934 research outputs found

    Proactive Highly Ambulatory Sensor Routing (PHASeR) protocol for mobile wireless sensor networks

    Get PDF
    This paper presents a novel multihop routing protocol for mobile wireless sensor networks called PHASeR (Proactive Highly Ambulatory Sensor Routing). The proposed protocol uses a simple hop-count metric to enable the dynamic and robust routing of data towards the sink in mobile environments. It is motivated by the application of radiation mapping by unmanned vehicles, which requires the reliable and timely delivery of regular measurements to the sink. PHASeR maintains a gradient metric in mobile environments by using a global TDMA MAC layer. It also uses the technique of blind forwarding to pass messages through the network in a multipath manner. PHASeR is analysed mathematically based on packet delivery ratio, average packet delay, throughput and overhead. It is then simulated with varying mobility, scalability and traffic loads. The protocol gives good results over all measures, which suggests that it may also be suitable for a wider array of emerging applications

    Topology design and cross-layer optimization for wireless body sensor networks

    Get PDF
    Wireless Body Sensor Networks play a crucial role in digital health care nowadays. Due to the size limitation on the sensor nodes and the life critical characteristics of the signals, there are stringent requirements on network’s reliability and energy efficiency. In this article, we propose a mathematical optimization problem that jointly considers network topology design and cross-layer optimization in WBSNs. We introduce multilevel primal and dual decomposition methods and manage to solve the proposed non-convex mixed-integer optimization problem. A solution with fast convergence rate based on binary search is provided. Simulation results have been supplemented to show that our proposed method yields much better performance than existing solutions

    BOB-RED queue management for IEEE 802.15.4 wireless sensor networks

    Get PDF
    This study is aimed at exploring why many economists propose a transfer scheme and debt mutualisation for the Eurozone. This would equip the Eurozone with better tools to deal with an economic shock, like the 2010-2012 sovereign debt crisis, thus making it more financially stable. After the theoretical presentation, the study presents a unique institutional design with an EU Treasury that manages debt mutualisation and a transfer scheme as well as other competences that address other present economic challenges. Crucial to the study are the issues of moral hazard and adverse selection that arise when thinking of European economic integration.L’objectiu del treball és explorar la raó per la qual molts economistes proposen un sistema de transferències fiscals i la mutualització del deute a l’Eurozona. Així se la dotaria amb eines més efectives per pal·liar un xoc econòmic, com la crisi del deute sobirà del 2010-2012. A continuació, es presenta un disseny institucional únic d’un Tresor de l’Euro que gestionaria les competències esmentades (i d’altres) per combatre alguns dels reptes econòmics actuals. El risc moral i de selecció adversa, qüestions que sorgeixen en pensar la drecera que ha de prendre la integració econòmica Europea, són cabdals per aquest estudi

    Distributed Optimal Lexicographic Max-Min Rate Allocation in Solar-Powered Wireless Sensor Networks

    Get PDF
    Understanding the optimal usage of fluctuating renewable energy in Wireless Sensor Networks (WSNs) is complex. Lexicographic Max-min (LM) rate allocation is a good solution, but is non-trivial for multi-hop WSNs, as both fairness and sensing rates have to be optimized through the exploration of all possible forwarding routes in the network. All current optimal approaches to this problem are centralized and off-line, suffering from low scalability and large computational complexity; typically solving O(N2 ) linear programming problems for N-node WSNs. This paper presents the first optimal distributed solution to this problem with much lower complexity. We apply it to Solar Powered WSNs (SP-WSNs) to achieve both LM optimality and sustainable operation. Based on realistic models of both time-varying solar power and photovoltaic-battery hardware, we propose an optimization framework that integrates a local power management algorithm with a global distributed LM rate allocation scheme. The optimality, convergence, and efficiency of our approaches are formally proven. We also evaluate our algorithms via experiments on both solar-powered MicaZ motes and extensive simulations using real solar energy data and practical power parameter settings. The results verify our theoretical analysis and demonstrate how our approach outperforms both the state-of-the-art centralized optimal and distributed heuristic solutions

    Distributed Optimal Lexicographic Max-Min Rate Allocation in Solar-Powered Wireless Sensor Networks

    Get PDF
    Understanding the optimal usage of fluctuating renewable energy in Wireless Sensor Networks (WSNs) is complex. Lexicographic Max-min (LM) rate allocation is a good solution, but is non-trivial for multi-hop WSNs, as both fairness and sensing rates have to be optimized through the exploration of all possible forwarding routes in the network. All current optimal approaches to this problem are centralized and off-line, suffering from low scalability and large computational complexity; typically solving O(N2 ) linear programming problems for N-node WSNs. This paper presents the first optimal distributed solution to this problem with much lower complexity. We apply it to Solar Powered WSNs (SP-WSNs) to achieve both LM optimality and sustainable operation. Based on realistic models of both time-varying solar power and photovoltaic-battery hardware, we propose an optimization framework that integrates a local power management algorithm with a global distributed LM rate allocation scheme. The optimality, convergence, and efficiency of our approaches are formally proven. We also evaluate our algorithms via experiments on both solar-powered MicaZ motes and extensive simulations using real solar energy data and practical power parameter settings. The results verify our theoretical analysis and demonstrate how our approach outperforms both the state-of-the-art centralized optimal and distributed heuristic solutions

    Distributed Optimal Lexicographic Max-Min Rate Allocation in Solar-Powered Wireless Sensor Networks

    Get PDF
    Understanding the optimal usage of fluctuating renewable energy in wireless sensor networks (WSNs) is complex. Lexicographic max-min (LM) rate allocation is a good solution but is nontrivial for multihop WSNs, as both fairness and sensing rates have to be optimized through the exploration of all possible forwarding routes in the network. All current optimal approaches to this problem are centralized and offline, suffering from low scalability and large computational complexity—typically solving O( N 2 ) linear programming problems for N -node WSNs. This article presents the first optimal distributed solution to this problem with much lower complexity. We apply it to solar-powered wireless sensor networks (SP-WSNs) to achieve both LM optimality and sustainable operation. Based on realistic models of both time-varying solar power and photovoltaic-battery hardware, we propose an optimization framework that integrates a local power management algorithm with a global distributed LM rate allocation scheme. The optimality, convergence, and efficiency of our approaches are formally proven. We also evaluate our algorithms via experiments on both solar-powered MICAz motes and extensive simulations using real solar energy data and practical power parameter settings. The results verify our theoretical analysis and demonstrate how our approach outperforms both the state-of-the-art centralized optimal and distributed heuristic solutions. </jats:p
    • …
    corecore