||2(s) = Ea

[
exp(s||a||2)

]
=

r∏
i=1

1

1− sλi
. (15)

In our scenario, we separate γT into three parts and have ai as follows,

|a1|2 = γw|h11|2, |a2|2 = µβ2|h12|2, and |a3|2 = µα2|h2|2|h|2. (16)

Since h11, h12, h are the independent RVs for channel gains in different paths and they

follow h11 ∼ CN (0,Ω1) and h12 ∼ CN (0,Ω1), h ∼ CN (0,Ω). All the other parameters (γw,

µ, α, and, β) are seen as constants. We have,


a1

a2

a3

 ∼ CN



0

0

0

 ,

γwΩ1 0 0

0 µβ2Ω1 0

0 0 µα2|h2|2Ω


 .

The nonzero eigenvalues of its covariance matrix are

λ1 = γwΩ1, λ2 = µβ2Ω1, and λ3 = µα2|h2|2Ω. (17)

Then, the moment generating function (MGF) of ||a||2 given by Lemma 1 is

Ea

[
exp

(
− c2

2 sin2 θ
||a||2

)]
=

3∏
i=1

1

1 + c2
2 sin2 θ

λi

=
1

1 + c2
2 sin2 θ

γwΩ1

· 1

1 + c2
2 sin2 θ

µβ2Ω1

· 1

1 + c2
2 sin2 θ

µα2|h2|2Ω
.
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Therefore,

Pb(E) =
c1

π

π/2∫
0

Eh2

[
1

1 + c2
2 sin2 θ

γwΩ1

· 1

1 + c2
2 sin2 θ

1
α2|h2|2
γn

+ 1
γv

β2Ω1

·

1

1 + c2
2 sin2 θ

1
α2|h2|2
γn

+ 1
γv

α2|h2|2Ω

]
dθ. (18)

By considering the PDF of h2 in (18), we can derive the unconditional probability Pb(E).

The detailed derivation is given in Appendix A which involves parameter substitution, partial

fraction and the use of special functions. We state the final average BER formula in the

following theorem.

Theorem 2. The one-integral form of the exact BER performance of the considered dis-

tributed Alamouti’s code cooperative diversity system, with channel statistics γ = [γn, γw, γv],

Ω = [Ω,Ω1,Ω2] and the modulation parameters c1 and c2, is given as

Pb(γ,Ω, c1, c2)

=
c1

2

∞∫
0

1

Ω2

exp

(
− t

Ω2

)
·
[
1− A3

(A−B)(A− C)

1√
A(A+ 1)

+
B3

(A−B)(B − C)

1√
B(B + 1)

+
C3

(A− C)(C −B)

1√
C(C + 1)

]
· dt (19)

where A = Zβ2Ω1, B = Zα2tΩ, C = 1
2
c2γwΩ1 and Z = c2/2

α2t
γn

+ 1
γv

.

Proof: See appendix A.

The arguments of this exact one-integral formula are only the channel characteristics of

the three links and the type of modulation. This one-integral formula can be calculated

numerically, for instance, by using software such as Mathematica or MatLab. Thus, the

average BER performance of the distributed Alamouti coding system in any given channel

scenario can be readily evaluated.
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2.2.2 A Series Expansion of a BER approximation

In this part, we present an approximation method of the Q-function in series expansion

based on which we further derive a BER approximation formula for the considered system.

With this result, the average BER performance can be very tightly approximated as a

summation of a number of easily calculated terms.

Existing Approximations of Marcum Q-Function

The first tight approximation was proposed by Borjesson et al.14 in the following form,

Q(x) ≈ 1√
2π
· 1

(1− a)x+ a
√
x2 + b

exp

(
−x

2

2

)
, x > 0 (20)

where a = 0.339 and b = 5.510 are used to minimize the maximum absolute relative error.

Karagiannidis and Lioumpas50 gave another approximation aimed at increasing the tight-

ness in the region of small function’s argument values as

Q(x) ≈
(1− exp(−Ax√

2
)) exp(−x2

2
)

B
√

2πx
(21)

where A = 1.98 and B = 1.135. The accuracy with this approximation is remarkable.

However, the presence of x in the denominator of the formulas makes it difficult to derive

the expression of the final system BER.

In19, a method of summation of exponential functions was proposed by Chiani et. al as

Q(x) ≈ 1

12
exp(−x

2

2
) +

1

4
exp(−2x2

3
). (22)
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In66, Prony approximations were proposed by Loskot et al. with two equations,

Q(x) ≈ 0.208 exp(−0.971x2) + 0.147 exp(−0.525x2), x > 0 (23)

Q(x) ≈ 0.168 exp(−0.876x2) + 0.144 exp(−0.525x2)

+0.002 exp(−0.603x2), x > 0. (24)

In order to further reduce the approximation error, Ju et al.49 modified the Prony method

by adjusting the exponents and scalar coefficients, i.e.,

Q(x, ρ1, ρ2) ≈ 1

12
exp(−ρ1x

2) +
1

4
exp(−ρ2x

2). (25)

In49, much effort has been conducted to find the most suitable ρ1 and ρ2 values in different

channel scenarios. Though excellent performance was reported, it might not be expected

that the parameters in the approximation of the general Q function depend on specific link

quality (SNR values) of a communication system. In the following, we give another method

that is similar to the series expansion where accuracy of the approximation increases when

more terms are included.

Proposed Marcum Q-Function Approximation

It is well known that the Gaussian-Q function can be represented as

Q(x) =
1

π

∫ π/2

0

exp

(
− x2

2 sin2 θ

)
dθ. (26)

From the advanced calculus, one way to numerically calculate this integral is to divide

the integral interval into infinite small parts and sum up the integrant values from each

tiny part together. We apply this idea to obtain a tight up-bound of Marcum Q-function.
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Specifically, for x > 0 we approximate the Q-function as

Q(x) 6
1

π

n−1∑
i=0

∫ θi+1

θi

exp

(
− x2

2 sin2 θi+1

)
dθ

6
n−1∑
i=0

θi+1 − θi
π

exp

(
− x2

2 sin2 θi+1

)
. (27)

In order to tighten the bound, we divide the integral interval [0, 2π] into n parts. Without

the loss of generality, we use the equal interval size. That is,

θi =
π

2n
i, i ∈ [0, n] and θi+1 − θi =

π

2n
, i ∈ [0, n− 1]. (28)

Substituting these equations into (27), we have

Q(x) 6
1

2n

n−1∑
i=0

exp

(
− x2

2 sin2( π
2n

(i+ 1))

)
, x > 0. (29)

We can see that when we increase n which is the number of exponential components, the

value of the right part of inequality will tightly bound to the actual curve of Q-function.

Comparison of the proposed method with existing approximations

Fig. 2.2 shows the comparison of some of the approximation methods with the exact

Q-Function.

As it can be observed, for a wide range of arguments, especially in the region of high

argument value, the Prony approximation is more accurate than Chiani’s method. Our

proposed approximation has consistent error regarding to all x. When n = 4, it is a loose

upper bound, while when n reaches to 32, it becomes a very tight bound. Borjesson’s method

also has very tight approximation result, however, the form of component terms do not have

the desired feature for further simplification of the BER formula.

The relative error (RE), as shown in (30), is introduced to give more precise comparison
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Figure 2.2. Comparison among different Q-Function approximations

for positions where the difference of bounds cannot be identified by eye sight.

ē =

∫ ∞
0

F (x)−Q(x)

Q(x)
dx, (0 < x <∞) (30)

where F (x) is the approximated function.

Table 2.1. The relative error (RE) of different approximations.

Appr. Borjesson Karag. Chiani ρ1=1/2 ρ2=2/3 Prony2 ρ1=0.876
ρ2=0.525 ρ3=0.603

ē 0.1698% 0.8533% 18.1655% 21.4517%

Appr. Ju ρ1=0.47 ρ2=0.82 Prop. n=4 Prop. n=32 Prop.n=1024

ē 17.5053% 14.4041% 2.0374% 0.0643%

TABLE II shows the RE of different approximations which is consistent with the numer-

ical results in Fig. 2.2. In our proposed method, the RE is asymptotically reduced to 0 by

adding more exponential terms to tighten the approximation bound.
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Applying Q-function approximations in system performance analysis

It can be observed that the proposed method, together with the Chiani’s, Loskot’s and

Ju’s approximation methods in (22), (24) and (25), can be represented as

Q(x, ω, ρ) ≈
n∑
i=1

ωi exp(−ρix2), n > 2. (31)

where ω = [ω1, ..., ωn], and ρ = [ρ1, ..., ρn].

Substitute the above equation into the BER representation in (11), we can get

Pb(E) = P appr
b (γ,Ω, c1, c2, ρ, ω)

= Eh11,h12,h,h2 [c1Q
(√

c2γT

)
]

≈ c1

n∑
i=1

ωiEh11,h12,h,h2 [exp(−ρic2γT )]

=
n∑
i=1

c1ωiW (ρi, c2,γ,Ω), (32)

where

W (ρi, c2,γ,Ω) = Eh11,h12,h,h2 [exp(−ρic2γT )]

= Eh2 [Eh11,h12,h[exp(−ρic2γT )|h2]]

= Eh2 [Eh11,h12,h[exp(−ρic2(γw|h11|2 +

µβ2|h12|2 + µα2|h2|2|h|2))|h2]]. (33)

In appendix B, we have given the derivation of the functionW (·). Therefore, the following

result can be reached.

Theorem 3. When the Marcum Q-function is approximated in the form of Q(x, ω, ρ) ≈
n∑
i=1

ωi exp(−ρix2), n ≥ 2, then the BER performance of the considered cooperative distribut-
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ed system with Alamouti’s code can be closely approximated by the following function,

P appr
b (γ,Ω, c1, c2, ρ, ω) ≈

n∑
i=1

c1ωiW (ρi, c2,γ,Ω),

where,

W (ρi, c2,γ,Ω) =
1

Ω2

1

1 + ρic2γwΩ1

1

1 + ρic2Ωγn
·
[
Ω2 −

(A′ −B′)2

C ′ −B′
exp

(
B′

Ω2

)
Ei

(
−B

′

Ω2

)
−(A′ − C ′)2

B′ − C ′
exp

(
C ′

Ω2

)
Ei

(
−C

′

Ω2

)]
(34)

and,

A′ =
γn
γvα2

, B′ =
γn
γvα2

+ ρic2β
2Ω1

γn
α2
, and C ′ =

1

γv(
α2

γn
+ ρic2α2Ω)

. (35)

Proof: See appendix B.

By applying the proposed Q-Function Approximation in inequality (29), we have

ωi =
1

2n
, n > 2, and ρi =

1

2 sin2( π
2n
i)
, i ∈ [1, n]. (36)

For a given n, substituting the parameters in Theorem 3, the approximate BER performance

of the system can be obtained as an upper bound. This formula expressed in a summation of

simple functions provides a very easy way to evaluation the system performance in various

channel conditions. It will be shown that with the increase of n value, this approximate

BER performance indeed goes to the exact solution shown in Theorem 3 very quickly.

2.3 Numerical results for Amplify-and-Forward relaying

In this section, we use simulation results to validate the analytic results in Theorem 2

and 3. Since the purpose here is to evaluate the accuracy of the theoretic results, we pick
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Table 2.2. The error rate in different models and in different SNR regions calculated by (37).

[0, 10dB] [10dB, 20dB] [20dB, 30dB] [0dB, 30dB]

Chiani ρ1=1/2 ρ2=2/3 27.5669% 52.5206% 64.5079% 47.42%

Prony1 ρ1=0.971
ρ2=0.525

5.31782% 24.8707% 34.6103% 21.00%

Prony2 ρ1=0.876
ρ2=0.525 ρ3=0.603

5.38093% 25.8425% 35.8132% 21.67%

Ju ρ1=0.47 ρ2=0.82 4.8265% 25.0092% 34.9938% 20.96

prop n=2 66.00% 69.17% 68.81% 67.99%

prop n=4 33.29% 34.97% 34.75% 34.34%

prop n=8 16.65% 17.49% 17.38% 17.17%

prop n=16 8.33% 8.74% 8.69% 8.59%

prop n=32 4.16% 4.37% 4.34% 4.29%

the parameters rather arbitrary. The parameters used in the reported experimental results

are as follows,

Ω1 = Ω2 = Ω = 1 and α = β =
1√
2
.

2.3.1 The exact One integral Theoretical BER performance

We compare and analyze the Mote-Carlo simulation results with the exact BER expres-

sion in one-integral results when γn = 1000dB and γw = 10dB. This is an extreme condition

where the inter-user link is assumed to be ideal. We change the channel condition of the

relay link γv from 0dB to 30dB to evaluate the correctness of our one-integral result. In the

figure, ”BER-v” (curves with circle and X-marks) and ”BER-MRC” (curves with square and

cross marks) stand for the BER results of the space-time decoding for the 2nd time phase

only and the BER results of the final MRC considering both time phases, respectively. As

shown in Fig. 2.3, we can clearly find that for both BER-v and BER-MRC, the one-integral

theoretical performances and the simulation results match accurately

The classical Alamouti’s code (2 × 1) performance, represented as “Theory-Alamouti-

Tx2-Rx1” in dotted-curve with triangle marks, is also plotted. However, it should be noted

that even though without noise at the relay receiver, the performance of the considered

system in the 2nd time phase alone after ST decoding is not the same as the conventional
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Figure 2.3. Comparison between the analytic and simulation results of the exact One-Integral BER, where
γn = 1000dB and γw = 10dB.

Alamouti’s code system. This is because the data from the source to the relay still experience

fading. Without noise at the Relay, the overall fading along the path of S-R-D is the

multiplication of two independent Rayleigh variables.

In addition to BPSK, different modulation techniques have been considered in simula-

tions. Fig. 2.4 shows the results in another channel condition when both BPSK and 16QAM

modulation are tested. We set γn = 15dB, γw = 15dB and vary γv. It needs to be noted

that γn,γw and γv in the derivation are signal-to-noise ratios in the symbol level. However,

in order to presented both modulation results in one figure, we converted all the SNR in

Fig. 2.4 into SNR in the bit level (i.e., Eb/No). It can be noted that in terms of BER, the

performance of 16QAM is worse than BPSK. However, it uses less bandwidth in communi-

cations. In this experiment, again, the simulation and analytic results match to each other

perfectly. This exactly match has been observed in all our simulation scenarios with many

other results not being presented here due to the space limit. These results have validated

the correctness of our one-integral formula given in (19).
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Figure 2.4. The analytic and simulation results for BPSK and 16QAM of the exact One-Integral BER, where
γn = 15dB and γw = 15dB. All SNRs are in Eb/No in this case.

2.3.2 The performance of series expansions of BER approximations

In this part, we evaluate the system BER performance based on some of the existing ap-

proximation methods and our proposed method. We define the approximation error function

as

Φ(γx) =
|P appr
b (γx)− P exact

b (γx)|
P exact
b (γx)

and Φ(γx) =
1

Γ2 − Γ1

∫ Γ2

Γ1

Φ(γx)dγx × 100%. (37)

There are three links in the considered system which are S-R, S-D, R-D. SNRs of two

links will be fixed and the SNR of the third link will be changed to measure the errors.

Therefore, γx can be either γn, or γw, or γv. In this test, we set γx = γn and in the meantime

set γw to 0 dB and γv to 15 dB. For different approximation models, (32) is used to calculate

P appr
b (γx). P

exact
b (γx) is obtained from the one-integral exact BER expression in (19). Γ2 and

Γ1 are the upper and lower interval of γx in which we are interested in. BPSK modulation

is used in this test.

Fig. 2.5 shows the BER approximation for Chiani’s, Prony, and Ju’s models. We can
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see that Chiani’s curve is farthest from the exact result of one-integral curve. Prony and

Ju’s models give very tight bounds at a low SNR field (γn <= 6dB), however, a loose bound

when the channel condition becomes increasing (γn > 6dB).
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Figure 2.5. The performance of series expansions of BER approximation for Chiani,Prony, and Ju’s models when
γw=0dB and γv=15dB

Fig. 2.6 shows the BER of the proposed Q-function approximation. Different from the

performance of Prony and Ju’s methods, our proposed approximation has errors in both low

and high SNR region. However, the larger the n value is used, the smaller the error compared

to the actual result is obtained. In order to compare the closeness of approximation shown

in the figures, the results of the error function is shown in TABLE 2.2. We divide the

interested SNR range into three intervals, [0, 10dB], [10dB, 20dB] and [20dB, 30dB] and

collect the cumulative error rate in each part. From this table, it can be found that Chiani’s

method has the overall weakest performance among existing approximations. Prony and

Ju’s methods have nice approximation in low SNR realm (SNR < 6dB). Our proposed

method, when when n is increased to 32, has the best approximate in all SNR intervals

among all approximation methods. It should be noted that providing BER approximation
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Figure 2.6. The performance of series expansions of BER approximation for proposed models when γw=0dB
and γv=15dB

with small and even error in the entire SNR range is a desired feature in the performance

analysis because the actual channel condition in a practical communication system may vary

considerably from time to time.
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Chapter 3
BCH CODES AND TURBO BCH DECODING

3.1 BCH Codes

The Bose, Chaudhuri, and Hocquenghem (BCH) codes form a large class of powerful

random error-correcting cyclic codes. This class of codes is a remarkable generalization of

the Hamming codes for multiple-error correction. Binary BCH codes were discovered by

Hocquenghem in 1959 and independently by Bose and Chaudhuri in 1960. For any positive

integers m(m > 3) and t (t ≤ 2m−1), there exists a binary BCH code with the following

parameters:

1. Block length: n = 2m − 1

2. Number of parity-check digits: n− k ≤ mt

3. Minimum distance: dmin ≥ 2t+ 1.

Clearly, this code is capable of correcting any combination of t or fewer errors in a block of

n = 2m − 1 digits. We call this code a t-error-correcting BCH code.

In our work, each data packet is encoded with a (n,k,d) EBCH code. The EBCH code is

obtained by adding the overall parity check to the conventional BCH codeword to increase

the minimum Hamming distance by 1.

3.2 Chase Decoding

Since the discovery of BCH codes in 1960, numerous algorithms have been suggested for

their decoding. In 1972, Chase invented a class of decoding algorithms that utilize the soft
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outputs provided by the demodulator. At the receiver the demodulator provides the received

signal value yk, given that the corresponding data bit uk was either 1 or 0, indicating two

different features:

1. Its polarity shows whether uk is likely to be 1 (positive yk) or 0 (negative yk)

2. Its magnitude |yk| indicates the confidence measure provided by the demodulator.

The error correcting capability t of the BCH (n, k, dmin) code is related to the minimum

Hamming distance dmin between the codewords. In general, the error correcting capability,

t, of the BCH code is defined as the maximum number of guaranteed correctable errors per

codeword, given by:

t = bdmin − 1

2
c, (1)

where bic means the largest integer not exceeding i.

Figure 3.1. Illustration of the Chase algorithm

Figure 3.1 shows the geometric sketch of the decoding process aided by channel mea-

surement information. Accordingly, the received binary n-tuple z1 is perturbed with the aid

of a set of test patterns TP, which is a binary sequence that contains 1s in the location of

the bit positions that are to be tentatively inverted. By adding this test pattern, modulo 2,

to the received binary sequence, a new binary sequence z′1 is obtained:

z′1 = z
⊕

TP. (2)
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As shown in Figure 3.1, r represents the maximum Hamming distance of the perturbed

binary received sequence z′1 from the original binary received sequence z1. By using a

number of test patterns, the perturbed received binary sequence z′1 may fall within the

decoding sphere of a number of valid BCH codewords. If we increase r , the perturbed

received sequence z′1 will fall within the decoding sphere of more valid BCH codewords. If

the perturbed received binary sequence z′1 falls within the decoding sphere of a valid BCH

codeword c1, by invoking algebraic decoding a new error pattern e′ is obtained, which may

be an all-zero or a non-zero tuple. The actual error pattern e associated with the binary

received sequence z1 is given by:

e = e′1
⊕

TP, (3)

which may or may not be different from the original test pattern TP, depending on whether

the perturbed received binary sequence z′1 falls into the decoding sphere of a valid codeword.

However, only those perturbed received binary sequences z′1 that fall into the decoding sphere

of a valid codeword are considered. A maximum likelihood decoder is capable of finding the

codeword that satisfies:

minweight(z
⊕

cm), (4)

where the range of m is over all possible codewords. Based on similar principles, Chase

defined a new channel decoder. However, for the sake of low complexity only a certain

limited set of valid codewords is considered by Chase’s technique, namely those surrounded

by the decoding spheres that the perturbed received binary sequence z′1 may fall into. In

this case, we are concerned with finding the error pattern e of minimum analogue weight,

where the analogue weight of an error sequence e is defined as:

W (e) =
n∑
i=1

ei|yi|, (5)
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The Chase algorithm can be summarized in the flowchart shown in Figure 3.2. Each time, the

algorithm considers an n-tuple codeword of the BCH code, which is constituted by n number

of the received bits z and their soft metrics y. The received bits z and their confidence values

y are assembled, which is the first step shown in Figure 3.2. Then, a set of test patterns TP is

generated. For each test pattern, a new sequence z′ is obtained by modulo-2 addition of the

particular test pattern TP and the received sequence z. The conventional algebraic decoder

is invoked to decode the new sequence z′. If the conventional algebraic decoder found a

non-zero error pattern e′ , we are able to find the actual error pattern e, using Equation (3),

associated with the received binary sequence z . Using Equation (5), the analogue weight

W of the actual error pattern e can be calculated. The generated test pattern TP will be

stored in the memory, if the associated analogue weight W is found to be the lowest. The

above procedure will be repeated for every test pattern generated. Upon completing the

loop in Figure 3.2, the memory is checked. If there is an error pattern stored, the binary

decoded sequence will be z
⊕

e. Otherwise, the binary decoded sequence is the same as the

received sequence z.

3.3 Product Code and Parallel Concatenated Code
Parallel concatenated codes constitute specific product codes. In general, product codes

consist of two linear block codes C1 and C2 where C1 and C2 have parameters (n1, k1, dmin1)

and (n2, k2, dmin2), respectively. Typically, C1 = C2. As shown in Figure 3.3, product codes

are obtained by placing the k1 × k2 information data bits in an array of k1 columns and k2

rows. The k1 columns and k2 rows of the information data bits are encoded using C1 and

C2, respectively. It is shown that the (n1 − k1) last columns of Figure 3.3 are codewords of

C2, exactly as the (n2 − k2) last rows are codewords of C1 by construction. Furthermore,

the parameters of the resulting product codes are given by n = n1 × n2, k = k1 × k2 and

dmin = dmin1 × dmin2, while the code rate is given by k1

n1
× k2

n2
. The structure of parallel

concatenated codes is the same as that of product codes, except that the redundancy part
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Figure 3.2. Flow chart of the Chase algorithm

arising from checking the parity of the parity part of both codes C1 and C2 is omitted.

The major disadvantage of parallel concatenated codes is the loss in minimum free distance,

which is only dmin1 + dmin2 − 1, compared to dmin1 × dmin2 in product codes37.

3.4 Turbo Decoding

The turbo decoding process of BCH codes is shown in Fig. 3.4. The decoder uses

the soft channel output Lcy and the intrinsic information L(uk) to provide the a-posteriori

information L(uk|y) at its output, as shown in Fig. 3.4. The extrinsic information, Le(uk) is

given by subtracting the soft channel output Lcy and the intrinsic information L(uk) from

the a-posteriori information L(uk|y). After being interleaved or de-interleaved, as seen in

the figure, the extrinsic information Le(uk) becomes the intrinsic information L(uk) of the

second decoder. Similarly, the extrinsic information gained by the second decoder is passed
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(a) Product Code (b) Parallel Concatenated Code

Figure 3.3. Construction of product codes and parallel concatenated codes.

back to the first decoder as its intrinsic information. Basically, both decoders assist each

other by exchanging their information related to the data bits and this results in the iterative

decoding process. However, there is no intrinsic information for the first decoder in the first

iteration, since the extrinsic information of the other decoder is unavailable at this stage.

Figure 3.4. Turbo decoder schematic
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Chapter 4

SOFT DECODE-AND-FORWARD (SDF) RELAYING

STRATEGY

4.1 Comparison between AF, DF and SDF

User cooperation involves the introduction of one or multiple cooperating nodes, known

as the relays, into the classic point-to-point communication scheme. This technique im-

proves a better communication efficiency as well as the performance of a whole wireless

communications system. Despite numerous advances in wireless cooperative cooperation

systems, signal relaying strategies widely applied have not evolved much out of the amplify-

and-forward (AF) and decode-and-forward (DF).

The amplify-and-forward lets relays scale, retransmit the analog signal waveforms re-

ceived from the source92,46,24. It has a low implementation complexity but with a drawback

of amplifying the noise as well. Based on whether the threshold detection is used at relays

or not, AF can be further classified as the regenerative98,81,8 or the non-regenerative45,3,7.

The application of AF is straight-forward, requiring a lower implementation complexity in

signal processing than the other two strategies.

The decode-and-forward constitutes another celebrated practice of signal relaying, where

the coded source signals received at the relay are demodulated, decoded and possibly re-

encoded using a different code before being forwarded to the destination. Depending on the

type of codes used to re-generate the relay message, the DF extends from its basic mode
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of repetition54, to more sophisticated modes that exploit space time codes53,47 and network

codes10.

In general, AF can operate even when the soure-relay channel experiences outage where

the signals are corrupted by the channel fading and other impairments to a level that pro-

hibits the relay from correctly deducing all the data. In DF, however, the erroneous bits, if

re-encoded and forwarded to the destination, can mislead the destination and cause severe

error propagation. When the source-relay channel quality is sufficient for a clean extraction

of the data, DF clearly performs better since it regenerates and passes on a clean set of

signals9. This protocol may eliminate the noise effect between the source and the relays if

the data can be correctly decoded. However, when perfect decoding cannot be guaranteed,

relaying erroneously decoded data would cause a severe error propagation at the receiver.

Another signal forwarding strategy, soft-decode-and-forward (SDF), was also proposed87.

SDF aims to combine the best features of AF and DF: soft signal representation in AF and

channel coding gain in DF. In the SDF protocol, the relays demodulate the received signal

from the source, soft-decode and re-encode to obtain the soft-information possibly with a

different code and then relay this information to the destination. This soft-information

represents the reliability for the coded data at the relay and can be transmitted either via

direct analog modulation or via digital modulation over the quantized values.

Comparing with AF and DF, SDF has its own advantages. On the first hand, when

channel quality is insufficient, the soft-information is weak and the system has a similar

performance as AF which can be treated as forwarding the signals in their soft reliability

form. On the other hand, when the relays correctly decode the received information, the

normalized soft information which is the output of SDF based relay approaches a clean set

of signals which is the same as the output of DF based relays. Due to these advantages,

SDF has a best performance among these three relaying strategies.

Hoshyar et al.41 applies SDF strategy to higher order MQAM modulation and showed

the improvement of the overall system spectrum efficiency. Li et al.62 studied the distributed
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turbo coding in a two-hop relay system with SDF at the relay. They derived the average

upper bound on the bit-error rate (BER) at high SNR by using Harmonic mean and weight

enumerating function (WEF). Bao et. al.9 compared different relaying strategies of AF,

DF and SDF over BI-AWGN channels. They gave formulas in the information-theoretic

achievable rate for each scheme and made a conclusion that the SDF system combined with

coded cooperation are capable of considerably better performances than the existing schemes

by both analysis and simulations.

Despite many interesting results in SDF, existing schemes consider the transmission

in two time phases where in the second time phase, the relay sends the soft information

while the source is idling. In fact, the source can actually send the hard information in

the second time phase to cooperate with the soft information sent by the relay, which

provides diversity in fading environment. To the best of our knowledge, the integration

of the SDF protocol with the distributed space-time block codes (DSTBC) to improve the

system performance has not been considered previously, which is a common missing part in

SDF-based cooperative systems.

In our recent work76, we have initiated the study of the use of DSTBC with SDF. We

have demonstrated via the Monte-Carlo simulations that one-relay SDF & DSTBC system

has better performance compared with the traditional SDF systems where DSTBC is not

used. However, there is not any analysis work and insights of the performance improvement

having been provided in76. It can be envisioned that in the 2nd time phase, the source

and the relay can coordinately send their information to the destination using DSTBC. The

source forwards the error free information of some parity bits while, in the meantime, the

relay transmits the soft information to the destination. This is different from the classic

space-time codes where both transmit nodes send error-free information of the same symbol

sequence. Although transmit diversity can be explored in DSTBC, the source-destination

channel is usually much worse than the relay channel. Therefore, one natural question

is whether and to what extent the distributed Space-Time codes can enhance the SDF
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communications. In addition, the overall transmit power in general should be fixed, another

question then is how the power will be allocated between the source and the relay nodes

to achieve the best enhancement. The contribution of this dissertation is the answers to

these questions. Specifically, we give a theoretic result of the DSTBC performance in the

second time phase based on the Gaussian approximation of the soft information at the

relay. Although this one-relay SDF system with DSTBC enhancement could be applied to

any coded cooperative system, we adopt the DTPC with EBCH component codes in this

research as an example.

Furthermore, we propose a system with two relays which adopts SDF with DSTBC as

well. We have theoretically derived the DSTBC performance in the second time phase based

on the Gaussian approximation of the soft information at the relay. We also compared this

two-relay SDF & DSTBC system with one-relay SDF & DSTBC cooperative system and

one-relay system with SDF relaying alone. All systems adopt Distributed Turbo Product

Codes and Space-Time block codes, where the Extended Bose Chaudhuri Hochquenghem

(EBCH) codes are used as component codes.

• 1. One-relay SDF system

We have one source, one relay and one destination in this system. This reference

system uses traditional SDF at relay. The source keeps idle when the relay transmits

LLR in the second time phase.

• 2. One-relay SDF & DSTBC system

This system has one source, one relay and one destination as well. The source and the

relay can cooperatively send their information to the destination using Space-Time

codes. It fully explores the functionality of the source, instead of keeping it idle as in

the one-relay SDF system. We approximate the soft information transmitted by relay

using Gaussian approximation and evaluate the averaged BER after the Space-time

decoding.
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• 3. Two-relay SDF & DSTBC system

The two-relay SDF & DSTBC system considers a scenario where the source node

transmits information to the destination via two relay nodes. SDF is used in the

relays, however, assuming the availability of synchronization between relays. The soft

information from different relays will be transmitted cooperatively with Alamouti’s

code to the destination. We assume that the soft information, i.e., the log-likelihood

ratio (LLR) values after a channel decoder at each relay, follows an approximated

Gaussian distribution.

4.2 Soft Decoding/Re-encoding at the Relay

In general, block encoding takes a k-bits information word, and generates a n-bits code-

word. Furthermore, systematic block codes are constructed by appending the n − k parity

bits to the end of the k-bits input information word. The complete product codes are formed

by serial concatenating the two systematic linear block codes C1 and C2 and having an inter-

mediate matrix interleaver. The two component codes C1 and C2 are assumed to be identical

and have parameters (n, k, δ), where n, k, and δ stand for code length, code dimension and

minimum Hamming distance of the code, respectively.

The operation at the relay is carried out in three steps: First, the relay soft-decodes the

received sequences and generate the LLR output for the decision bits. Then the LLR values

are used to infer the LLR values of the vertical parity bits. Finally, the soft output for the

parity bits is obtained and ready to forward cooperatively with the source to the destination

in the second time slot.

Let the transmitted k × n matrix of BPSK modulated symbols from the source be

expressed as:

X = [x1,x2,x3, · · · ,xk]T , (1)

where xi = [x1
i , x

2
i , x

3
i , · · · , xni ] is a codeword of n bits. The superscript ‘T ’ stands for the
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vector’s transpose. Also, let the output of the inter-user channel at the relay be written as:

Y = [y1,y2,y3, · · · ,yk]T ,

where yi = [y1
i , y

2
i , y

3
i , · · · , yni ], yji = hẋji + zji , 1 ≤ i ≤ k, 1 ≤ j ≤ n. zji ∼ CN (0, σ2

z) and

h ∼ CN (0,Ω) are the noise and fading of the inter-user channel.

Upon the receiving of sources transmission at the relay, Chase II decoding algorithm is

used to decode the received matrix Y to get the ML decision D (matrix of dimension n×k),

where

D = [d1,d2,d3, · · · ,dk]T ,

and di = [d1
i , d

2
i , d

3
i , · · · , dni ], with dji ∈ {−1,+1} . Chase II algorithm searches for the

decision codeword di with the minimum Euclidean distance from the received vector yi.

The first step in obtaining the soft parity bits is to find the LLR of the decoded bits in

the matrix D. The normalized extrinsic output of the decoder for jth bit in the ith input

vector can be expressed in terms of LLR of the decision as:

wji =
σ2

2
L(dji )− y

j
i , (2)

where

L(dji ) = ln

(
P (xji = +1|yi)
P (xji = −1|yi)

)
,

is the LLR of transmitted bit xji given the received sequence yi, d
j
i is the decoder decision.

Once a decision codeword di is found, the decision confidence value φi will be evaluated.

The confidence value is defined as the probability that the decoder makes a correct decision

given the received sequence yi. The value φi is defined in 3 as a function of destructive
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Euclidean distance between the received vector and the decision codeword56:

φi = f

 ∑
j∈{j|(yji−dji ).dji<0}

(yji − d
j
i )

2

 , 1 ≤ i ≤ k. (3)

where the function f(·) is pre-defined by a lookup table to reduce the computational com-

plexity of the implementation.

Using the DBD soft-decoding method proposed in56 and rewriting the LLR in terms of

the normalized extrinsic information and channel output, the LLR of decoder output bit dji

is:

L(dji ) = dji ln

(
φi + exp(2yji d

j
i/σ

2)

1− φi

)
. (4)

It was found in35 that the LLR of a parity bit for two statically independent random

bits u1 and u2 can be obtained as:

L(u1 ⊕ u2) = log
1 + eL(u1)eL(u2)

eL(u1) + eL(u2)

≈ sign(L(u1) · L(u2)) ·min(|L(u1)|, |L(u2)|). (5)

Using induction, this relation can be generalized to k bits. Assuming that uX is the

parity bit for a set of bits X ∈ {u1, u2, · · · , uk}, which can be expressed as:

uX =
∑
ui∈X

⊕ ui,
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then the LLR of bit uX given the LLR of set X is obtained as:

L(uX ) = L

(∑
ui∈X

⊕ ui

)

= log

∏
ui∈X

(eL(ui) + 1) +
∏
ui∈X

(eL(ui) − 1)∏
ui∈X

(eL(ui) + 1)−
∏
ui∈X

(eL(ui) − 1)

= 2 · tanh−1

(∏
ui∈X

tanh(L(ui)/2)

)

≈ sign

(∏
ui∈X

L(ui)

)
· min
ui∈X
|L(ui)| . (6)

where the third equality follows from using the two following relations:

tanh(u/2) =
eu − 1

eu + 1
, 2tanh−1(u) = log

1 + u

1− u
.

Parity bits for a linear block code can be obtained using the generator matrix for

this code. A linear code generator matrix is any matrix whose rows are the bases of

the code space. The relay uses a EBCH code generator matrix in systematic form as

G = [Ik|P] to generate the vertical parity Pv, where Ik is the identity matrix of rank

k, P = [p̄k+1, p̄k+2, · · · , p̄n−1] is a k × (n − k − 1) matrix responsible for generating the

n− k− 1 parity bits for the information bits, where p̄i is a k-bits vector in GF(2). The n-th

parity bit in the EBCH codeword (the overall parity bit) is generated such that the overall

number of 1’s in the codeword is odd.

At the relay we are only interested in generating the vertical parity bits Pv for the decoded

matrix from the received matrix over the inter-user channel. The decoded matrix D, which

is composed of estimates of S and Ph, is considered as systematic information at the relay.

Therefore, Pv can be obtained by performing the matrix multiplication DG. Let E (n× n)
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be the result from EBCH encoding of the decoded matrix D:

E = [DG| ēn]

= [DIk|DP| ēn]

= [D |DP| ēn]

= [ē1, ē2, ē3, · · · , ēk, ēk+1, · · · , ēn−1, ēn]. (7)

where the last column ēn contains the overall parity bits.

The resulting matrix E is composed of two parts, the systematic and the parity parts,

Es = [ē1, ē2, ē3, · · · , ēk] = [d1,d2,d3, · · · ,dk] = D and Ep = [ēk+1, · · · , ēn−1, , ēn] respec-

tively, where ēi = [e1
i , e

2
i , · · · , eni ]T is n-bits vector. The latter, which we refer to as the

estimate of the vertical parity (P̂v), is transmitted as soft information to the destination.

To obtain the soft information for the generated parity Ep we use the result in36. The LLR

for the parity bit eji , k + 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n is given by:

L(eji ) = L
(
p̄Ti d̄j

)
= L

(∑
l∈Xi

⊕ djl

)
,Xi = {l|pli = 1}

≈ sign

(∏
l∈Xi

L(djl )

)
·min
l∈Xi

∣∣L(djl )
∣∣ , (8)

where d̄j is the jth row in D, Xi refers to the set of indices in which the vector p̄i has 1’s.

The values of L(djl ), l ∈ Xi are found from74. The LLR of the last column of E, i.e. ēn, that

is composed of rows’ overall parity bits, is obtained by setting Xn = {1, 2, 3, · · · , n − 1} in

eqn. (8).
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Chapter 5
GAUSSIAN APPROXIMATION ON LLR MESSAGES

In Chapter 4, we have illustrated the way from which relays get the LLR values. It

soft decodes the received sequences and obtain the LLR values from the Chase-II decoder.

The relay then re-encodes the obtained outputs in another (vertical) direction, and gets

the log-likelihood ratios of the vertical parity bits (Pv). Instead of making binary hard

decisions based on soft values, the relay amplifies and forwards the LLR values directly to

the destination using Amplitude Modulation techniques. With this simple extension, i.e.,

forwarding soft LLRs in lieu of hard encoder decisions, SDF combines the best feature of AF:

forwarding the signals in their soft reliability forms, with the advantage of DF: exploiting

the coding gain in the entire source-relay SNR region.

To better understand SDF, let us take a closer examination of the LLR values by using

the Gaussian approximation22. The Gaussian assumption states that, for an infinite length

or very long code with a soft message-passing decoder, if the channel-LLRs at the input to

the decoder are independent and identically Gaussian distributed, then the output LLRs

from the decoder will follow an approximated Gaussian distribution9.

The Gaussian Approximation (GA) approach was proposed by Richardson et. al.22 to

analyze the LLR values for iterative decoding in low-density parity-check (LDPC) codes.

They presented a simple method to estimate the threshold for irregular LDPC codes on

memoryless binary-input continuous-output AWGN channels with sum-product decoding.

They adopted density evolution to calculate the thresholds of message-passing decoding and

this method is based on approximating message densities as Gaussians (for regular LDPC

codes) or Gaussian mixtures (for irregular LDPC codes).
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They stated that the LLR message from the channel is Gaussian with mean 2/σ2
n and

variance 4/σ2
n, where σ2

n is the variance of the channel noise. Thus, if all inputs (which are

independent and identically distributed (i.i.d.)) are Gaussian, then the resulting sum is also

Gaussian because it is the sum of independent Gaussian random variables.

They also illustrated that even if the inputs are not Gaussian, by the central limit

theorem, the sum would look like a Gaussian if many independent random variables are

added.

Based on Richardson’s work, a LDPC-coded miltiple-input-multiple-output (MIMO) sys-

tem with STBC was studied by Tan et. al.93. They approximated the pdfs of incoming LLR

at bit nodes in the decoder by GA which were used to calculate the output LLR afterwards.

Later, the GA approach was applied in turbo decoder by Gamal and Hammons28, because

the extrinsic information from constituent maximum a posteriori (MAP) decoders can be

well approximated as Gaussian random variables as well.

5.1 Gaussian Approximation on LLRs of Turbo codes

The modern decoding algorithms for channel codes, including the sum-product algorithm

for low-density parity-check (LDPC) codes and the maximum a-posteriori probability (MAP)

algorithm for turbo codes, all use the belief propagation and can be collectively called the

message-passing algorithms. The soft output of the decoder, represented as the LLR values,

can be seen as the result of the sum effect of independent random variables. By GA stated

above, these values approach to a Gaussian distribution.

The Gaussian approximation also applies to the situation of fading channels. It has

been stated by Richardson22 that even if the inputs are not Gaussian, by the central limit

theorem, the sum would look like a Gaussian if many independent random variables are

added. It also has been shown in Eqn. (16) of93 that, for wireless channels which experience

fading, the LLR messages can be approximated to be Gaussian distributed.

To illustrate, we transmit the source information coded by a turbo code with the gener-

ator [7, 5]oct to the relays through a fast Rayleigh fading channel and then obtain the LLR
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values with the MAP decoding. Monte-Carlo simulations have been taken by changing the

source to relay channel condition from 2 dB, 6 dB to 10 dB. Then the LLR histograms are

shown in Fig. 5.1 with the dot, “x” and “+” marks, respectively. It can be noted that these

histograms match very well with the three solid curves drawn from the Gaussian distribution

with the mean and variance calculated directly from the LLR values.
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Figure 5.1. The distribution of LLR in turbo codes after MAP decoding through fast Rayleigh fading channel.

A second experiment is shown as in Fig. 5.2 for a verification of LLRs distribution when

CSI information is available and not at the receiver. The wireless channels also experience

fast Rayleigh fading as in the previous experiment and turbo codes [7, 5]oct is used as well.

We transmit coded frames via a wireless channel with SNR = 6dB. The sequences are

obtained at the receiver and it will then be passed through a MAP decoder and we analyze

the distribution of LLRs at the output. The LLRs are normalized to the mean value and

the “+” and “x” marks show the LLR histograms when the channel state information (CSI)

are either available or unavailable at the receiver respectively. It can be noted that these

histograms match very well too with the solid and dash curves drawn from the Gaussian
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distribution with the mean and variance calculated directly from the LLR values.
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Figure 5.2. The distribution of LLR in turbo codes after MAP decoding through fast Rayleigh fading channel
when CSI is either available or unavailable.

5.2 Gaussian Approximation on LLRs of EBCH codes

We adopt EBCH code (as stated in Section 3.1) as the component code to transmit

information from the source to relay(s). After having received the coded frame, the relay(s)

pass(es) it through a Chase decoder to infer the LLR messages. The Chase decoding algo-

rithm can be seen as a message-passing algorithms as well since the a posteriori information

is calculated by the received symbol of certain time slot combined with symbols of other

time slots within the same coded frame. Therefore, the soft output of the Chase decoder,

represented as the LLR values, can be seen as the result of the sum effect of independent

random variables. By GA stated above, these values approach to a Gaussian distribution.

We verify the output of the Chase decoder by using two Monte-Carlo simulations. In

our first experiment, we transmit the source information coded by a EBCH code with (n =

64, k = 51, δ = 6) where the k, n and δ represent the source bit length, codeword length

and the free distance of the code, respectively. The wireless channel is a theoretic AWGN
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channel and we obtain the LLR values after the Chase II decoding. Fig. 5.3 shows the LLR

distribution when the wireless channel SNR is 3dB. The histogram overlap with the solid

curve drawn from the Gaussian distribution with the mean and variance calculated directly

from the LLR values. This indicates that the LLR values can be accurately approximated

by Gaussian distributed random variables.

Figure 5.3. The distribution of LLR in EBCH codes after Chase II decoding through AWGN channel.

When the wireless channel experiences Rayleigh fading, the symbols received at the relay

are not Gaussian. However, since the LLR value for each symbol can be seen as the sum

of information symbols, from the central limit theorem, the distribution of output values

would look like Gaussian as well. The second experiment is shown under the Rayleigh fading

channel when the wireless channel SNR is 3dB as well. Fig. 5.4 shows the LLR distribution

and it is near Gaussian. For the convenience of calculation, we check the confidence value

φ by look-up table. Due to this approximation, our result in Fig. 5.4 approaches Gaussian

approximation curve only when LLR value is bigger than −2.
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Figure 5.4. The distribution of LLR in EBCH codes after Chase II decoding through fast Rayleigh fading channel.
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Chapter 6
DISTRIBUTED SPACE-TIME CODE ENHANCED

SOFT DECODE-AND-FORWARD (SDF) RELAYING
SYSTEM WITH ONE RELAY

6.1 System Model

We consider a three-node-network consisting of one source ‘s’, one destination ‘d’ and one

relay ‘r’. Any transmission from the source to the destination requires two time phases. The

channels between the three nodes are assumed to be mutually independent with Rayleigh

fading coefficients. We denote the link between the source and the relay, the source and the

destination, and the relay and the destination, as inter-user link, direct link and relay link,

respectively. We use h, h1, and h2 to represent the channel attenuations for each channel

and they follow h ∼ CN (0,Ω), h1 ∼ CN (0,Ω1) and h2 ∼ CN (0,Ω2). Assume all noises at

the receivers are white Gaussian noises and we denote σ2
z and σ2

w to be the noise variances

at the relay and destination in the first time phase and σ2
v to be the noise variance at the

destination in the second time phase.

As shown in Fig. 6.1, the information bits are formed into a k1 × k2 matrix S. The

complete product codes are formed by serial concatenating two systematic linear block codes

C1 and C2 with a block interleaver. The two component codes C1 and C2 are assumed to

be identical here. Each data packet is encoded with a (n, k, δ) EBCH code to produce rows

parity Ph. The EBCH code is obtained by adding the overall parity check to the conventional

BCH codeword to increase the minimum Hamming distance by 1. The output k×n matrix

of bits are broadcasted from the source to the relay and the destination in the first time

phase. The relay uses a SISO decoder with Chase-II algorithm to obtain the LLR values
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Figure 6.1. Structure of a complete Turbo Product Code as received at the destination

of the decoded codewords for the received sequences. The LLR values are further used to

obtain the soft information for the vertical parity bits Pv through the other EBCH encode.

This soft information at the relay can be seen as a soft copy of parity bits Pv that can

be generated at the source. Since both the source and the relay have the information for

the same parity bits, we can use Alamouti’s code6 to coordinately send the information in

the second time phase. It should be noted that the information radiated from the source

and relay is not exactly same, which is different from the classical Alamouti’s codes. After

the destination has received the space-time coded information in the second time phase,

it decodes them using space-time decoding algorithm. At this time, the destination has

had two data set. One is the information of source and the row parity Ph in the first time

phase and the other is the information about the vertical parity Pv after STBC decoding.

Therefore, it can combine them together to form a complete TPC and then conducts turbo

decoding to recover the original source data.

6.2 Space-Time Cooperative Communications

The solid lines in Fig. 6.2 shows DSTBC in the 2nd time phase in the one-relay SDF &

DSTBC system The source sends the error-free parity matrix Pv while the relay transmits

the LLR for the parity bits P̂v using the amplifying and forwarding. We can reorganize

these two (n − k) × n parity matrices serially and denote the column parity bits at source

as [x1, x2, x3, x4, ...x(n−k)×n] while the soft information at relay as [l1, l2, l3, l4, ...l(n−k)×n].
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Figure 6.2. System Model for proposed one-relay SDF & DSTBC system

In order to understand the performance of DSTBC, we start with the distribution of the

LLR values by using the Gaussian approximation. Rooted at Central Limit Theorem (CLT),

the Gaussian assumption states that, for a code with a soft message-passing decoder, the

output LLRs from the decoder follow an approximated Gaussian distribution22,9.30 provided

solid statistical justification for the Gaussian approximation in turbo codes on why and how

well the assumption holds.

After horizontal decoding, the LLRs of vertical parity bits are obtained by an EBCH

encoder based on (8). Each bit of matrix P̂v can be seen as a decision of arithmetic summa-

tion of a-posteriori probabilities (APPs) which are the output of Chase-II decoder calculated

from (4). From CLT, P̂v can be approximated as Gaussian distributed random variables.

Let µl be the mean and σ2
l be the variance of P̂v. Then the LLR value of a particular

transmitted information bit xi can be represented as

li =
√
Esµlxi + ni, (1)

where ni ∼ CN (0, σ2
l ) and i = 1, ..., (n− k)× n. With pre-normalization before the signals
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retransmit at the relay to the destination, the signal can be represented as

l̂i =
√
Esxi + n̂i, (2)

where n̂i ∼ CN (0, σ2
l /µ

2
l ) and i = 1, ..., (n− k)× k.

From (2), the estimated signal l̂ at the relay before retransmission can be considered as

the information stream transmitted from the source plus a white Gaussian noise n̂. In other

words, it lets us to model the combination of the inter-user channel and the signal processing

at the relay as a virtual Gaussian channel with effective SNR as

γl̂ =
Esµ

2
l

σ2
l

. (3)

We denote l̂ as l and n̂ as n for the rest of this paper.

This well received Gaussian approximation in soft decoding (3) is also verified by simu-

lations using TPC. Table 6.1 shows the estimated LLR means and variances under different

conditions of the inter-user channel with Ω = 1(assume xji = −1 is transmitted and xji is

stated in (1) where 1 ≤ i ≤ k, 1 ≤ j ≤ n).

Table 6.1. LLR message distribution under different inter-user channel conditions.

γz(dB) γz µ̂l σ̂2
l γl

0 1 0.0035 1.0000 1.225× 10−5

6.02 4 -0.8469 0.2828 2.5362
7.13 5.1653 -0.9547 0.0886 10.2883
20 100 -0.9981 0.0038 2.6216× 102

6.2.1 Space-Time Encoding

We rearrange Pv and P̂v into two series of signals as shown in Table 7.1 and radiated

from the source and relay, respectively. α and β are amplification factors in the relay and

source, which can be used to adjust the total transmission power and the power allocation.
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After distributed space-time coding, the receiver observations yprop1 and yprop2 are given

by

yprop1 =
√
Esβh1x1 − αh2l

∗
2 + v1 (4)

yprop2 =
√
Esβh1x2 + αh2l

∗
1 + v2 (5)

where v1, v2 are the Gaussian noise at the destination node with vi ∼ CN (0, σ2
v) for i = 1, 2.

Substituting li and writing in the matrix form, the received signals are:

Y =
√
EsHX +N + V (6)

where Y = [yprop1 , (yprop2 )∗]T , X = [x1, x
∗
2]T , V = [v1, v

∗
2]T ,

H =

 βh1 −αh2

αh∗2 βh∗1

 and N =

 −αh2n
∗
2

αh∗2n1

 .

6.2.2 Space-Time Decoding

When the destination has received the mixed signal from both the source and relay,

the classical space-time decoding algorithm is adopted to estimate the transmitted symbols,

which is implemented by multiplying the received data with H+, i.e., decoding with its

matched filter. For a general matrix of size m × n, the pseudo-inverse for the matrix H is

defined as:

H+ = (HHH)−1HH , (7)

Table 6.2. Symbols transmitted at antennas

Bit1 Bit2 Bit3 Bit4 ...
Antenna at Relay −αl∗2 αl∗1 −αl∗4 αl∗3 ...
Antenna at Source βx1 βx2 βx3 βx4 ...
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where HH represents the Hermitian of the matrix H, which is equal to the conjugate trans-

pose of the matrix. The term:

HHH =

 β2|h1|2 + α2|h2|2 0

0 β2|h1|2 + α2|h2|2

 , (8)

is a diagonal matrix. The estimates of the transmitted symbols [x̂1, x̂
∗
2]T at the destination

can be obtained as follows: x̂1

x̂∗2

 = H+

 yprop1

(yprop2 )∗


=

√
Es

 x1

x∗2

+H+

 −αh2n
∗
2

αh∗2n1

+H+

 v1

v∗2


From the above equation, yprop1 and (yprop2 )∗ have the same signal-to-noise ratio as

γT =
β2|h1|2 + α2|h2|2

α2|h2|2 1
γl

+ 1
γv

(9)

where γl is from (3) and γv = Es
σ2
v
.

6.3 Performance of DSTBC Decoding

In this part, we investigate the performance of using DSTBC and that use of soft relaying

alone without STBC. In order to justify the use of DSTBC, a basic assumption adopted here

directly without proof is that if the decoding of DSTBC outperforms the use of SDF alone

in the 2nd time phase, the overall performance of the system using DSTBC also outperforms

the system without DSTBC. This assumption holds intuitively as the system performance

cannot be degraded when one component of the system is improved.

For a SNR value γs (i.e., energy per symbol over noise), the bit error probability Pb for
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coherent binary signals is given as31

Pb(γs) ≈ c1Q (
√
c2γs) (10)

where c1 is the number of the nearest neighbors to a constellation at the minimum distance,

and c2 is a constant that relates the minimum distance to the average symbol energy. c1, c2

are determined by the type of modulation used.

6.3.1 Averaged BER for Decoding of DSTBC

The averaged BER can be obtained by averaging over the random variable h1 and h2,

Using the conditional expectation, we have

Pb(E)

= Eh1,h2

[
c1Q

(√
c2γT

)]
= Eh1,h2

[
c1

π

∫ π/2

0

exp
(
− c2γT

2 sin2 θ

)
dθ

]

=
c1

π

π/2∫
0

Eh2

[
Eh1

[
exp

(
− c2

2 sin2 θ
· γT
)
|h2

]]
dθ

=
c1

π

π/2∫
0

Eh2

[
Eh1

[
exp

(
− c2

2 sin2 θ
· (β

2|h1|2 + α2|h2|2

α2|h2|2 1
γl

+ 1
γv

)

)
|h2

]]
dθ. (11)

Therefore, the solving process includes two steps. The first is to average the conditional

BER over h1 given h2 and the second is to average the result over h2.

Step 1. Let

ψ(h̃) = exp
[
− c2

2 sin2 θ
· γT

]
= exp

[
− c2

2 sin2 θ
· (β

2|h1|2 + α2|h2|2

α2|h2|2 1
γl

+ 1
γv

)

]
. (12)
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Set ρ = 1
α2|h2|2 1

γl
+ 1
γv

. For a given h2, averaging over h1,

Eh1 [ψ(h̃)]

=

∫ ∞
0

exp

[
− c2

2 sin2 θ
· (ρβ2t1 + ρα2|h2|2)

]
· 1

Ω1
e
− t1

Ω1 · dt1

=
1

Ω1
exp

(
− c2

2 sin2 θ
· ρα2|h2|2

)
∫ ∞

0
exp

[
−
( c2

2 sin2 θ
· ρβ2 +

1

Ω1

)
t1

]
· dt1

=
1

Ω1
exp

(
− c2

2 sin2 θ
· ρα2|h2|2

)
1

c2
2 sin2 θ

· ρβ2 + 1
Ω1

. (13)

Step 2. By substituting the above equation into (11), we obtain

Pb(E) =
1

Ω1

c1

π

π/2∫
0

Eh2

[
exp

(
− c2

2 sin2 θ
· α2|h2|2

α2|h2|2 1
γl

+ 1
γv

)
1

c2
2 sin2 θ

· β2

α2|h2|2 1
γl

+ 1
γv

+ 1
Ω1

]
dθ. (14)

Considering the pdf of |h2|2 (i.e., t in the derivation), and according to the definition of

expectation, we have,

Pb(E)

=
1

Ω1

c1

π

π/2∫
0

∞∫
0

exp

(
− c2

2 sin2 θ
· α2t

α2t 1
γl

+ 1
γv

)
1

c2
2 sin2 θ

· β2

α2t 1
γl

+ 1
γv

+ 1
Ω1

· 1

Ω2

e
− t

Ω2 dtdθ

=
1

Ω1

c1

π

∞∫
0

1

Ω2

e
− t

Ω2 ·
π/2∫
0

exp

(
− c2

2 sin2 θ
· α2t

α2t 1
γl

+ 1
γv

)
1

c2
2 sin2 θ

· β2

α2t 1
γl

+ 1
γv

+ 1
Ω1

· dθ · dt.(15)

By using the variable substitution of θ in (15), partial fraction and the special functions,

we can derive the unconditional probability Pb(E) as stated in the following proposition.

Theorem 4. The averaged BER performance of the proposed one-relay Soft-Decode-and-

Forward distributed Alamouti’s code system, with Gaussian approximation parameters γl,
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channel statistics γv, Ω = [Ω1,Ω2] and the modulation parameters c1 and c2, is given as

Pb(γl, γv,Ω, c1, c2)

=
c1

2Ω2

∞∫
0

{
[1− Φ(

√
P )] exp

(
− t

Ω2

)

− 1√
S

[1− Φ(
√
PS)] exp

(
PS − P − t

Ω2

)}
dt (16)

where P = c2α2t
2α2t 1

γl
+ 2
γv

, S = 2
c2γvβ2Ω1

+ 2tα2

c2γlβ2Ω1
+ 1 and Φ(x) = erf(x) = 2√

π

x∫
0

e−t
2
dt is the

error function.

Proof: See appendix 7.5.

6.3.2 Averaged BER for Soft-relaying without STC

Consider the soft-relaying system without STC as the reference system. The difference

from the one-relay SDF & DSTBC system exists in the second time phase. In the reference

one-relay SDF system, the relay obtains the normalized LLR for vertical parity bits li, simply

multiplies it with a constant η and forwards to the destination. The receiver observations

yrefi is given by

yrefi = ηh2li + vi, i ∈ [1, (n− k)× k] (17)

where vi is the Gaussian noise at the destination node with vi ∼ CN (0, σ2
v).

Substituting li from (2), the received signals are:

yrefi = ηh2(
√
Esxi + ni) + vi (18)

The SNR at the receiver can be written as

γT =
η2|h2|2

η2|h2|2 1
γl

+ 1
γv

. (19)
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The averaged BER can further be obtained by averaging over the random variable h2.

Pb(E) = Eh2

[
c1Q

(√
c2γT

)]
= Eh2

[
c1

π

∫ π/2

0

exp
(
− c2γT

2 sin2 θ

)
dθ

]

=
c1

π

π/2∫
0

Eh2

[
exp

(
− c2

2 sin2 θ
· η2|h2|2

η2|h2|2 1
γl

+ 1
γv

)]
dθ. (20)

By considering the variable substitution of θ in (20), we can derive the unconditional

probability Pb(E), as stated in the following proposition.

Theorem 5. The averaged BER performance of the reference SDF system, with Gaussian

approximation parameters γl and channel statistics γv, Ω2 and the modulation parameters

c1 and c2, is given as

Pb(γl, γv,Ω2, c1, c2) =
c1

2Ω2

∫ ∞
0

e
− t

Ω2 · [1− Φ(
√
W )]dt (21)

where W = c2
2

η2t

η2t 1
γl

+ 1
γv

and Φ(x) = erf(x) is the error function.

Proof: See appendix 7.5.

Considering both propositions, we further have

Corollary 1. When α = η and β = 0, the performance of the proposed one-relay SDF

& DSTBC system shown in (16) reduces to the performance of the reference SDF system

shown in (21).

Proof: Marcum Q-Function can be represented by error function as

Q(x) =
1

2
− 1

2
Φ(

x√
2

). (22)

Chernoff bound of Q function is

Q(x) ≤ 1

2
exp(−x

2

2
), x > 0. (23)
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When β → 0, S → +∞. From (22) and (23), we have

lim
S→∞

1√
S

[1− Φ(
√
PS)] exp(PS − P − t

Ω2

)

= lim
S→∞

1√
S

2Q(
√

2PS) exp(PS − P − t

Ω2

)

≤ lim
S→∞

1√
S

exp(−PS) exp(PS − P − t

Ω2

)

= lim
S→∞

1√
S

exp(−P − t

Ω2

) = 0 (24)

Since P > 0 and S > 0,

1√
S

[1− Φ(
√
PS)] exp(PS − P − t

Ω2

) ≥ 0. (25)

From (24) and (25), we have

lim
S→∞

1√
S

[1− Φ(
√
PS)] exp(PS − P − t

Ω2

) = 0. (26)

When α = η,P = W . By substituting (26), (16) is equal to (21), when α = η and

β = 0. �
From the above derivation and the results in the two propositions, the proposed system

with DSTBC can be regarded as the generalization of the SDF system.

6.3.3 Line model

To evaluate the BER performance at the receiver of the proposed one-relay SDF &

DSTBC and reference one-relay SDF system in (16) and (21), respectively, we use the

line simulation model60,15 which assumes that the relay is located on the line connecting

the source with the destination as in Fig. 6.3. This model is more practical in real systems

where the relay is usually located somewhere between the two terminals. We set the distance

between source and relay as unit 1 and that between relay and destination as λ. When the

relay moves from the source to the destination, λ changes from 1 to 0.
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Figure 6.3. Line model

In addition to Rayleigh fading, large path-loss model with path loss exponent n = 2 is

also considered to calculate the average SNR at the relay and destination nodes in different

time phases. That is, the SNR values in two systems are related as

Ω2 = Ω1 ·
1

λ2
(27)

6.3.4 2nd-Time-Phase Power Allocation and Optimization

Power Allocation between the Source and the Relay in the second time phase

In subsection 6.3.2, we discussed the differences between two systems in the second time

phase. We use E to represent the total power used in two systems. E is the sum of E1 and

E2 which are the power in the first and second time phase respectively. In the first time

phase, the power spent in both systems are the same. In order to make the total power

between the reference one-relay SDF and the proposed one-relay SDF & DSTBC systems

equal, the power used in the second time phase, which are Eref
2 and Eprop

2 , should be equal.

For the reference system, the relay decodes the received stream horizontally and further

gets the LLR of Pv (l). It then forwards l to the destination. The average energy of

transmitted signal at the relay can be calculated as

E[|l|2] = E[|
√
Esx+ n|2]

= Es|x|2 + 2
√
EsE[x]E[n∗] + σ2

n. (28)
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Since E[n] = E[n∗] = 0, then we have,

E[|l|2] = Es + σ2
l /µ

2
l

In order to normalize the transmission energy per symbol in the second phase to Es, we

transmit the received signal with a coefficient η, where

η =

√
Es√

E[|l|2]
=

1√
1 + 1

γl

. (29)

For the proposed one-relay SDF & DSTBC system when DSTBC is used, the relay and

source cooperatively transmit signal to the destination. The transmission factors at the

relay and source are α and β respectively. In order to make a fair comparison between the

two systems, we need to equal the total energy.

Eprop
2 = E[|αl|2] + E[|β

√
Esx|2]

= α2E[|l|2] + β2Es

= α2(Es + σ2
l /µ

2
l ) + β2Es = Eref

2 = Es (30)

Then we have

α2 =
(1− β2)Es

(Es + σ2
l /µ

2
l )

=
1− β2

1 + 1
γl

, β ∈ [0, 1].

Power Optimization

Substituting the relationship between α and β in Proposition 1, it provides a way to

optimally allocate the power between the relay node and source node in the 2nd time phase.

For any given channel scenario, (16) is a function of only one parameter β. The optimal

β value can be obtained by setting the 1st derivative to be zero. However, by observing
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Figure 6.4. BER performance of proposed one-relay SDF & DSTBC system by changing γl when λ = 0.3,
Ω1 = 10dB, γv = 1

(16), it is much involved to find a closed-form equation of this derivative. At this point, a

simple numerical method is introduced to find the value of β where the optimal Space-Time

decoded performance is achieved. We simply divide β from 0 to 1 into n small steps. For the

ith small step, we denote the variation of BER performance as ∆BERi. Then the optimal

power ratio βopt is located at the ith step where ∆BERi ≈ 0. By this method, βopt is easy

to obtain.

6.3.5 Numerical Results for DSTBC Decoding

We evaluate the BER performance for DSTBC decoding of the proposed one-relay SDF

& DSTBC system by changing γl and λ where Figs. 6.4 and 6.5 show their averaged BER

respectively. The results illustrate that STBC outperforms traditional soft relaying (β = 0)

for most of the cases which is due to the diversity gained reaped with DSTBC.

Fig. 6.4 contains the theoretical BER and simulation results when power allocation is

used in line model. The relay locates between the source and the destination where λ = 0.3

and we fix the direct link SNR to 10dB. These results clearly show the close match between
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Figure 6.5. BER performance of proposed one-relay SDF & DSTBC system by changing λ when γl = 10,
Ω1 = 10dB, γv = 1

that theoretical and simulation BER performance and hence validates our analytic work.

Numerical power optimization method illustrated in the last subsection is introduced to

calculate the maximal power allocation ratio βopt under different channel conditions. Table

6.3 shows the numerical results of power optimization. These results of βopt are consistent

with the three curves in Fig. 6.4 with the same system conditions.

Table 6.3. Optimal power ratio βopt in different channel conditions.

γl λ Ω βopt
300 0.3 10dB 0.68
10 0.3 10dB 0.68
3 0.3 10dB 0.90

We can consider the reference one-relay SDF system as a special case of proposed one-

relay SDF & DSTBC system when β = 0. To verify this extreme case, we evaluate the

reference one-relay SDF and proposed one-relay SDF & DSTBC system performance when

the relay locates where λ = 0.3, 0.5, and 0.8 and the direct link SNR is fixed to 10dB as

well. Fig. 6.5 shows the results and confirm that when β = 0, the proposed one-relay SDF

& DSTBC system recedes to reference one-relay SDF system. On the other hand, we can
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Figure 6.6. Modified one stage SISO TPC decoder

see that it is not alway superior to use DSTBC instead of SDF alone. When β > 0.96

for λ = 0.3, the reference system outperforms. Intuitively, these are the cases where the

function of relay is not fully utilized due to the very small amplifying factor α. In fact, by

comparing results in Propositions 1 and 2, it is always possible to determine when to use

DSTBC and when to reduce it to SDF alone.

6.4 Turbo Decoding and Simulation Results

6.4.1 Turbo decoding

The destination receives the two parts of the TPC matrix {S, Ph} and Pv via the direct

and relay Rayleigh channels over different SNRs. Then it constructs a complete TPC by

arranging the received data matrices S, Ph and Pv as in Fig. 6.1 in order to start rows and

columns iterative decoding.

Similarly to the soft-decoding performed at the relay, the SISO decoder at the destination

uses Chase II algorithm16 to find the decision codeword τ = {τ1, τ2, . . . , τn}, τj ∈ {−1,+1},

for each decoded row or column. The confidence value φ of the decision codeword C will be

evaluated using:

φi = f

 ∑
j∈{j|(yji−dji ).dji<0}

(yji − d
j
i )

2

 , 1 ≤ i ≤ k. (31)

The final normalized log extrinsic soft output for the jth bit (1 ≤ j ≤ n) of the decoded

codeword is given by56:

wj = τj

(
σ2

2
ln

(
φ+ exp(2rjτj/σ

2)

1− φ

)
− rjτj,

)
(32)
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where wj is the normalized log extrinsic information output, τj is the element of the decision

codeword, rj is the soft input bit to the decoder. The value of soft output also depends on

variance σ2 of the channel. We assume that the two values of σ2 for the two received parts

at the destination are provided at the input of the decoder. In rows decoding of the TPC

matrix, the value of σ2 for the first k rows is equal to σ2
w/Ω1 of the direct channel in the

first time phase, whereas this value is set to 1/γT for the remaining n− k rows of the TPC

matrix shown in Fig. 6.1.

Fig. 6.6 shows the SISO decoder implementation for the cooperative based decoder. The

diagram represents one stage of decoding along the rows (columns) where m denotes the

mth decoding stage; τ is the hard-decoded output and r is the channel output. The input

bit to the decoder is the summation of the channel output and the normalized log extrinsic

information of the previous decoding stage. For the first decoding stage, wj (1 ≤ j ≤ n) is

set to zero for all the decoded rows.

6.4.2 Simulation and Results

In this part, we show the simulation results obtained from the proposed one-relay Space-

Time coded distributed Turbo Product Code(STBC-DTPC) system using SDF relaying

protocol at the relay. We compare its performance with the original distributed Turbo

Product Code75. The two component codes used in the DTPC simulations have the same

parameters, where n = 64, k = 51 and δ = 6.

The simulations are carried over 0.1 steps of λ from 0 up to 1 using the line model,

and for every step the system is tested against different values of γw to obtain the system

performance in terms of the BER. The performance of original DTPC and STBC-DTPC

systems are shown in Fig. 6.7 where the thick solid line is for STBC-DTPC system. The

γw which represents the SNR of the direct link (from source to relay) of both systems are

selected as 4dB, 5dB, 6dB, 7dB, and 8dB respectively. The results show that the overall

decoding output at destination turns better when the direct link situation becomes better.

78



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10-7

10-6

10-5

10-4

10-3

10-2

10-1

Position 

BE
R

 

 

w=4 dB STBC

w=5 dB STBC

w=6 dB STBC

w=7 dB STBC

w=8 dB STBC

w=4 dB

w=5 dB

w=6 dB

w=7 dB

w=8 dB

Figure 6.7. The BER performance of STBC-DTPC in Rayleigh fading channel by fixing γw to 4,5,6,7,8dB

4 4.5 5 5.5 6 6.5 7
10-6

10-5

10-4

10-3

10-2

10-1

SNR

BE
R

 

 

=0.1
=0.3
=0.4
=0.5
=0.7

Figure 6.8. The BER performance of STBC-DTPC in Rayleigh fading channel compared to SDF-DTPC by fixing
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Furthermore, Fig. 6.7 shows the difference between the two systems in performance expands

when the channel condition raises.

Fig. 6.8 shows the performance of STBC-DTPC system in another scenario. λ (the

relay location between the source and the destination) is fixed to 0.1, 0.3, 0.4, 0.5 and 0.7

respectively. At each relay location, we raise the source to destination channel condition

from 4dB to 7dB to get the overall BER performance at destination after turbo decoding.

The results show that STBC-DTPC system reach its best performance when the λ equals

0.3 or 0.4 which indicates that the relay moves to the middle of the source-destination line.

6.4.3 Power Allocation and Optimization

Power Allocation for two time phases

In subsection 6.4.3, we presented the power allocation method between the source and

the relay in the second time phase. We use E to represent the total power and E1 and E2

represent the power in the first and second time phase respectively. Furthermore, E21 and

E22 are used to define the power at the source and the relay in the second time phase. In the

method in subsection 6.4.3, we assumed the power spent in two time phases are the same

(E1 = E2 = E21 + E22 = 1). However, there is a question regarding this power allocation

method: if we unevenly allocate power between two time phases (E1 6= E2), could we get a

better overall performance than the previous equal allocation method?

In order to make the total power between the proposed method and the 2nd-time-phase

method equal, the total power used in the two time phases should be 2, which is

E = E1 + E2 = E1 = E1 + E21 + E22 = 2. (33)

The proposed algorithm can be implemented in the following steps:

1. Take values of E1 from 0 to 2 with an arbitrary interval.
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2. In the first time phase, the source sends information stream to both the relay and

destination using power E1. We can approximate the SNR of the output signal at the

relay (γl) by Monte-Carlo simulation.

3. The averaged BER performance of the one-relay SDF distributed Alamouti’s code

system can be evaluated by (4) after γl is obtained. The problem of getting the

optimal power ratio between the relay and the source can be seen as a 2nd-Time-Phase

Power Allocation and Optimization problem and βopt can be obtained by following the

method in Section 6.4.3.

4. Based on E1, E2 and β, we can get the overall system performance from Monte-Carlo

simulations.

5. Choose the optimal system performance from the results based on different E1.

We can also represent the steps of this proposed algorithm with a flowchart shown in Fig

6.9.

Simulation results

Same as previous sections, we test our proposed algorithm in the line model as shown

in Fig. 6.10. The relay locates near to the source where λ = 0.8 and the SNR between the

source and destination (i.e., SNRsd) is 10dB.

By giving different values of E1 from 0 to 2 with an arbitrary interval of 0.05, as illus-

trated in step 2, we approximate the SNR of the output signal at the relay by Monte-Carlo

simulation. Fig 6.11 shows the Gaussian approximation of LLR values when E1 = 0.3. “x”

marks show the pdf of LLR at the relay and the solid line is the approximated Gaussian pdf

by using GA method. The pdf of LLR matches the Gaussian well which indicates that LLR

values can be approximated by Gaussian distributed random variable.

For a certain value of E1, the value of E2 can be calculated by (33). The problem of

getting the optimal power ratio between the relay and the source can be seen as a 2nd-Time-
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Figure 6.11. Gaussian approximation of LLR values when E1 = 0.3.

Phase Power Allocation and Optimization problem. We obtain the optimal value of β (βopt)

by the method stated in Section 6.4.3. Thus, when E1 = 0.05,0.1,0.2 and 0.3, the βopt is

shown in Fig. 6.12 and Table 6.4.

Table 6.4. Optimal power ratio βopt for different E1.

E1 σl γl βopt
0.05 0.409 6 0.73
0.1 0.2323 18 0.70
0.2 0.0734 186 0.70
0.3 0.0227 1941 0.70

Based on E1, E2 and β, we get the overall system performance after turbo decoding from

Monte-Carlo simulation as shown in Fig. 6.13.

In the 2nd-Time-Phase Power Allocation and Optimization method in Section 6.4.3, we

have E1 = E2 = 1. It is a special case of our proposed method when E1 = 1 in Fig. 6.13. It

shows that the performance when E1 = 1 is not optimal in our scenario. When E1 = 1.55,

the whole system obtains the overall optimal power allocation and the BER after turbo

decoding reaches 1.3× 10−4.

83



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10-3

10-2

10-1



B
it 

E
rr

or
 P

ro
ba

bi
lit

y

 

 
E1=0.05
E1=0.1
E1=0.2
E1=0.3

Figure 6.12. Optimal power ratio βopt for different E1.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10-4

10-3

10-2

10-1

100

E1

P
e

 

 
1st iteration
2nd iteration
3rd iteration
4th iteration

Figure 6.13. The overall system performance in line model when λ = 0.8 and SRNsd = 10dB.

84



Chapter 7
DISTRIBUTED SPACE-TIME CODE ENHANCED

SOFT DECODE-AND-FORWARD (SDF) RELAYING
SYSTEM WITH TWO RELAYS

7.1 System Model

1
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Figure 7.1. The system model of two-relay SDF & DSTBC.

We consider a four-node-network consisting of one source ‘S’, one destination ‘D’ and

two relays ‘R1’ and ‘R2’ as shown in Fig. 7.1. All channels (i.e., g1, g2, h1, h2) are assumed to

be mutually independent Rayleigh fading channels. Additive Gaussian noise is assumed at

the Relay nodes and the destination node. The relays demodulate and decode the received

data stream and generate the reliability values of the source, i.e., the log-likelihood ratio
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(LLR) values. This soft information is then coordinately sent to the destination using the

Alamouti’s code as shown in the solid lines.

The modern decoding algorithms for channel codes, including the sum-product algorithm

for low-density parity-check (LDPC) codes and the maximum a-posteriori probability (MAP)

algorithm for turbo codes, all use the belief propagation and can be collectively called the

message-passing algorithms. The soft output of the decoder, represented as the LLR values,

can be seen as the result of the sum effect of independent random variables. By the central

limit theorem (CLT), these values approach to a Gaussian distribution. This feature is

captured in the Gaussian Approximation (GA) in22. The solid statistical justification for

the GA on why and how well the assumption holds can be found in22,9,30. The LLR messages

from decoders of message passing algorithms can be approximated by GA. This has been

detailed illustrated from Chapter 5. Therefore, the soft value in node Ri(i = 1, 2) for a

source bit xj, after a simple normalization, can be represented as

lij = xj + nij, (1)

where nij ∼ CN (0, σ2
i /µ

2
i ); j = 1, . . . , N are complex normal distributed random variables

and N is the number of bits in the source packet. µi and σi are the mean and variance of

the Gaussian approximation. In practice, these values can be obtained from simulation by

using all ones (or zeros) as the input bits. As a result, the signal-to-noise-ratio (SNR) of the

output signal at ith relay is

γi =
µ2
i

σ2
i

. (2)

7.1.1 Space-Time Encoding at Relays

The outputs of relay decoders are rearranged into two signal streams as shown in Table

7.1 and radiated to the destination. α and β are amplifying factors in R1 and R2, which can

be used to adjust the total transmission power and the power allocation.
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After distributed space-time coding, the received data at the destination are

 y1

y∗2

 =

 αl11 −βl∗22

αl12 βl∗21


 h1

h2

+

 v1

v2


where vi ∼ CN (0, σ2

v) (i = 1, 2) and let γv = Es/σ
2
v . Here Es is the average power for the

signal transmitted from the source. Substituting lij from (1), the received signals are

Y = HX +N + V (3)

where Y = [y1, y
∗
2]T (“T” represents transpose), X = [x1, x

∗
2]T , V = [v1, v

∗
2]T , H =

 αh1 −βh2

βh∗2 αh∗1


and N =

 αh1n11 − βh2n
∗
22

αh∗1n
∗
12 + βh∗2n21

 .

7.1.2 Space-Time Decoding at Destination

At the destination, the classical space-time decoding algorithm is adopted to estimate

the transmitted data, which multiplies the received data with H+= (HHH)−1HH where HH

is the Hermitian of H. It can be found that

H+ =
1

α2|h1|2 + β2|h2|2

 αh∗1 βh2

−βh∗2 αh1


Table 7.1. Symbols transmitted at antennas

time1 time2 time3 time4 ...
Antenna at R2 −βl∗22 βl∗21 −βl∗24 βl∗23 ...
Antenna at R1 αl11 αl12 αl13 αl14 ...
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and the estimates of the transmitted symbols [x̂1, x̂
∗
2]T are

 x̂1

x̂∗2

 =

 x1

x∗2

+H+

 αh1n11 − βh2n
∗
22

αh∗1n
∗
12 + βh∗2n21

+H+

 v1

v∗2

 .
Since nij ∼ CN (0, 1/γi) and vi ∼ CN (0, Es/γv), the SNR of x̂i, i = 1, 2, is found as

γT =
α2|h1|2 + β2|h2|2

α2|h1|2/γ1 + β2|h2|2/γ2 + 1/γv
. (4)

7.2 Performance of DSTBC Decoding

7.2.1 Average BER for Decoding of DSTBC

The system average BER performance is based on the distribution of γT (i.e., energy per

symbol over noise). Given a fixed value γT , the BER Pb for coherent binary signals is83

Pb(γT ) ≈ c1Q
(√

c2γT
)

where c1, c2 are modulation parameters, such as c1 = 1, c2 = 2 for

BPSK. Considering the probability distribution of γT , the averaged BER can be obtained

as83

Pb(E) =
c1

π

∫ π/2

0

MγT

(
− c2

2 sin2 θ

)
dθ (5)

where MγT (·) is the moment generating function (MGF) of γT . By observing (4), we can

see that γT is in the form of a function T = X+Y
aX+bY+c

with positive constants of a, b and c.

Without the loss of generality (WLOG), we assume a ≤ b hereafter. Since hi in γT follows

hi ∼ CN (0,Ωi), |hi|2 is exponentially distributed random variable (RV) with parameter 1
Ωi

for i = 1, 2. Therefore, we can set X and Y in T as exponential RVs with parameter λ1 and
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λ2. By comparing γT and T , we have the parameters in T as

λ1 =
1

α2Ω1

, λ2 =
1

β2Ω2

a = 1/γ1, b = 1/γ2, c = 1/γv (6)

In order to solve (5), we need to find the MGF of T first and then tackle the integral in (5)

afterwards. We first present the following Lemma.

Lemma 2. Assume X, Y are exponential random variables with parameter λ1, λ2 and 0 <

a ≤ b, 0 < c. The MGF MT (s;λ1, λ2) of the function T = X+Y
aX+bY+c

is given as

MT (s;λ1, λ2) = 1 +

∫ 1/a

0

s
exp

(
st− λ1ct

1−at

)
λ1

λ2

bt−1
1−at + 1

dt

+

∫ 1/b

0

s

(
1− 1

λ1

λ2

bt−1
1−at + 1

)
exp

(
st− λ2ct

1− bt

)
dt (7)

Proof: See Appendix A. �

Based on (7), we can further obtain the system average BER as follows.

Theorem 6. For the system with two relays and soft information forwarding with distribut-

ed STBC, given the parameters γi (i = 1, 2 and γ1 ≥ γ2) in the Gaussian approximation,

the channel statistics Ωi(i = 1, 2) and γv, the power amplifying factors α and β and the

modulation parameters c1 and c2, the average BER performance is

Pb(E) =
c1

2
−
c1
√
c2

2
√

2π

[ ∫ γ1

0

exp
(
− c2t

2
− 1

α2Ω1

t/γv
1−t/γ1

)
√
t
(
β2Ω2

α2Ω1

t/γ2−1
1−t/γ1

+ 1
) dt

+

∫ γ2

0

(
1− 1

β2Ω2

α2Ω1

t/γ2−1
1−t/γ1

+ 1

)
exp

(
− c2t

2
− 1

β2Ω2

t/γv
1−t/γ2

)
√
t

dt

]
(8)

Proof: See Appendix B. �

This one-integral formula, considering all necessary parameters in the system and chan-

nels, can be numerically calculated very easily and thus provides an accurate and quick

evaluation of the system performance for various conditions.
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7.2.2 Line model

To evaluate the BER performance at the receiver of the proposed two-relay SDF &

DSTBC system in (8), we use the line simulation model60,15 which assumes that the relay is

located on the line connecting the source with the destination as in Fig. 6.3. This model is

more practical in real systems where the relay is usually located somewhere between the two

terminals. We set the distance between source and relay as unit 1 and that between relay

and destination as λ. When the relay moves from the source to the destination, λ changes

from 1 to 0.

In addition to Rayleigh fading, large path-loss model with path loss exponent n = 2 is

also considered to calculate the average SNR at the relay and destination nodes in different

time phases. That is, the SNR values in two systems are related as

Ω2 = Ω1 = Ω · 1

λ2
(9)

7.2.3 Power Allocation and Optimization

Power Allocation between the Source and the Relay

In subsection 7.2.1, we discussed the DSTBC decoding performance for our proposed

two-relay SDF & DSTBC system in the second time phase. For the convenience of further

comparison between one-relay and two-relay system, we use the same notation and method

for power allocation in this proposed two-relay system. We use E to represent the total

power. E is the sum of E1 and E2 which are the power in the first and second time phase

respectively. In the first time phase, the power spent in both systems are the same. In order

to make the total power between the one-relay and the two-relay systems equal, the power

used in the second time phase, which are E1−relay
2 and E2−relay

2 , should be equal to Es.

For the proposed two-relay system when DSTBC is used, the two relays cooperatively

transmit signal to the destination. The transmission factors at the two relays are α and β
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respectively. In order to make a fair comparison between the two systems, we need to equal

the total energy.

E2−relay
2 = E[|αl11|2] + E[|βl21|2]

= α2E[|
√
Esx1 + n11)|2] + β2E[|

√
Esx1 + n2

21|2]

= α2(Es + σ2
1/µ

2
1) + β2(Es + σ2

2/µ
2
2) = Es (10)

Then we have

α2 =
Es − β2(Es + σ2

2/µ
2
2)

Es + σ2
1/µ

2
1

=
1− β2(1 + 1/γ2)

1 + 1/γ1

, β ∈ [0, 1].

Power Optimization

Substituting the relationship between α and β in Theorem 6, it provides a way to opti-

mally allocate the power between the two relay nodes in the 2nd time phase. For any given

channel scenario, (8) is a function of only one parameter β. The optimal β value can be

obtained by setting the 1st derivative to be zero. However, by observing (8), it is much

involved to find a closed-form equation of this derivative. At this point, a simple numerical

method is introduced to find the value of β where the optimal Space-Time decoded perfor-

mance is achieved. We simply divide β from 0 to 1 into n small steps. For the ith small step,

we denote the variation of BER performance as ∆BERi. Then the optimal power ratio βopt

is located at the ith step where ∆BERi ≈ 0. By this method, βopt is easy to obtain.

7.2.4 Numerical and Simulation Results for DSTBC Decoding

We validate the exact BER expression in (8) with Monte-Carlo simulation results. In the

reported results here, we choose Ω1 = Ω2 = 1 and c1 = 1, c2 = 2 (i.e., BPSK modulation).

First, we unevenly allocate the power at two relays with α =
√

2/3, β =
√

1/3. We also
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Figure 7.2. Average system BER, α =
√
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√
1
3 .

pick arbitrary values for SNRs pairs at relays (γ1 and γ2) and change the channel condition

of the relay link (γv) from 0dB to 30dB to evaluate the BER performance. It can be found

in Fig. 7.2 that, for all five pairs of SNRs at two relays, the analytic and simulation results

match perfectly. The curve of “theory (nTx=2, nRx=1, Alamouti)” shows the well known

BER results of the classic Alamouti’s code with 2 transmitters and 1 receiver. We can see

that when the virtual Gaussian channel SNRs are high (γ1 = 20dB and γ2 = 15dB), the

system performance with 2 relays approaches to the performance of classic Alamouti’s code

as expected. Second, we divide power at two relays evenly with α = β =
√

1/2. We pick

arbitrary γv, and for each γv and increase the SNRs at both relays from 0dB to 10dB. As

shown in Fig. 7.3, the simulation and analytic results again match to each other perfectly.

We also compare the two-relay case with the one-relay case. For the one-relay system,

the transmit power is the sum of two-relay case for the fair comparison. As shown in Fig.

7.3, the two-relay system outperforms in both tested scenarios at γv = 10 and 20 dB. These

outperforming results show that, for the two-relay scheme, the diversity gain is obtained at
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Figure 7.3. Average system BER, α = β =
√

1
2 .

the receiver by using the distributed STBC.

The result in this section clearly has other potential applications. For example, for given

channel conditions and the total power of the relays, (8) may serve as the objective function

so that α and β can be optimally selected to minimize the system BER.

7.2.5 Comparison of One-Relay and Two-Relay Systems

We evaluate the BER performance comparison for DSTBC decoding of the one-relay

and two-relay systems by changing γl, γ1, γ2, β and λ where Figs. 7.4 and 7.5 show their

averaged BER respectively. The results illustrate that STBC outperforms traditional soft

relaying (β = 0) for most of the cases which is due to the diversity gained reaped with

DSTBC. They also show that if the Gaussian approximation SNRs γl, γ1, γ2 are high (10

dB), the two-relay system outperforms.

Fig. 7.5 contains the theoretical BER when power allocation is used in line model. The

relays locates between the source and the destination where λ = 0.3, λ = 0.5, λ = 0.8

and we fix the direct link SNR to 10dB. We compare the BER of three systems: one-relay
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soft information relaying system (without DSTBC), one-relay DSTBC system with source

and relay cooperation in the second time phase, and two-relay DSTBC system with two

relays cooperation in the second time phase. These results clearly show that when the GA

SNR is high (10 dB), two-relay system outperforms one-relay systems due to the channel

coding gain obtained at the relays from the soft decoder. We can consider the one-relay soft

information relaying system (without DSTBC) as a special case of the one-relay DSTBC

system when β = 0. To verify this extreme case, we evaluate one-relay SIR and one-relay

DSTBC system performance when the relay locates where λ = 0.3, 0.5, and 0.8 and the

direct link SNR is fixed to 10dB as well. Fig. 7.5 shows the results and confirm that when

β = 0, the one-relay DSTBC system recedes to one-relay SIR system.

However, the two-relay DSTBC system is not always superior to one-relay DSTBC sys-

tem, especially when the GA SNR is low (5 dB). Fig. 7.4 shows the comparison of these

two systems when the relays cannot obtain good decoding results. With the same system

conditions as in the last experiment, the relays locate between the source and the destination

where λ = 0.3, λ = 0.5, λ = 0.8 and we fix the direct link SNR to 10dB. For the one-relay

system, we change β2 to allocate different power between the source and the relay. For the

one-relay system, changing β2 makes different power allocation between the two relays. By

observing three pairs of curves in Fig. 7.4, when β2 are small, the two-relay system has

better performance while, when β2 are large, the one-relay system outperforms. It clearly

shows the tradeoff on the power allocation between the source and the relays. The source

locates farther than the relays to the receiver, however, it transmits clean set of information.

There exists a certain point that when the power allocated on the source is large enough,

e.g. β2 > 0.6 when relays locate at λ = 0.5, the one-relay system outperforms due to the

significant effect of error-free signal transmitted by the source.
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Figure 7.6. Test scenario for two-relay DSTBC system.

7.3 Turbo Decoding and Simulation Results

The destination receives TPC matrix {S, Ph} in the first time phase via direct link from

the source. Both relays will coordinately forward the TPC matrix Pv using Alamouti’s code

via two relay paths over different SNRs. Then the destination constructs a complete TPC

by arranging the received data matrices S, Ph and Pv in order to start rows and columns

iterative decoding.

We test the overall system decoding performance in a 2-dimensional scenario. As shown

in Fig. 7.6, two relays can move around the source at fixed distances. We assume the SNR

for direct channel is 15dB and SNRs for inter-user channels are fixed to 20dB. Since the

distances between the relays and destination are varying, the SNRs for relay channels can

be changed from 10dB to 25dB.

Fig. 7.7 shows the overall turbo decoding BER under this scenario. It shows that as the

improvement of the relay link condition, the overall decoding performance increases. We can

also see an error floor occurs at high SNRrd. This is becuase the direct link condition is fixed,

no matter how we increase the relay link condition, the overall performance improvement is

limited.
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THEDERIVATIONOFAN ERROR PROBABILITY Pb(γ,Ω, c1, c2)

IN A ONE-INTEGRAL FORM

Since h2 is circularly symmetric complex Gaussian variable, i.e., h2 ∼ CN (0,Ω2), the

PDF of |h2|2, fh2(t), is an exponential function with parameter 1
Ω2

. By including this PDF

according to the definition of expectation and settting Z = c2/2
α2t
γn

+ 1
γv

, (18) becomes

Pb(E) =
c1

π

π/2∫
0

∞∫
0

1

1 + c2
2 sin2 θ

γwΩ1
· 1

1 + 1
sin2 θ

Zβ2Ω1
· 1

1 + 1
sin2 θ

Zα2tΩ
· 1

Ω2
e
− t

Ω2 dtdθ

=
c1

π

∞∫
0

1

Ω2
exp

(
− t

Ω2

)
·
π/2∫
0

1

1 + c2
2 sin2 θ

γwΩ1

· 1

1 + 1
sin2 θ

Zβ2Ω1
· 1

1 + 1
sin2 θ

Zα2tΩ
· dθ · dt (11)

Set u = 1
tan θ

, then we have 1 + u2 = 1
sin2 θ

, du = −1
sin2 θ

dθ, dθ = − sin2 θdu = − 1
1+u2du.

Pb(E) =
c1

π

∞∫
0

1

Ω2
exp

(
− t

Ω2

)
·

+∞∫
0

1

1 + 1
2(1 + u2)c2γwΩ1

·

1

1 + (1 + u2)Zβ2Ω1
· 1

1 + (1 + u2)Zα2tΩ
· 1

1 + u2
du · dt. (12)
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Set A = Zβ2Ω1, B = Zα2tΩ, C = 1
2
c2γwΩ1, and the integration of u as P

(u)
b (γ,Ω, c1, c2)

So,

P
(u)
b (γ,Ω, c1, c2)

=

+∞∫
0

1

Au2 +A+ 1
· 1

Bu2 +B + 1
· 1

Cu2 + C + 1
· 1

u2 + 1
du

=

+∞∫
0

[ 1

u2 + 1
− A3

(A−B)(A− C)

1

Au2 +A+ 1
+

B3

(A−B)(B − C)

1

Bu2 +B + 1

+
C3

(A− C)(C −B)

1

Cu2 + C + 1

]
du

=

+∞∫
0

1

u2 + 1
du− A3

(A−B)(A− C)

+∞∫
0

1

Au2 +A+ 1
du+
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+∞∫
0

1

Bu2 +B + 1
du+

C3

(A− C)(C −B)

+∞∫
0

1

Cu2 + C + 1
du (13)

From32, it is known that

∫
1

a+ bx2
dx =

1√
ab

arctanx

√
b

a
if [ab > 0].

Then,

P
(u)
b (γ,Ω, c1, c2)

= arctan u|+∞0 − A3

(A−B)(A− C)

1√
A(A+ 1)

arctan

(
u

√
A
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)∣∣∣∣∣
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0
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B
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u
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C
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0

=
π

2
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(A−B)(A− C)

1√
A(A+ 1)

+
B3

(A−B)(B − C)

1√
B(B + 1)

+
C3

(A− C)(C −B)

1√
C(C + 1)

]
(14)
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Therefore, we have obtained the exact one-integral form of BER performance of the dis-

tributed Alamouti’s code for proposed cooperative diversity system as stated in (19) in

Theorem 2.
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THEDERIVATIONOFW (ρi, c2,γ,Ω) USINGAPPROXIMATION

METHODS

Since,

W (ρi, c2,γ,Ω) = Eh11,h12,h,h2 [exp (−ρic2γT )]

= Eh2 [Eh11,h12,h[exp
(
−ρic2(γw|h11|2 + µβ2|h12|2 + µα2|h2|2|h|2)

)
|h2]],

by substituting µ with 1
α2|h2|2
γn

+ 1
γv

, and following Lemma 1 in section 2, we can transform it

to

W (ρi, c2,γ,Ω) = Eh2

 1

1 + ρic2γwΩ11

1

1 + ρic2
1

α2|h2|2
γn

+ 1
γv

β2Ω1

1

1 + ρic2
1

α2|h2|2
γn

+ 1
γv

α2|h2|2Ω

 . (15)

We continue to derive the above equation by the definition of expectation and set t = |h2|2.

Since Rayleigh fading is assumed, |h|2, |h11|2, |h12|2, |h2|2 are exponentially distributed with

parameters 1
Ω

, 1
Ω1

, 1
Ω1

, 1
Ω2

, respectively. Averaging over h2, we have

W (ρi, c2,γ,Ω)

=
1

Ω2

1

1 + ρic2γwΩ1

∞∫
0

1

1 + ρic2
1

α2t
γn

+ 1
γv

β2Ω1

1

1 + ρic2
1

α2t
γn

+ 1
γv

α2tΩ
exp

(
− t

Ω2

)
dt

=
1

Ω2
· 1

1 + ρic2γwΩ1
·

α2

γn
α2

γn
+ ρic2α2Ω

∞∫
0

t+ 1
γv

γn
α2

t+ 1
γv

γn
α2 + ρic2β2Ω1

γn
α2

·
t+ 1

γv
γn
α2

t+ 1
γv

1
α2

γn
+ρic2α2Ω

exp

(
− t

Ω2

)
dt (16)

We set

A′ =
γn
γvα2

, B′ =
1

γv

γn
α2

+ ρic2β
2Ω1

γn
α2
, and C ′ =

1

γv

1
α2

γn
+ ρic2α2Ω

. (17)
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Then we have,

W (ρi, c2,γ,Ω) =
1

Ω2
· 1

1 + ρic2γwΩ1
·

α2

γn
α2

γn
+ ρic2α2Ω

·

∞∫
0

t+A′

t+B′
· t+A′

t+ C ′
· exp

(
− t

Ω2

)
dt. (18)

Partial fraction has been taken on the integrand, and W (ρi, c2,γ,Ω)can be solved as

W (ρi, c2,γ,Ω)

=
1

Ω2

1

1 + ρic2γwΩ1

1

1 + ρic2Ωγn

[ ∞∫
0

exp

(
− t

Ω2

)
dt+

(A′ −B′)2

C ′ −B′

∞∫
0

exp(− t
Ω2

)

B′ + t
dt

+
(A′ − C ′)2

B′ − C ′

∞∫
0

exp(− t
Ω2

)

C ′ + t
dt
]
. (19)

By checking (32,p 334, eqn(3.310)) and (32,p 341, eqn(3.352-4)), it can be found that

∞∫
0

exp(−px)dx =
1

p
, [Re p > 0]

∞∫
0

exp(−µx)

x+ β
dx = − exp(βµ)Ei(−µβ), [| arg β| < π,Re µ > 0]. (20)

Substituting (20) into (19) gives the final form of W (ωi, c2,γ,Ω).

W (ωi, c2,γ,Ω)

=
1

Ω2

1

1 + ρic2γwΩ1

1

1 + ρic2Ωγn
·
[
Ω2 −

(A′ −B′)2

C ′ −B′
exp

(
B′

Ω2

)
Ei

(
−B

′

Ω2

)
−(A′ − C ′)2

B′ − C ′
exp

(
C ′

Ω2

)
Ei

(
−C

′

Ω2

)]
. (21)

Finally, the approximation BER of the distribute Alamouti coding system can be ob-

tained by using inequality (29) and (21), as stated in Theorem 3.
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THE DERIVATION OF AN AVERAGED ERROR PROBABILI-

TY Pb(E) FOR PROPOSED ONE-RELAY SDF & DSTBC SYS-

TEM

Considering the variable substitution of θ in (15), we set u = 1
tan θ

, then we have 1+u2 =

1
sin2 θ

, du = −1
sin2 θ

dθ, dθ = − sin2 θdu = − 1
1+u2du.

Pb(E) =
c1

π

∞∫
0

1

Ω2
e
− t

Ω2 ·
+∞∫
0

exp

[
−c2

2
(1 + u2) · α2t

α2t 1
γl

+ 1
γv

]
1

c2
2 (1 + u2) · β2

α2t 1
γl

+ 1
γv

+ 1
Ω1

· 1

1 + u2
du · dt. (22)

Then,

P
(u)
b (E)

=

+∞∫
0

exp

[
−c2

2
(1 + u2) · α2t

α2t 1
γl

+ 1
γv

]
1

c2
2

(1 + u2) · β2

α2t 1
γl

+ 1
γv

+ 1
Ω1

· 1

1 + u2
du

= exp

[
−c2

2

α2t

α2t 1
γl

+ 1
γv

] +∞∫
0

exp

[
−u2 c2α

2t

2α2t 1
γl

+ 2
γv

] 1
c2
2

(1 + u2) · β2

α2t 1
γl

+ 1
γv

+ 1
Ω1

· 1

1 + u2

 du
= exp

[
−c2

2

α2t

α2t 1
γl

+ 1
γv

] +∞∫
0

exp

[
−u2 c2α

2t

2α2t 1
γl

+ 2
γv

]
[

Ω1

1 + u2
− c2γlγvβ

2Ω2
1

2γn + 2tγvα2 + c2γlγvβ2Ω1 + c2γlγvβ2Ω1u
2

]
du

= Ω1 exp

[
− c2α

2t

2α2t 1
γl

+ 2
γv

]{ +∞∫
0

exp

[
−u2 c2α

2t

2α2t 1
γl

+ 2
γv

]
1

1 + u2
du

−
+∞∫
0

exp

[
−u2 c2α

2t

2α2t 1
γl

+ 2
γv

]
1

2
c2γvβ2Ω1

+ 2tα2

c2γlβ2Ω1
+ 1 + u2

du

}
(23)
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By setting P = c2α2t
2α2t 1

γl
+ 2
γv

, Q = 2
c2γvβ2Ω1

+ 2tα2

c2γlβ2Ω1
+ 1

P
(u)
b (E) = Ω1 exp [−P ]

{ +∞∫
0

exp
[
−u2P

] 1

1 + u2
du

−
+∞∫
0

exp
[
−u2P

] 1

Q+ u2
du

}
(24)

With the help of the following equation in [32 p367 3.466-1],

∫ ∞
0

e−ω
2x2

x2 + ξ2
dx = [1− Φ(ξω)]

π

2ξ
eξ

2ω2

, [Reξ > 0, | argω| < π

4
], (25)

the first items becomes,

+∞∫
0

exp
[
−u2P

] 1

1 + u2
du =

[
1− Φ

(√
P
)] π

2
exp(P ),

and the second items changes to,

+∞∫
0

exp
[
−u2P

] 1

Q+ u2
du =

[
1− Φ(

√
PQ)

] π

2
√
Q

exp(PQ).

By substituting the above two results into (24), (22) becomes,

Pb(E)

=
c1

π

∞∫
0

1

Ω2

e
− t

Ω2 · Ω1 exp (−P )

{[
1− Φ

(√
P
)] π

2
exp(P )

−
[
1− Φ

(√
PQ
)] π

2
√
Q

exp(PQ)

}
dt (26)
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From eqn. (26), we can easily get the averaged BER performance of the proposed Soft-

Decode-and-Forward distributed Alamouti’s code system as stated in (16) in Theorem 4.
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THE DERIVATION OF AN AVERAGED ERROR PROBABILI-

TY Pb(E) FOR REFERENCE ONE-RELAY SDF SYSTEMWITH-

OUT DSTBC

By setting t = |h2|2,

Pb(E)

=
c1

π

∫ π/2

0

∫ ∞
0

exp

[
− c2

2 sin2 θ
· η2t

η2t 1
γl

+ 1
γv

]
· 1

Ω2

e
− t

Ω2 · dtdθ

=
c1

π

∫ ∞
0

1

Ω2

e
− t

Ω2 ·
∫ ∞

0

exp

[
−c2

2
(1 + u2) · η2t

η2t 1
γl

+ 1
γv

]
· 1

1 + u2
du · dt.

And we have,

P
(u)
b (E)

=

∫ ∞
0

exp

[
−c2

2
(1 + u2) · η2t

η2t 1
γl

+ 1
γv

]
· 1

1 + u2
du

=

∫ ∞
0

exp

[
−c2

2

η2t

η2t 1
γl

+ 1
γv

− c2

2
u2 · η2t

η2t 1
γl

+ 1
γv

]
· 1

1 + u2
du

= exp

[
−c2

2

η2t

η2t 1
γl

+ 1
γv

]
·
∫ ∞

0

exp

[
−u2 · c2

2

η2t

η2t 1
γl

+ 1
γv

]
· 1

1 + u2
du. (27)

By setting W = c2
2

η2t

η2t 1
γl

+ 1
γv

, then

P
(u)
b (E) = exp(−W ) ·

∫ ∞
0

exp
[
−u2 ·W

]
· 1

1 + u2
du.

With the help of (25), P
(u)
b (E) becomes,
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P
(u)
b (E) = exp(−W ) · [1− Φ(

√
W )]

π

2
exp(W )

= [1− Φ(
√
W )]

π

2
. (28)

By substituting (28) into (27), we get the averaged BER performance of the reference

Soft-Decode-and-Forward system as stated in (21) in Theorem 5.
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THE DERIVATION OF MGF OF FUNCTION T = X+Y
aX+bY+c

The cumulative distribution function (CDF) of T can be calculated by the definition of

CDF

FT (t) = P{T ≤ t}

= P

{
X + Y

aX + bY + c
≤ t

}
= P{X + Y ≤ aXt+ bY t+ ct}

= P{(1− at)X ≤ (bt− 1)Y + ct} (29)

Since a and b are symetric, suppose 0 ≤ a ≤ b, then 0 ≤ 1/b ≤ 1/a.

1. If t ≥ 1/a, then 1− at ≤ 0 and bt− 1 > 0. In this case, FT (t) = 1.

2. If 1/b ≤ t < 1/a, then 1− at > 0 and bt− 1 ≥ 0.

FT (t) = P{(1− at)X ≤ (bt− 1)Y + ct}

= P

{
X ≤ bt− 1

1− at
Y +

ct

(1− at)

}
=

∫ ∞
0

[
1− exp

(
− λ1

(
bt− 1

1− at
y +

ct

1− at

))]
λ2 exp(−λ2y)dy

= 1− λ2

∫ ∞
0

exp

(
− λ1

(
bt− 1

1− at
y +

ct

1− at

)
− λ2y

)
dy

= 1− λ2 exp

(
λ1

ct

1− at

)∫ ∞
0

exp

([
− λ1

bt− 1

1− at
− λ2

]
y

)
dy

= 1−
exp

(
− λ1

ct
1−at

)
λ1

λ2

bt−1
1−at + 1

(30)

3. If 0 ≤ t < 1/b, then 1 − at > 0 and bt − 1 < 0. FT (t) ≥ 0 holds only when
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bt−1
1−atY + ct

1−at ≥ 0 which is Y ≤ ct
1−bt .

FT (t) =

∫ ct
1−bt

0

[
1− exp

(
− λ1

bt− 1

1− at
y − λ1

ct

1− at

)]
λ2 exp(−λ2y)dy

= 1−
exp

(
− λ1

ct
1−at

)
λ1

λ2

bt−1
1−at + 1

−
(

1− 1
λ1

λ2

bt−1
1−at + 1

)
exp

(
− λ2

ct

1− bt
)

(31)

Based on the discussion above,

FT (t) =



1−
exp

(
− λ1

ct
1−at

)
λ1

λ2

bt−1
1−at + 1

−
(

1− 1
λ1

λ2

(bt−1)
(1−at) + 1

)
exp

(
− λ2

ct

1− bt
)
, 0 ≤ t < 1/b,

1−
exp

(
− λ1

ct
1−at

)
λ1

λ2

bt−1
1−at + 1

, 1/b ≤ t < 1/a

1, t ≥ 1/a

Then the MGF can be derived as

MT (s, λ1, λ2)

=

∫ ∞
0

exp(st)dFT (t)

=

∫ 1/b

0

exp(st)dFT (t) +

∫ 1/a

1/b

exp(st)dFT (t)

= exp(st)FT (t)|1/b0 −
∫ 1/b

0

sFT (t) exp(st)dt

+ exp(st)FT (t)|1/a1/b − s
∫ 1/a

1/b

FT (t) exp(st)dt (32)

The first term in (32) can be derived as

exp(st)FT (t)|1/bt=0 = exp(s/b)

[
1− exp

(
− λ1

c/b

1− a/b

)]
(33)
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The third term in (32) can be derived as

exp(st)FT (t)|1/a1/b

= exp(s/a)− exp(s/b)

[
1− exp

(
− λ1

c/b

1− a/b

)]
(34)

By substituting (33) and (34) into (32), we can easily get the MGF of function T as

stated in (7) in Lemma 2.
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THE DERIVATION OF AN AVERAGED ERROR PROBABILI-

TY Pb(E) FOR THE PROPOSED TWO-RELAY SDF & DSTBC

SYSTEM

We substitute the MGF in (7) into (5) to derive the BER performance of the proposed

system.

Pb(E) =
c1

π

∫ π/2

0

MγT (s) dθ|s=− c2
2 sin2 θ

=
c1

π

∫ π/2

0

dθ +
c1

π

∫ π/2

0

∫ 1/a

0

s
exp

(
st− λ1

ct
1−at

)
λ1

λ2

bt−1
1−at + 1

dtdθ

+
c1

π

∫ π/2

0

∫ 1/b

0

s exp

(
st− λ2

ct

1− bt

)
dtdθ

−c1

π

∫ π/2

0

∫ 1/b

0

s
exp

(
st− λ2

ct
1−bt

)
λ1

λ2

bt−1
1−at + 1

dtdθ|s=− c2
2 sin2 θ

=
c1

2
+
c1

π

[ ∫ 1/a

0

1
λ1

λ2

bt−1
1−at + 1

exp

(
− λ1

ct

1− at

)
Φ(θ)dt

+

∫ 1/b

0

exp

(
− λ2

ct

1− bt

)
Φ(θ)dt

−
∫ 1/b

0

1
λ1

λ2

bt−1
1−at + 1

exp

(
− λ2

ct

1− bt

)
Φ(θ)dt

]
(35)

where Φ(θ) =
∫ π/2

0
(− c2

2 sin2 θ
) exp(− c2

2 sin2 θ
t)dθ. By setting u = 1

tan θ
, then we have 1 + u2 =

1
sin2 θ

, du = −1
sin2 θ

dθ, dθ = − sin2 θdu = − 1
1+u2du.

We substitute θ into u, and then Φ(θ) becomes

Φ(θ) = −c2

2

∫ ∞
0

(1 + u2) exp

(
− c2t

2
(1 + u2)

)(
− 1

1 + u2

)
du

=
c2

2

∫ ∞
0

exp

(
− c2t

2
(1 + u2)

)
du

=
c2

2
exp

(
− c2t

2

)∫ ∞
0

exp

(
− c2t

2
u2

)
du (36)
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By checking (3.321-3) on p336 in32, which is

∫ ∞
0

exp(−q2x2)dx =

√
π

2q
, [q > 0],

and by substituting (36) into (35), we obtain BER as

Pb(E) =
c1

2
−
c1
√
c2

2
√

2π

[ ∫ 1/a

0

exp
(
− c2t

2
− λ1

ct
1−at

)
√
t
(
λ1

λ2

bt−1
1−at + 1

) dt

+

∫ 1/b

0

(
1− 1

λ1

λ2

bt−1
1−at + 1

)
exp

(
− c2t

2
− λ2

ct
1−bt

)
√
t

dt

]
(37)

By substituting parameters in (6) into (37), the final form of BER of the proposed

Space-Time enhanced SIR system is stated in (8) in Theorem 6.
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