9,161 research outputs found

    Incremental spectral clustering and its application to topological mapping

    Get PDF
    This paper presents a novel use of spectral clustering algorithms to support cases where the entries in the affinity matrix are costly to compute. The method is incremental – the spectral clustering algorithm is applied to the affinity matrix after each row/column is added – which makes it possible to inspect the clusters as new data points are added. The method is well suited to the problem of appearance-based, on-line topological mapping for mobile robots. In this problem domain, we show that we can reduce environment-dependent parameters of the clustering algorithm to just a single, intuitive parameter. Experimental results in large outdoor and indoor environments show that we can close loops correctly by computing only a fraction of the entries in the affinity matrix. The accompanying video clip shows how an example map is produced by the algorithm

    Sequence-based Multiscale Model (SeqMM) for High-throughput chromosome conformation capture (Hi-C) data analysis

    Full text link
    In this paper, I introduce a Sequence-based Multiscale Model (SeqMM) for the biomolecular data analysis. With the combination of spectral graph method, I reveal the essential difference between the global scale models and local scale ones in structure clustering, i.e., different optimization on Euclidean (or spatial) distances and sequential (or genomic) distances. More specifically, clusters from global scale models optimize Euclidean distance relations. Local scale models, on the other hand, result in clusters that optimize the genomic distance relations. For a biomolecular data, Euclidean distances and sequential distances are two independent variables, which can never be optimized simultaneously in data clustering. However, sequence scale in my SeqMM can work as a tuning parameter that balances these two variables and deliver different clusterings based on my purposes. Further, my SeqMM is used to explore the hierarchical structures of chromosomes. I find that in global scale, the Fiedler vector from my SeqMM bears a great similarity with the principal vector from principal component analysis, and can be used to study genomic compartments. In TAD analysis, I find that TADs evaluated from different scales are not consistent and vary a lot. Particularly when the sequence scale is small, the calculated TAD boundaries are dramatically different. Even for regions with high contact frequencies, TAD regions show no obvious consistence. However, when the scale value increases further, although TADs are still quite different, TAD boundaries in these high contact frequency regions become more and more consistent. Finally, I find that for a fixed local scale, my method can deliver very robust TAD boundaries in different cluster numbers.Comment: 22 PAGES, 13 FIGURE

    Topological structures in the equities market network

    Get PDF
    We present a new method for articulating scale-dependent topological descriptions of the network structure inherent in many complex systems. The technique is based on "Partition Decoupled Null Models,'' a new class of null models that incorporate the interaction of clustered partitions into a random model and generalize the Gaussian ensemble. As an application we analyze a correlation matrix derived from four years of close prices of equities in the NYSE and NASDAQ. In this example we expose (1) a natural structure composed of two interacting partitions of the market that both agrees with and generalizes standard notions of scale (eg., sector and industry) and (2) structure in the first partition that is a topological manifestation of a well-known pattern of capital flow called "sector rotation.'' Our approach gives rise to a natural form of multiresolution analysis of the underlying time series that naturally decomposes the basic data in terms of the effects of the different scales at which it clusters. The equities market is a prototypical complex system and we expect that our approach will be of use in understanding a broad class of complex systems in which correlation structures are resident.Comment: 17 pages, 4 figures, 3 table

    ASPECT: A spectra clustering tool for exploration of large spectral surveys

    Full text link
    We present the novel, semi-automated clustering tool ASPECT for analysing voluminous archives of spectra. The heart of the program is a neural network in form of Kohonen's self-organizing map. The resulting map is designed as an icon map suitable for the inspection by eye. The visual analysis is supported by the option to blend in individual object properties such as redshift, apparent magnitude, or signal-to-noise ratio. In addition, the package provides several tools for the selection of special spectral types, e.g. local difference maps which reflect the deviations of all spectra from one given input spectrum (real or artificial). ASPECT is able to produce a two-dimensional topological map of a huge number of spectra. The software package enables the user to browse and navigate through a huge data pool and helps him to gain an insight into underlying relationships between the spectra and other physical properties and to get the big picture of the entire data set. We demonstrate the capability of ASPECT by clustering the entire data pool of 0.6 million spectra from the Data Release 4 of the Sloan Digital Sky Survey (SDSS). To illustrate the results regarding quality and completeness we track objects from existing catalogues of quasars and carbon stars, respectively, and connect the SDSS spectra with morphological information from the GalaxyZoo project.Comment: 15 pages, 14 figures; accepted for publication in Astronomy and Astrophysic

    Fair Evaluation of Global Network Aligners

    Get PDF
    Biological network alignment identifies topologically and functionally conserved regions between networks of different species. It encompasses two algorithmic steps: node cost function (NCF), which measures similarities between nodes in different networks, and alignment strategy (AS), which uses these similarities to rapidly identify high-scoring alignments. Different methods use both different NCFs and different ASs. Thus, it is unclear whether the superiority of a method comes from its NCF, its AS, or both. We already showed on MI-GRAAL and IsoRankN that combining NCF of one method and AS of another method can lead to a new superior method. Here, we evaluate MI-GRAAL against newer GHOST to potentially further improve alignment quality. Also, we approach several important questions that have not been asked systematically thus far. First, we ask how much of the node similarity information in NCF should come from sequence data compared to topology data. Existing methods determine this more-less arbitrarily, which could affect the resulting alignment(s). Second, when topology is used in NCF, we ask how large the size of the neighborhoods of the compared nodes should be. Existing methods assume that larger neighborhood sizes are better. We find that MI-GRAAL's NCF is superior to GHOST's NCF, while the performance of the methods' ASs is data-dependent. Thus, the combination of MI-GRAAL's NCF and GHOST's AS could be a new superior method for certain data. Also, which amount of sequence information is used within NCF does not affect alignment quality, while the inclusion of topological information is crucial. Finally, larger neighborhood sizes are preferred, but often, it is the second largest size that is superior, and using this size would decrease computational complexity. Together, our results give several general recommendations for a fair evaluation of network alignment methods.Comment: 19 pages. 10 figures. Presented at the 2014 ISMB Conference, July 13-15, Boston, M
    corecore