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Résumé

La navigation sécuritaire et efficace des robots mobiles repose grandement sur l’utilisation des cap-

teurs embarqués. L’un des capteurs qui est de plus en plus utilisé pour cette tâche est le Light Detection

And Ranging (LiDAR). Bien que les recherches récentes montrent une amélioration des performances

de navigation basée sur les LiDARs, faire face à des environnements non structurés complexes ou

des conditions météorologiques difficiles reste problématique. Dans ce mémoire, nous présentons une

analyse de l’influence de telles conditions sur la navigation basée sur les LiDARs. Notre première

contribution est d’évaluer comment les LiDARs sont affectés par les flocons de neige durant les tem-

pêtes de neige. Pour ce faire, nous créons un nouvel ensemble de données en faisant l’acquisition

de données durant six précipitations de neige. Une analyse statistique de ces ensembles de données,

nous caractérisons la sensibilité de chaque capteur et montrons que les mesures de capteurs peuvent

être modélisées de manière probabilistique. Nous montrons aussi que les précipitations de neige ont

peu d’influence au-delà de 10 m. Notre seconde contribution est d’évaluer l’impact de structures tridi-

mensionnelles complexes présentes en forêt sur les performances d’un algorithme de reconnaissance

d’endroits. Nous avons acquis des données dans un environnement extérieur structuré et en forêt, ce

qui permet d’évaluer l’influence de ces derniers sur les performances de reconnaissance d’endroits.

Notre hypothèse est que, plus deux balayages laser sont proches l’un de l’autre, plus la croyance que

ceux-ci proviennent du même endroit sera élevée, mais modulé par le niveau de complexité de l’en-

vironnement. Nos expériences confirment que la forêt, avec ses réseaux de branches compliqués et

son feuillage, produit plus de données aberrantes et induit une chute plus rapide des performances de

reconnaissance en fonction de la distance. Notre conclusion finale est que, les environnements com-

plexes étudiés influencent négativement les performances de navigation basée sur les LiDARs, ce qui

devrait être considéré pour développer des algorithmes de navigation robustes.
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Abstract

To ensure safe and efficient navigation, mobile robots heavily rely on their ability to use on-board

sensors. One such sensor, increasingly used for robot navigation, is the Light Detection And Ranging

(LiDAR). Although recent research showed improvement in LiDAR-based navigation, dealing with

complex unstructured environments or difficult weather conditions remains problematic. In this thesis,

we present an analysis of the influence of such challenging conditions on LiDAR-based navigation.

Our first contribution is to evaluate how LiDARs are affected by snowflakes during snowstorms. To

this end, we create a novel dataset by acquiring data during six snowfalls using four sensors simulta-

neously. Based on statistical analysis of this dataset, we characterized the sensitivity of each device

and showed that sensor measurements can be modelled in a probabilistic manner. We also showed

that falling snow has little impact beyond a range of 10 m. Our second contribution is to evaluate

the impact of complex of three-dimensional structures, present in forests, on the performance of a

LiDAR-based place recognition algorithm. We acquired data in structured outdoor environment and

in forest, which allowed evaluating the impact of the environment on the place recognition perfor-

mance. Our hypothesis was that the closer two scans are acquired from each other, the higher the

belief that the scans originate from the same place will be, but modulated by the level of complexity

of the environments. Our experiments confirmed that forests, with their intricate network of branches

and foliage, produce more outliers and induce recognition performance to decrease more quickly with

distance when compared with structured outdoor environment. Our conclusion is that falling snow

conditions and forest environments negatively impact LiDAR-based navigation performance, which

should be considered to develop robust navigation algorithms.

v



Contents

Résumé iii

Abstract v

Contents vi

List of Tables vii

List of Figures ix

Acknowledgements xiii

Introduction 1

1 Literature Review 5
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Snowfall Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Feature-Based Place Recognition and Forest Environments . . . . . . . . . . . . 7

2 Snowfall Influence on LiDAR Data 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Basics of LiDARs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Temporal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Distribution of Snowflake Echoes as a Function of Range . . . . . . . . . . . . . 23
2.6 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Forest Influence on LiDAR-Based Place Recognition 27
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Place Recognition Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Conclusion 55

Bibliography 59

vi



List of Tables

1.1 Examples of popular descriptors and keypoints detectors for images and 3D data. . . 7

2.1 Overview of characteristics specific to each LiDAR. . . . . . . . . . . . . . . . . . . 16
2.2 Overview of our snow dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Details of measurement selection for the analysis. . . . . . . . . . . . . . . . . . . . 19
2.4 Overall average snowflake echoes for the complete 02-19 dataset, per sensor. . . . . 22

3.1 List of devices available on the Husky A200 and their use in our experiments. . . . . 28
3.2 Details about the point clouds created with our two LiDARs. . . . . . . . . . . . . . 33
3.3 Datasets acquired for place recognition analysis. . . . . . . . . . . . . . . . . . . . . 33
3.4 The set of NARF parameters used for the BoW pre-ordering step and the candidate

transformations scoring step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5 A summary of the different scenarios for scoring corresponding pixels of the range

images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.6 Summary of scans pairs labelling for results analysis. . . . . . . . . . . . . . . . . . 49

vii





List of Figures

2.1 Example of a LiDAR device and a simplified representation of the laser trajectory. . . 12
2.2 Representation of LiDAR beams in different conditions along with the resulting wave-

forms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Point cloud representation of a LiDAR acquisition and examples of erroneous data

regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 The experimental setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 View from the camera. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6 Four overlaid consecutive scans for the LMS200 sensor, and the first echo scans for

the Hokuyo sensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.7 Temporal evolution of the percentage of echoes coming from the falling snow within

5 m of the sensors during the 6 most intense snowfall episodes. . . . . . . . . . . . . 22
2.8 Cartoon representation of the interaction between the probability of detecting a snowflake

and the diminution of snowflakes due to the shielding effect of the building. . . . . . 24
2.9 Histograms of echoes in falling snow during important snowfall days, as a function of

distance reported by the sensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Our robotic platform (Husky A200) and the devices used for data acquisition. . . . . 29
3.2 Partial aerial view of the Laval University campus including the two approximate paths

followed by the robot for data acquisition. . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Images from the UGV camera during the acquisition of the two datasets. . . . . . . . 32
3.4 Examples of point clouds from our datasets viewed from different perspectives. . . . 34
3.5 Examples of range images from the two datasets. . . . . . . . . . . . . . . . . . . . 37
3.6 Example of a partial range image and the corresponding point cloud with an example

of edge caused by an object border. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.7 Illustration of a NARF descriptor calculated on a range image patch. . . . . . . . . . 39
3.8 Examples of NARF keypoints found for two different scans with examples of corre-

spondences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.9 Path adjusted using ICP for our three datasets. . . . . . . . . . . . . . . . . . . . . . 48
3.10 Place recognition results overview for our three datasets. . . . . . . . . . . . . . . . 50

ix





Acronyms

2D

Two Dimensional. 2, 5, 7, 12, 17, 30, 46

3D

Three Dimensional. vii, 2, 7, 8, 12, 13, 15, 17, 30, 32, 35, 36, 40–42, 44

BoW

Bag of Words. vii, 8, 40–42, 44, 53

FN

False Negative. 49

FOV

Field Of View. 32, 33, 52

FP

False Positive. 49–53, 57

GPS

Global Positioning System. 1, 28, 30

GUI

Graphical User Interface. 28

ICP

Iterative Closest Point. ix, 46–48, 53

IMU

Inertial Measurements Units. 1, 28, 30

xi



LiDAR

Light Detection And Ranging. vii, ix, 2, 3, 5, 6, 8, 11–17, 19, 23, 26–30, 33, 36, 41, 44, 49,

51–53, 55–57

NDT

Normal Distribution Transform. 8

PTU

Pan-Tilt Unit. 12, 15, 28–30, 52

RGB

Red, Green, Blue colour. 2, 17, 18

RGB-D

Red, Green, Blue plus Depth. 7

ROS

Robot Operating System. 17, 30

SLAM

Simultaneous Localization And Mapping. 5, 8, 27, 49, 52, 56

SSH

Secure Shell. 28

TN

True Negative. 49

TP

True Positive. 49

UDP

User Datagram Protocol. 32

UGV

Unmanned Ground Vehicle. ix, 5, 28, 32

xii



Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisors Prof. Philippe Giguère and Prof.

Jean-François Lalonde, for the continuous support during my Master studies. They seamlessly pro-

vided funding and research equipment, they assisted me during the writing, but most of all, they shared

their precious knowledge and time to help me reach my goals.

A very special thanks goes out to François Pomerleau, a Postdoctoral Fellow who taught me a lot

about the world of research and helped me learn the essential tools for applied robotics. He always

answered my numerous questions patiently and provided me with useful tips for my work, even after

leaving our research lab.

I would like to thank my fellow lab mates for the help they gave me on multiple projects, the stimu-

lating discussions we had and the fun time we shared during social activities.

xiii





Introduction

Modern robotics has experienced tremendous growth since its inception during the Industrial Revo-

lution. Whether it is to assist humans in their work, to automate some tasks or to perform dangerous

tasks, robots are emerging in a wide variety of applications. Recent technology such as the self-driving

car project from Google and the BigDog quadruped robot from Boston Dynamics are feats of engi-

neering that show how robots have evolved from being able to operate in controlled environments to

performing complex tasks in a challenging or unpredictable situations.

One of the key elements that allowed for such progress is the ability of the robot to adapt to changing

environments. This is especially true for mobile robotics, where not only the surrounding environment

can change, but the robot itself can move and must therefore be able to locate itself. This capability

highly depends on algorithms that convert the raw sensor inputs into a convenient representation or

abstraction of the environment. This concept is known as artificial perception.

A wide range of sensors are available to assist robots navigation. It is possible, for instance, to

estimate the relative movements of the robot using wheel encoders. Unfortunately, when the ground

friction coefficient is variable or the load-bearing surface is very uneven, pose estimation relying solely

on this sensor is highly unreliable. Similarly, Inertial Measurements Units (IMU) are composed of

accelerometers and gyroscopes that can be used to infer changes in position. Although these sensors

can be very precise over short distances, they accumulate errors over time, which inevitably leads to a

drift on the pose estimation.

The natural solution to this problem is to use sensors capable of providing absolute positioning. Ar-

guably the most popular sensor providing such information is the Global Positioning System (GPS).

However, there are inherent problems with this sensor as well. GPS requires receiving the signal of

at least three satellites at all time. These signals can be blocked by building, terrain, dense foliage or

other structures, thus causing important positioning errors or possibly no positioning at all.

Alternatively, a global map of landmarks can be used by the robot to locate itself. These landmarks

are distinctive features acquired using sensors that react to external stimuli of the robot environment

(i.e. exteroceptive sensors). Visual markers acquired with cameras, sounds signatures obtained with

microphones or singular structures detected with sonars are examples of such features. In addition to

solving localization and mapping problems, the use of such features make it possible to perform many
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other navigation tasks. For instance, it is possible to classify ground type to predict traversability or

detect obstacles to compute path planning.

The most widely used sensors for such task is the conventional Red, Green, Blue colour (RGB) cam-

era. In addition to its generally low price, cameras provide valuable appearance information about

the scene in which the robot operates. This information can be processed, for instance, to analyze

geometric elements of the scene or identify objects in it. Despite these obvious advantages, the im-

ages obtained by the cameras are produced by a projection and it is difficult or impossible to retrieve

information regarding the three-dimensional structure of the scene. Furthermore, the quality of acqui-

sitions depends greatly on the lighting conditions of the environment. The processing of these images

for real-time navigation requires powerful hardware, which is not always available on the robot.

The Light Detection And Ranging (LiDAR) is another sensor that provides valuable data about the

scene. It uses a laser to measure distances at different angles from the sensor centre. Most LiDARs

provide Two Dimensional (2D) set of points, but some are able to directly produce Three Dimensional

(3D) data, called point clouds. LiDARs are generally more expensive than cameras, but the geometrical

information obtained therewith is often complementary to the appearance information provided by the

cameras. For instance, a LiDAR will faithfully report the flat structure of a white wall, while the lack

of visual features will make it impossible for the camera to infer such information. On the other hand,

a camera would be able to locate itself using the rich appearance information of a poster on a wall,

but the geometrical information of the wall retrieved by the LiDAR is of little help for the localization

task. Another important difference between those sensors is that the LiDAR is an active sensor that

can be used day and night and which is mostly unaffected by lighting conditions, while the camera

is a passive sensor for which the compensation for changes in lighting conditions is among the most

challenging problems.

In Chapter 1 we will review existing literature about robot navigation. Because cameras were used

in the field before LiDARs and because those sensors are somehow similar, techniques used with

cameras inspired those for LiDARs. For this reason, there will be references related to cameras, but

LiDARs proved to be an excellent choice for robot navigation and will be the sensors of interest

of this document. As we will see, existing works for LiDAR mainly deal with simpler situations

such as structured indoor or semi-structured city environments. We will therefore focus our attention

on more challenging environments such as falling snow conditions or highly unstructured outdoor

environments. More precisely, we are interested in the impact of those complex environments on the

resulting data and the task to be achieved.

Subsequently, in Chapter 2, we will briefly present the basics of how LiDARs operate and how readings

are theoretically affected when scanning small structures or dynamic objects. These conditions are

likely to be found in many complex environments where the robot might need to navigate. Therefore,

we are interested in quantifying the impact such small structures and dynamic objects on the sensor

readings. For that matter, we placed four different LiDARs so as to acquire data during falling snow
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conditions. Using our experimental setup, we are able to evaluate the influence of snowflakes of

various sizes and falling at different rates on the sensors measurements.

Chapter 3 provides a higher level analysis of the influence of the environment on a navigation al-

gorithm. In this case, we chose a state-of-the-art LiDAR-based place recognition algorithm and we

compared the results obtained in different environments. We created our own dataset in conditions

similar to the one presented in the original article and acquired another dataset in forested area. Be-

cause forests are composed of multiple small structures such as branches and leaves, we considered

the latter dataset more challenging, and found that the radius within which it is possible to recognize

places reliably is lower in such environments.
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Chapter 1

Literature Review

1.1 Introduction

Mobile robotics literature contains a wide variety of LiDAR-based solutions to navigation problems.

This includes using 2D for indoor Simultaneous Localization And Mapping (SLAM) [Grisetti et al.,

2007, Kohlbrecher et al., 2011], geolocation in forest [Hussein et al., 2015] or detection of traversable

grass-like vegetation using laser remission [Wurm et al., 2009]. As it is the case for this thesis,

some studies focus their efforts on finding solutions for challenging conditions (or environments). It

should be noted that there is no clear definition of what constitutes challenging conditions, as it varies

between sensors. A good understanding of the LiDAR functioning [Amann et al., 2001] therefore

helps understand how it applies to this sensor (see Section 2.2). The Marulan Data Sets [Peynot et al.,

2010] contains good examples of such conditions, including natural outdoor environments and area

with presence of smoke, dust and rain.

In this thesis, we are interested in the influence of such difficult situations, either due to complex

unstructured environments or challenging weather conditions, on LiDAR-based robot navigation. In

Section 1.2, we will discuss research related to navigation in snowfall conditions, which is the linked

to Chapter 2. Subsequently, Section 1.3 will present papers related to feature-based place recognition

and navigation in forest environments, which are more closely related to Chapter 3.

1.2 Snowfall Conditions

Snowfall conditions are challenging as snowflakes cause occlusion or interference with the laser beam.

Because of their small size and dynamic nature, they tend to produce a signal similar to random noise

in sensors acquisitions. While it is often possible to avoid navigating in these conditions, some robots

will inevitably face this situation in order to perform the tasks for which they were designed.

For instance, Moorehead et al. [1999] aimed at developing a robot to search and classify meteorites

in Antartica. In their experiments, the Unmanned Ground Vehicle (UGV) droves autonomously for
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10.3 km in different weather and terrain conditions. The navigation was based on stereo camera im-

ages and single line LiDAR scans. In this article, the authors explain that the snow-covered surfaces

did not provide a lot of visual cues, which made stereo cameras unreliable. For this reason, the robot

took advantage of the LiDAR, mainly for obstacle avoidance, but often as single sensor. In return,

the authors stated that part of the experiments “was performed during heavy snow which made the

laser useless”, and therefore used alternative solutions. As we will see in Chapter 2, new LiDAR

technologies help reduce the impact of small particles on the readings.

Another example of robots which need to handle all-weather conditions are those deployed on the

battlefield. Yamauchi [2010] uses ultra-wideband radar, stereo camera and LiDAR data for navigation.

According to the author, “[LiDAR] and stereo vision provide greater accuracy and resolution in clear

weather but has difficulty with precipitation and obscurants”. The ultra-wideband radar has the ability

to see through small particles such as snow, rain and fog and is therefore complementary to other

sensors used. The final system achieve good results by using traditional sensor fusion, as well as a

selective use of the sensors, which are activated or deactivated depending on the conditions.

Sumi et al. [2013], for their part, aimed at evaluating sensors for personal care robots in natural

lighting and falling snow conditions. For that matter, they built two simulators that reproduced those

conditions and used three types of sensor: an active stereo sensor (Microsoft Kinect), a LiDAR (Mesa

SR4000) and a passive stereo sensor (PGR Bumblebee2). This approach is interesting since it allowed

to control various parameters that may affect the sensor readings. However, the physical properties

of simulated snowflakes can be different from that of real snowflakes, leading to inaccurate results

for real applications. By contrast, as we used natural events to estimate the impact of snow flakes on

LiDAR measurements, we were not able to control the environment parameters.

The work by Barnum et al. [2010] is probably the most similar to our work presented in Chapter 2, but

applied to video rather than LiDARs data. They explain that rain and snow are dynamic process, which

causes spatial and temporal fluctuations in videos. Although the spatio-temporal changes appear to

be chaotic, they were able to predict the overall effect of these conditions on the video, in frequency

space. This modelling of the effect of weather conditions on videos improved the noise filtering for

features extraction, when compared to previous pixel-based or patch-based methods.

Finally, Servomaa et al. [2002] have installed a set of sensors for snowfall observation. The system

was composed of a radar and a LiDAR that recorded the atmospheric profile up to 6000 m and another

radar along with two balances to record snowfall at ground level. Although the installation was fixed

and the LiDAR was used only to evaluate transition in cloud conditions, they proposed techniques to

estimate snowfall characteristics. Although not specifically mentioned in their paper, these techniques

may advantageously be used to adapt the behaviour of the robot depending on weather conditions.
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1.3 Feature-Based Place Recognition and Forest Environments

As we will see in more details in Chapter 3, place recognition is a useful tool for mobile robot naviga-

tion. A robot can determine whether he is in previously visited place or not by comparing its current

sensor acquisition with those acquired earlier. Since the relevant information density in the raw sensor

data is low, data is usually converted into a representation that better capture the key information. This

process is known as features extraction and consist in identifying points of interest from the sensor

data (e.g. image), called feature keypoints, and create a descriptor for each keypoint. A descriptor

is a vector containing values which should represent the area surrounding the keypoint robustly, even

under small disturbance such as different lighting conditions or change of viewpoint.

The popularity of using features representation can be attributed to the field of computer vision, es-

pecially with the introduction of SIFT [Lowe, 2004] and SURF [Bay et al., 2006]. This concept has

since been applied to 3D data. Table 1.1 present some popular 2D and 3D features.

Although the choice of features can influence the performance of place recognition, we will not ad-

dress this issue directly in this thesis. Instead, we analyze the impact of some environments on the

overall place recognition performance. For those further interested in this topic, a number of articles

that present comparative evaluation of different features are available in the literature. For instance,

Filipe and Alexandre [2014] present an evaluation of 3D keypoint detectors, more precisely for Red,

Green, Blue plus Depth (RGB-D) objects. In this paper, they focus on the invariance of keypoints

detectors to rotations, scales and translation. Similarly, Boyer et al. [2011] propose a benchmark to

estimate how different algorithms perform for retrieving keypoints and descriptors when subject to

different geometric transformations.

Type of data Keypoint/descriptor Name Reference

Image Keypoint Harris and Stephens corners [Harris and Stephens, 1988]

Image Both SIFT [Lowe, 2004]

Image Both SURF [Bay et al., 2006]

3D Descriptor FPFH [Rusu et al., 2009]

3D Both ISS [Yu, 2009]

3D Descriptor SHOT [Tombari et al., 2010]

3D Both NARF [Steder et al., 2011a]

Table 1.1 – Examples of popular descriptors and keypoints detectors for images and 3D data. Some
2D keypoints have been adapted for 3D such as Harris and Stephens and SIFT.

Several techniques have been proposed to solve the place recognition problem, but most approaches

use cameras as primary sensor [Torralba et al., 2003, Ulrich and Nourbakhsh, 2000]. The most note-

worthy example is probably the work of Cummins and Newman [2008], commonly referred as FAB-

MAP. They used a probabilistic framework to recognize previously seen places and identify new
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places. The algorithm was able to recognize the redundant visual information that did not signifi-

cantly help to distinguish places, which was used to reduce the probability of such examples to be

labeled as originating from the same place. They reach recall of 48 % at 100 % precision for a dataset

of 1.9 km. The authors also proposed an enhanced version of the algorithm [Cummins and Newman,

2011] in which they focus on scaleability primarily using the concept of inverted index. They are able

to reach 48 % recall at 100 % precision on a 70 km dataset. As we will see in Chapter 3, place recog-

nition is often used to detect loop closures for SLAM. In this scenario, the presence of false positives

is often catastrophic, which is why they present the results for a precision of 100 %.

By contrast, existing place recognition algorithms based on 3D LiDAR data only are quite limited. To

the best of our knowledge, Magnusson et al. [2009] are the first to address this problem. They used

Normal Distribution Transform (NDT) to create feature histograms based on surface orientation and

smoothness to represent each scan. They also aligned scans with respect to dominant surface orien-

tation to achieve rotation invariance. Finally, they used expectation maximization to automatically

determine the threshold that separated corresponding from non-corresponding scans. They achieved

recall rates between 22.9 % and 69.6 % with false positive rates below 1.17 %, for three different

datasets. More recently, Röhling et al. [2015] proposed a similar approach for solving the place

recognition problem based on 3D lidar data. The authors indicated that they used simpler histograms

and a different distance metric to achieve similar results to Magnusson et al. [2009]. The main contri-

bution of their algorithm is that it is simpler to implement and less computationally demanding.

The two previously mentioned algorithms used global descriptors (i.e. a single descriptor for each

scan), which is often faster to process but less robust to local disturbances than approaches based

on local features (i.e. a set of feature keypoints and associate descriptors for each scan). For our

experiments in Chapter 3, we will use the algorithm proposed by Steder et al. [2011b], which is itself

an extension of their previous work in [Steder et al., 2010]. The algorithm, that will be presented in

more details in Section 3.3, use a mixture of Bag of Words (BoW) and features matching to recognize

places.

To our knowledge, none of the previously discussed algorithms have been tested in forest environ-

ments or have been developed for specific conditions, but were rather proposed as generic solutions.

When the environment in which the robot will operate is known in advance, algorithms can be de-

veloped or fine-tuned using this prior knowledge to potentially improve performance. For instance,

one could intuitively assume that in forest, tree trunks are more reliable features than foliage. Lat-

ulippe et al. [2013] proposed to use machine learning to automatically identify and filter local point

cloud features in natural environments to be robust for scans alignment purpose. In their paper, they

indeed concluded that features produced in foliage regions are not reliable. Other examples of prior

knowledge used for LiDAR-based navigation in forest include [Lalonde et al., 2006], which present a

technique for segmenting data in three classes and [Mcdaniel et al., 2012], which present a technique

for segmenting ground and trees in forest. These segmented regions of data can be used to identify

navigable area or be used as features for multiple tasks.
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An example algorithm using this type of feature, specific to the forest, is presented in Song et al.

[2012a]. They proposed a localization solution using the largest group of approximately parallel tree

trunks as features to align successive scans along five dimensions (ignoring the translation relative to

the gravity vector). Similarly, Miettinen et al. [2007] created a global map of trees in the form of a

graph. In this graph, nodes represented tree trunks and edges represented the distance between those

trunks. This representation was then used for localization and mapping, by using best matched sub

graphs.
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Chapter 2

Snowfall Influence on LiDAR Data

2.1 Introduction

An internal representation of the environment is essential for robots to perform the various tasks for

which they are designed. If such representation is not provided beforehand, which is often the case,

it will be created using sensors available on the robot. Unfortunately, each sensor acquires a specific

type of data in a limited measurement interval. In addition, either because of the sensor itself or

because of the acquisition environment, the data obtained are always noisy. While this can be of little

influence for some simple problems, ignoring these problems can cause serious misunderstanding

of the scene and lead to the failure of the tasks, potentially causing damage to the robot or injuring

humans. As we will see in this chapter, LiDARs enable us to assess the three-dimensional structure the

environment, but they are especially noisy when measuring dynamic objects, small structures or object

edges. Forested area and falling snow conditions are good examples of such challenging environments

for LiDARs. Characterizing how LiDARs will react in those conditions will allow us to develop more

robust and versatile algorithms.

In this chapter, we will first introduce the basics of LiDARs operations (in section 2.2) to better

understand why they are affected by small structures. We will follow up with our main contribution,

that is to provide a characterization of the behaviour of four well-known LiDARs in snowy conditions.

Through an extensive empirical study performed on a novel dataset captured under varying degrees

of snowfall, we evaluate how much these LiDARs are sensitive—or not—to falling snow. We show

that recent advances in sensor designs have increased their robustness even to significant snowfall.

Section 2.3 describe how data acquisition was performed, section 2.4 present a temporal analysis of

the data and section 2.5 describe the distribution of snowflake echoes as a function of range before we

conclude in section 2.6.
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(a) (b) (c)

Figure 2.1 – Example of a LiDAR device and a simplified representation of the laser trajectory. (a)
The SICK LMS151 LiDAR. The truncated cone of the upper part is the place from where the laser is
projected and is made of a material allowing the laser to pass through unaffected. (b) A simplified
representation of how the internal rotating mirror change the scanning angle of the laser. (c) A side
view of the laser beam going out of the LiDAR (figure modified from [SICK, a]).

2.2 Basics of LiDARs

LiDAR is a technology based on laser time of flight to measure distances. Amann et al. [2001] present

the physical details as well as the pros and cons of three time of flight techniques commonly used

in LiDARs, namely the pulsed, phase-shift and frequency modulated continuous wave. Although the

LiDARs we will use for our research are all based on time of flight, the underlying technique is not

specified by the manufacturers. In the context of our research, we focus more on higher level concepts

that could cause sensor readings to be erroneous for modelling environments or objects.

LiDARs generally build 2D data points using an internal rotating mirror (see Figure 2.1b). It is possible

to create a 3D point cloud by moving the sensor with an external tool (e.g. a Pan-Tilt Unit (PTU) or

the robot itself) and merging scans. There are some sensors, such as the Velodyne HDL-32E, that

directly provide this 3D information. Given that the points are acquired sequentially, dynamic objects

may be distorted in the final representation. Figure 2.3b depicts a point cloud created using the 2D

SICK LMS151 mounted on a PTU.

Beams emitted by a LiDAR have a given width and angle at source. This causes the beam two-

dimensional pattern on the target to grow with distance. Once the light hits the target, it bounces back

to the sensor which will extract the range information from it. Obviously, when the target material

is highly absorbent or reflective, the light might not reach the sensor, therefore causing missing data

points. Otherwise, the sensor will receive the signal which may be represented by a curve of light

intensity as function of time. Smooth lambertian surfaces will produce a unimodal distribution from

which it is easy to calculate the target range, but multimodal waveforms caused by partially transparent

material, fog, dust, small objects and edges lead to an ambiguous interpretation. Figure 2.2 depicts

laser beams hitting different targets along with the resulting waveforms. While some LiDARs provide

full waveform, they generally only output a single or few echoes and the inference method differs

between sensors (e.g., using the first or last waveform peak, using the mean). For this reason, it is

12



important to determine whether the sensor is well suited to the needs.

In order to visualize more easily the data obtained with a LiDAR, they are typically represented by a

point cloud. Building such point cloud only consists in converting each distance inferred from a laser

return into a point in the 3D space. Figure 2.3 shows an example of a scene (a) and the corresponding

point cloud representation (b). There are also highlighted regions of the point cloud where examples

of reading errors caused by the environment surrounding the robot can be seen.

In this document, we focus our attention on the impact of small structures such as the branch presented

in Figure 2.3b region D. More specifically, the present chapter deals with the impact of falling snow

on the raw data of LiDARs. In the next section (Section 2.3), we will explain how we gathered data

for this analysis.
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(a)

(b)

Figure 2.2 – Representation of LiDAR beams in different conditions along with the resulting wave-
forms. (a) Different unimodal and multimodal distributions resulting from different target structures.
From Jutzi and Stilla [2006]. (b) The multimodal waveform resulting from a laser beam going through
multiple translucent material. From the SICK LMS500-21000 Lite website [SICK, b].
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(a)

(b)

Figure 2.3 – A picture of a scene (a) and a diagonal view of the point cloud (b) resulting from the
acquisition by the SICK LMS151 LiDAR mounted on a PTU. The sensor position is represented by A.
Region B shows missing points caused by absorbent material (a black box not visible in the picture).
Region C shows noisy points caused by the edge of an object while region D shows a particularly bad
3D representation of a fine structure (tree branch).
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2.3 Data Acquisition

In this section, we report on the relevant characteristics of the four sensors used in our dataset. We then

describe the physical configuration of our test setup, then outline the weather conditions pertaining to

each of the six collected snowfalls. Finally, we describe how the information from the LiDARs was

preprocessed before analysis.

2.3.1 Sensors

Data acquisition was performed with the following four LiDARs: the SICK LMS200, SICK LMS151,

Hokuyo UTM-30LX-EW, and the Velodyne HDL-32E. Relevant sensor information is provided in

Table 2.1, but the reader is referred to the manufacturers’ documentation for additional information1.

The first element that gives a qualitative overview of the sensor performance is the maximum acquisi-

tion distance. This value depends on several factors, such as lighting conditions and target remission.

This value is provided directly for the HDL-32E and UTM-30LX-EW, but based on a target remission

greater than 75 % for the LMS200 and LMS151. Another element to consider is the shape and area

covered by the beam, which influences the probability of hitting a snowflake as well as the proportion

of area it covers. A final significant element which changes from one sensor to the other is the num-

ber of echoes returned. The Hokuyo sensor can return up to three echoes, which means that it could

locate two snowflakes before the beam reaches the ground. Regarding the LMS151, two echoes are

evaluated by the hardware, but only one is returned. Finally, note that all LiDARs use class 1 laser

with a wavelength of 905 nm.

2.3.2 Setup Configuration

Data acquisition was conducted at Pouliot Hall of Laval University, where sensors were placed close

to the inner wall of a window facing N50°E. As shown in Figure 2.4, a wooden structure held the

sensors side by side at approximately 14 m above the ground. The main scanning plane (i.e. XY

plane in the sensor reference frame) formed a 30° angle with respect to the building wall, so as to

increase the maximum distance as much as possible without having the laser beams hitting trees or a

1Available here: Velodyne [Velodyne, a], Hokuyo [Hokuyo], LMS151 [SICK, c], LMS200 [SICK, 2006]

Sensor Spot shape Spot area
(at 30 m)

Maximum
distance Echoes

SICK LMS200 Circle 165 cm2 28 m 1

SICK LMS151 Circle 22 cm2 50 m 2

Hokuyo UTM-30LX-EW Ellipse 196 cm2 30 m 3

Velodyne HDL-32E Rectangle 51 cm2 70 m 1

Table 2.1 – Overview of characteristics specific to each LiDAR.
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Figure 2.4 – The experimental setup. The 3D axis represents the orientation of the sensors and the
bottom left panel represent the 2D geometry as seen from the right side of the picture.

pedestrian walkway present near the building. In addition, an RGB camera was placed alongside the

LiDARs to provide visual information about the scene. In this configuration, a slight opening of the

window allowed to keep the instruments inside while scanning outside. To avoid direct interference

between sensors, corrugated plastic layers were placed between them. Figure 2.5 shows the scene as

observed by the RGB camera placed with the sensors.

2.3.3 Dataset Description

Data acquisition started February 12 and ended on March 2. A total of 10 episodes were collected

for a total of more than 50 hours of data. Recordings were made using the Robot Operating System

(ROS)[Willow Garage], which provides standardized data types as well as time synchronization. Data

was acquired at different times of day and in a wide variety of conditions, covering a wide range of

snowflakes size, falling rate and wind speed. Table 2.2 provides an overview of our data2. Of these,

six are used in the current study, as highlighted in this table.

2.3.4 Pre-Selection of Laser Data

For each sensor, we selected a combination of angles and laser rings (for the Velodyne) or angles

(for the others) that had a clear view of the snow-covered ground surface. The actual details for each

2Wind speed, daily precipitation and temperature are reported from Québec City Jean Lesage International Airport at
approximately 9 km from Laval University. Data is available here [Government of Canada].
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Figure 2.5 – View from the RGB camera.

Beginning
time

Duration
(HH:MM)

Snowflakes
size

Falling
rate

Wind speed
range
(kmh−1)

Daily pre-
cipitation

(cm)

Temperature
(◦C)

Feb 12,
9:47 am 09:21 Small Variable [2–13] 1.4 -14.1

Feb 14,
10:12 pm

04:12 Small Very low [5–13] 0.2 -21.4

Feb 19,
8:38 am 10:02 Big/small High [3–28] 4.5 -10.9

Mar 2,
1:06 pm

01:27 Big/small Variable [22–36] 1.6 -9.1

Mar 3,
10:33 pm

02:17 Big Medium [7–9] 5.4 -13.3

Mar 4,
11:45 am 04:12 Big/medium Low/none [20–30] 2.0 -4.3

Mar 17,
10:08 am 06:08 Big/medium Low/none [1–31] 2.0 -5.8

Mar 21,
6:44 pm 07:42 Medium/big High [5–33] 8.6 -5.1

Mar 30,
1:06 pm 04:45 Medium/big High [4–8] 8.5 -3.0

Apr 2,
1:56 pm

01:51 Small/rain High [2–10] 1.2 -8.4

Table 2.2 – Overview of our snow dataset. Dates in bold correspond to the six days used in the present
study.
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Sensor Acquisition frequency Selected beams/angles Selected rings Window size

LMS200 9.375 Hz 55–115 N/A 106 s

LMS151 25.000 Hz 310–220 N/A 40 s

Hokuyo 20.000 Hz 440–590 N/A 100 s

Velodyne 10.000 Hz -0.05–0.25 rad 17–31 40 s

Table 2.3 – Details of measurement selection for the analysis. The window size is the temporal window
used to calculate statistics during the temporal evolution of a snowfall.

sensor are given in Table 2.3. The range of the ground in our scans was between x = 15m to x = 22m,

depending on the angle. To simplify the analysis, we considered as a snowflake echo any measurement

which had a range reading of x < 14.5m. As will be shown later in sec. 2.5, this approximation is

valid as the vast majority of those events happened for x < 10m.

2.4 Temporal Analysis

In this section, we analyze the temporal behaviour of the four sensors for the duration of six complete

snowstorms. In particular, we are interested in seeing how the fraction of echoes in snowflakes evolves

over time, for all four sensors. First, we will discuss the highly dynamical nature of snowstorms. This

will be exemplified by how consecutive scans can have significant quantitative and spatial differences

in the distributions of the snowflakes echoes, which justify the use of averaging windows for our

analysis. We will then present the actual temporal evolution of these statistics in the form of graphs

for all four sensors, and finally briefly discuss the results for each sensor.

2.4.1 Extraction of Temporal Statistics

Snowstorms are highly dynamic processes, with large variation in snowfall rates over their durations.

Moreover, the snow physical characteristics (size, shape or reflectance) might vary significantly during

a storm, affected by ambient conditions such as humidity level and temperature. Also, wind gusts

might pull snow back up in the air or drive it sideways, affecting its effective fall rate. Consequently,

one expects during a snowstorm to see significant short, medium and long-term variations in the

fraction of LiDAR echoes corresponding to the falling snow.

Computing and reporting the temporal statistics for every scan would put too much emphasis on the

very short-term statistics. Indeed, the inter-scan variation in the fraction of snowflake echoes can be

significant. To better illustrate this point, we have overlaid four consecutive scans in the same plot

for the LMS200 and for the first echo returned by the multi-echo Hokuyo sensor in Figure 2.6, for an

intense snowing episode from the 02-19 dataset (see Table 2.2). In these figures, we can see strong

variations in the fraction of snowflake echoes and their spatial distribution, which we believe can be

best described as a random process. One can readily see the fluctuation in these fractions as reported
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Figure 2.6 – Four overlaid consecutive scans for the LMS200 sensor (top), and the first echo scans for
the Hokuyo sensor (bottom), taken from the 02-19 dataset. Each symbol corresponds to a particular
scan. The curved line at the top corresponds to the snow surface on the ground. One can see the rapid
variation of the snowflake echoes between scans, and how they are mostly limited to a range x < 5m.
The percentages (in brackets) are the proportion of those echoes in the snowflakes.

in the brackets of the legend in Figure 2.6.

To smooth out these fluctuations, statistics are extracted from a number of consecutive scans contained

in a time window of around 1 minute (detailed values in Table 2.3). Figure 2.7 shows this smoothed

fraction of snowflake echoes compared to all returned laser measurements as a function of time, for the

six snowiest days of our dataset. To allow for better visualization, only the LMS200 and the Hokuyo’s

first echo are plotted at their actual scale (1x): Others have been scaled up (from 30x to 200x), with

their corresponding scaling factors reported in the legend. As will be shown below, some sensors were

much more sensitive than others.
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2.4.2 Detailed Analysis, per Sensor

SICK Sensors LMS200 and LMS151

Our first conclusion based on Figure 2.7 is that the most sensitive device was the older LMS200, first

introduced in the mid-2000s. For the most intense snowstorms (Figure 2.7. b) 02-19, d) 03-17, e)

03-21 and f) 03-30), it peaked at around 15% of measurements triggered by the falling snowflakes,

for averaging windows of 106 s. As an older-generation device, it probably uses less sophisticated

algorithms and sensing, and was not directly targeted for harsh outdoor environments. Indeed, its

technical description [SICK, 2006] indicates that “Raindrops and snow-flakes are cut out using pixel-

oriented evaluation”, but this seems only applicable to obstacle detection (field computation), not the

actual measurements. No further details are given. On the other hand, the more recent SICK LMS151

exhibits much less sensitivity to snowflakes: The reduction factor for the fraction of snowflakes echoes

is in the order of 200-300, granting this device a much higher immunity in snowstorms. Indeed, the

highest peak was around 0.1 % of echoes in snowflakes during the 02-19 dataset. In some sense, this

is not surprising considering that the documentation from the manufacturer mentions that this model

is targeted for “all-weather conditions” [SICK, a].

Hokuyo UTM-30LX-EW

For this sensor, we resorted to a slightly different approach for comparison, as the device has been

designed to return multiple echoes. We thus extracted statistics for the two most relevant cases: for

first and last echoes. Statistics for the first echo tell us how sensitive the device is, if one wishes to

detect the presence or absence of falling snow. This information could be used, in turn, to adapt the

driving strategy of an autonomous vehicle or inform vision algorithms of the presence of particles in

the air. On the other hand, using the last echo increases the probability that we will detect obstacles,

such as another vehicle or the snow-covered ground. This information would be used for localization

and navigation purposes. In the case of the first echo, we observed that the device behaved similarly to

the LMS200. Indeed, the Hokuyo first echo (blue line) closely tracks the LMS200 curves (red dashed

line) almost everywhere in Figure 2.7, with a few exceptions. In the case where we look at the last

echo, the sensor behaves like the LMS151, not surprisingly as this sensor does a 2-echoes analysis and

filtering. The last echo of the Hokuyo tends to reject the falling snow, but not as well as the LMS151,

as it peaked at around 0.5 % in some episodes. Nevertheless, this difference might not be sufficient to

impact algorithms relying on laser data. Note that Table 2.4 shows similar correlations between these

three sensors, for the averages taken over the complete 02-19 dataset.

Velodyne HDL-32E

For all purposes, the behaviour of the Velodyne was similar to the last echo of the Hokuyo sensor. This

is seen both in the temporal behaviour in Figure 2.7 and in the average value displayed in Table 2.4.
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Figure 2.7 – Temporal evolution of the percentage of echoes coming from the falling snow (range
x <5 m) during the 6 most intense episodes, for all 4 sensors. The data is smoothed by taking statistics
for small-time windows. Except for the LMS200 and Hokuyo first echo, all other sensors statistics
have been scaled up (factor in brackets of legend b) for ease of visual comparison. Time is in hours,
starting from the beginning of the data capture sequence.

LMS200 Hokuyo first echo Hokuyo last echo LMS151 Velodyne HDL-32E

2.67% 3.55% 0.0113% 0.00178% 0.0100%

Table 2.4 – Overall average snowflake echoes for the complete 02-19 dataset, per sensor. These
averages are significantly lower than the instantaneous values displayed in Figure 2.7, as snow was
not falling at all times during that period.
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2.5 Distribution of Snowflake Echoes as a Function of Range

In the previous section, we showed how the expected fraction of snowflake echoes varied temporally

during snowstorms. In some sense, it provided for a temporal modelling of the interaction between a

snowstorm and a given LiDAR. In this section, we evacuate the temporal aspect and instead focus on

how the range x affects the probability for a snowflake to trigger a measurement. To this end, we will

use histograms to estimate a probability density function of those events, and show that for the weather

conditions and the sensors we tested, there seems to be an upper bound on the range x beyond which

falling snowflakes no longer trigger a measurement: In other words, snowflakes become invisible to

the sensor past a certain range.

2.5.1 Modelling the Impact of Range on Snowflake Detection

When modelling a range sensor, one has to have an idea of the probability distribution of certain

events (e.g. snowflakes) as a function of this range. Over the years, many researchers have proposed

probabilistic models for sensors, notably in Burgard et al. [2006]. In the previous section, we have

in some sense estimated the probability for a given sensor S that a snowflake would generate an

echo Esnowflake given the weather conditions W , or PS(Esnowflake|W ). In this section, we take a closer

look at which range x such events would be generated, that is PS(Esnowflake|x,W ). Having such a

formulation would allow for a more statistically-sound treatment of the information, such as within a

Bayesian probabilistic framework. To this effect, we use histograms as approximations to the previous

distribution. In Figure 2.9, we have plotted these histograms for each of the four sensors. For ease of

comparison, they have all been normalized by their total area in the interval 0 < x < 14m, as the total

count varies widely between the sensors. The numbers in brackets in the legend indicate the fraction

of echoes in the snowflakes compared to the total number of data points, for a given dataset.

The general shape of these histograms is close to a log-normal distribution, with the exception of the

LMS200 for a number of dates (02-12 through 03-17), which seems to follow a sum of two log-normal

distributions. We attribute this log-normal shape to the interaction between two different phenomena,

illustrated in a cartoon-type model in Figure 2.8. At short ranges x < 3m, the building acts as a

shield and decreases the probability of having a snowflake in the path of the laser. We recognize

that this phenomenon would be most likely absent on an autonomous vehicle, thereby increasing the

probability of having echoes in snowflakes at close range. However, we believe that this difference

is not problematic, as close obstacles would be easily detected from i) the overwhelming number of

LiDAR echoes on this obstacle ii) other sensing modalities such as vision or radar. Furthermore, if the

LiDAR is to be mounted on a rooftop, one can safely ignore echoes in the first 2 m, either in software

or directly through the sensor itself (via its configuration). The other phenomenon, illustrated as the

red dashed line in Figure 2.8, is the probability of optical detection of a snowflake by the sensor as

a function of the range x. We argue that this shape is due to the rapidly decreasing light intensity of

the echoes in snowflakes, as a function of x. Combining these two phenomena yields a log-normal

shaped curve (black line in Figure 2.8). Overall, this seems to indicate that a simple probabilistic
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Figure 2.8 – Cartoon representation of the interaction between the probability of detecting a snowflake
(in red) and the diminution of snowflakes due to the shielding effect of the building (in blue). The
black line is the product of the two, and bear a close resemblance to the actual histograms extracted
from our dataset.

model PS(Esnowflake|x,W ) can be derived for these sensors.

2.5.2 Sensor Results

As can be seen from the histograms in Figure 2.9, most sensors exhibit the log-normal or sum-of-log-

normal distributions discussed above. We note that for certain days, the distributions are shifted to the

right (greater range x). In particular, for the 03-21 and the 03-30 distributions, this shift is substantial

(on the order of 1 m). We suspect that for these days, the snowflakes were significantly larger, thus

allowing for a stronger optical echo and extended range of detection.

For all sensors, we can also conclude that beyond the range x > 10m, snowflakes are no longer

detected, i.e. they become invisible. A small notable exception would be for the Velodyne, for which

snowflakes were detected all the way to x = 14m, albeit at a significantly reduced rate. Again, we do

not think that this would significantly impair their use in conditions similar to our test setup.
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Figure 2.9 – Histograms of echoes in falling snow during important snowfall days, as a function of
distance x reported by the sensor. Each histogram has been normalized by its area, for ease of compar-
ison. The numbers in brackets are the fraction of data points in the complete dataset that correspond
to snowflake echoes. Note that for the 03-21 dataset, the LMS151 was not working properly: thus no
data is included for that day.
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2.6 Discussion and Conclusion

In this chapter, we explored the impact of falling snow on the usability of 4 commonly deployed

LiDARs. To this end, we first presented an overview of LiDARs functioning and possible causes of

noise in the measurements. As explained, the small size and dynamic nature of snowflakes make

snowstorms perfect examples of challenging condition when using LiDARs.

For our experiments, we collected data during 6 snowstorms in the winter of 2015. Upon analysis,

we found that the SICK LMS200 was the most sensitive LiDAR, having a peak average rate of up

to 15 % of echoes coming from falling snow. Meanwhile, all three others never exceeded 1 %. We

also presented a simple probabilistic model to take into account the effect of the range on snowflakes

interference. Based on a histogram analysis, we concluded that for our experimental setup, this model

can be approximated by a log-normal distribution. Most importantly, our data indicate that the impact

of snowflakes on LiDAR beyond a range of 10 m is very limited.

However, a number of questions remains to explore. For example, as the LiDAR beam travels through

the falling snow, its intensity will diminish. Since the maximum range of a LiDAR is heavily related

to this beam intensity, we expect the maximum range to be affected during snowstorms. In our setup,

we have not witnessed this issue, indicating that this effect probably happens beyond our maximum

distance of 20 m. Another aspect to be investigated is the relationship between the returned intensities

and the surface type (ground or snowflakes). Also, because of the shielding effect of the building,

very few snowflakes were present at close range; It might be the case that at closer range, a snowflake

might be detected at more than one angle, effectively occluding small targets. Moreover, we have not

investigated the impact on the measurement noise for the snowy ground surface in the presence of

falling snow.
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Chapter 3

Forest Influence on LiDAR-Based Place
Recognition

3.1 Introduction

In order to navigate safely and efficiently in their environments, mobile robots have to be able to

solve a multitude of problems. An example of such problems is the ability to determine whether

the robot is located in a place it visited before or in a new, unvisited one. Despite the fact that this

question seems relatively elementary, solving the so-called place recognition problem is useful for a

wide variety of applications. For instance, multiple robots can cooperate to concurrently build a global

map (multi-session mapping) using recognized places as connecting points between the different local

maps [Howard, 2004]. The well-known "kidnapped robot" problem, which consists in determining

if the robot has been carried to an arbitrary location, can also be solved using a place recognition

algorithm. Because such algorithms do not rely on odometry and allow a robot to locate itself relative

to all previously visited places, it is possible to detect this kind of unpredictable change of location.

Finally, place recognition algorithms are useful to perform SLAM. The most obvious use is for a

topological representation, where the map consists of places and links between them, but it is also

essential for loop closure (often referred as the "front-end") when using a metric representation.

In the previous chapter, we analyzed the influence of an environment with snowy condition on the

LiDAR data. Following the same idea, we are now interested identifying the impact of challenging en-

vironments when performing place recognition using LiDAR. More precisely, we want to evaluate how

unstructured environments, such as forests, influence navigation algorithms performance. To this end,

we chose to use a state-of-the-art LiDAR-based place recognition algorithm developed by Steder et al.

[2011b]. Their algorithm proved to be successful in structured indoor and semi-structured outdoor en-

vironments. In our experiments, we produced our own datasets in forests, but also in semi-structured

conditions for comparison purposes. Besides the influence of the type of environment, we are also

interested in the impact of the sensor used and data associated with it. For this analysis, we used
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Device Manufacturer Model Use

Computer – – Data acquisition/synchronization

Gateway Microhard System Inc. VIP2400 Network and Wi-Fi communication

Gamepad Logitech F710 Remote control of the robot movements

LiDAR Velodyne HDL-32E Point cloud acquisition

LiDAR SICK LMS151 Point cloud acquisition

PTU FLIR Motion Control Systems D46-17 Rotate the SICK LiDAR

IMU ChRobotics UM6 Odometry

Camera Axis M1013 Visual reference

GPS NovAtel SMART6 Not used

Table 3.1 – List of devices available on the Husky A200 and their use in our experiments. Note that
both LiDARs were never mounted at the same time.

two sensors, namely the SICK LMS151 and the Velodyne HDL-32E. The chapter is divided as fol-

lows, Section 3.2 details where and how the datasets were produced, as well as the resulting data.

Thereafter, fundamental concepts related to the place recognition algorithm and the algorithm itself

will be presented in Section 3.3. Finally, the results of the comparative analysis will be presented in

Section 3.4 before we conclude.

3.2 Data Acquisition

In the following section, we first describe the robotic platform and sensors used to gather our place

recognition dataset. We then describe in more details the dataset acquisition procedure and the result-

ing data.

3.2.1 Robotic Platform

The Husky A200 is a medium size (990 mm×670 mm×390 mm) UGV developed by Clearpath

Robotics. It is a rugged robot designed for all terrain conditions and it uses a differential-drive skid

steer, allowing easy control and in-place turns. The maximum speed of the vehicle is 1 ms−1 and the

maximum payload capability is 75 kg. This robotic platform is well suited for our needs, because it

can move in forests and carry the required equipment. Our platform is shown in Figure 3.1 and details

about the available devices are presented in Table 3.1.

The on-board computer (2.4 GHz Intel i5-520M) is an essential element of our experiments, as it

connects all devices, acts as a control interface for the robot and stores the acquired data. The computer

does not provide a Graphical User Interface (GUI), but is connected to the gateway that broadcasts

a WiFi network, allowing Secure Shell (SSH) communication. The platform is also equipped with

a wireless gamepad, which enables manual control of the movements of the robot. Point clouds

28



Figure 3.1 – Our robotic platform (Husky A200) and the devices used for data acquisition. The SICK
LiDAR is not mounted, but instead is shown on the bottom right corner of the figure. Note that the
PTU is hidden by a cover and the on-board computer is mostly occluded by the Velodyne LiDAR.
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acquisition is possible using either the SICK LMS151 or the Velodyne HDL-32E. The selected sensor

is mounted on the PTU, which remains fixed for the Velodyne, but is rotated with the SICK to merge

multiple 2D scans into a single 3D point cloud. Section 3.2.2 gives more details about the resulting

point clouds for each sensor.

The sensors described above are essential for our place recognition research, but we also use the

wheel encoders along with the IMU for odometry estimation and the camera for visual reference of

the dataset. Note that we do not use the GPS, as it is not reliable in forests.

3.2.2 Dataset Description

Data acquisition was performed using ROS, a set of software libraries and tools created to simplify

the development of robotics applications. It provides, out of the box, all drivers for the Husky and

our sensors. Its data publishing system provides timestamps that allow easy synchronization between

sensors. The recording tool (rosbag) was used to create our datasets, with data processing performed

a posteriori.

We produced datasets in two different areas of the Laval University campus. An aerial overview of

the path followed by the robot at these two locations is presented in Figure 3.2.

The first site was chosen for its more structured nature and is located between the Alexandre-Vachon

and the Adrien-Pouliot buildings. This environment is mostly open, the terrain is smooth and flat and

the site contains man-made objects such as buildings, stairs or tables. Examples of pictures acquired

by the robot on this site are presented in Figure 3.3a and 3.3b. This dataset closely resembles the kind

of data on which several place recognition algorithms are typically tested on (e.g. Freiburg Campus

360 degrees 3D scans [Universität Freiburg], Robotic 3D Scan Repository [Nüchter and Lingemann]).

The second site, chosen for its unstructured nature, is located in a wooded area, also on the Laval

University campus. The dataset path starts on a pedestrian walkway, but after its second turn (of

approximately 330°), it continues for around 100 m in rougher terrain. This forested environment

presents multiple small structures and significant of occlusions. Figure 3.3c and Figure 3.3d show

pictures from the robot camera at this location. This dataset will allow us to better understand the in-

fluence of a less structured environment on the place recognition algorithm. In particular, the absence

of large flat surfaces and corners typical of buildings, as well as the closeness of the space, will be

challenging for place recognition algorithms.

To evaluate the impact of the sensor used and data associated with it, we will use the SICK and the

Velodyne, for which you can find details in Table 3.2.

The SICK is a 2D LiDAR with a scanning angle of 270°, a resolution of 0.5° and an acquisition

frequency of 50 Hz. This sensor was placed on the PTU so that the blind spot faced downward.

During acquisition, it was rotated around the vertical axis (pan) at a speed of 14.32 °s−1 for half a

turn, while the vehicle was stationary. This procedure allowed the acquisition of 628 2D scans of
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(a)

(b) (c)

Figure 3.2 – (a) Partial aerial view of the Laval University campus including the two approximate paths
followed by the robot for data acquisition. (b) Zoomed view of the path followed (counterclockwise
from tag 1) in a structured environment. The length of this path is approximately 160 m. (c) Zoomed
view of the path followed (clockwise from tag 2) to create the unstructured datasets. The length of
this path is approximately 275 m. Images source: Google Earth, (2015)
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(a) (b)

(c) (d)

Figure 3.3 – Images from the UGV camera during the acquisition of the structured dataset (a) (b)
and the unstructured dataset (c) (d). Note that the images are at an angle for the unstructured dataset,
because the camera was not aligned with the robot during acquisition.

540 points, later merged into a single 3D point cloud. To create the dataset using the SICK, the robot

was stopped at regular intervals on the established path to acquire scans.

The Velodyne, for its part, directly allows 3D point cloud acquisition by spinning 32 lasers around

its vertical axis. These lasers are evenly distributed between −30.67° and 10.67° relative to the hori-

zontal plane. According to the Velodyne datasheet [Velodyne, b], the device acquires approximately

700000 pointss−1 and publishes at 10 Hz, therefore creating point clouds of 70000 points. Note that

these point counts are variable as the rotation speed can change slightly and the use of the User Data-

gram Protocol (UDP) can lead to some loss of points. Regarding the dataset acquisition, the robot

was driven at a constant speed (0.3 ms−1) and performed data acquisition simultaneously. In order to

obtain a quantity of scans similar to that produced with the SICK, only one out of 80 scans was used

to create the final dataset.

Table 3.2 summarizes information about the sensors resolution and Field Of View (FOV), while Ta-

ble 3.3 provides a name for later references and additional information about each of our datasets.
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Sensor Horizontal
resolution

Vertical
resolution

Minimum
angle

Maximum
angle

Point
counts

SICK LMS151 0.57° 0.5° −45.00° 90.00° 339120

Velodyne HDL-32E 0.16° 1.33° −30.68° 10.67° 72000

Table 3.2 – Details about the point clouds created with our two LiDARs. The minimum and maximum
angles are given relative to an horizontal plane in the sensor frame of reference and both sensors
report 360° around the vertical axis. The point counts represent the maximum number of points in the
resulting point cloud.

Dataset name Site Sensor Date NL1 NL2

Structured-SICK Structured SICK LMS151 July 16th, 2015 81 83

Unstructured-SICK Unstructured SICK LMS151 July 14th, 2015 94 92

Unstructured-Velodyne Unstructured Velodyne HDL-32E May 28th, 2015 104 104

Table 3.3 – Datasets acquired for place recognition analysis. We define a name for each dataset in
order to facilitate reference thereto in the remainder of this document. NL1 and NL2 represent the
number of scans acquired during the first and second loop respectively.

Examples of point clouds from our datasets are shown in Figure 3.4. We observe that the unstructured

environment is more congested and objects are closer to the sensor than for the structured environment.

In fact, the average distance of points from the sensor in the unstructured environment is 7.61 m

compared to 9.23 m for the structured environment. There is also more space without obstacles in the

sensor range for the structured dataset. The percentage of points return using the SICK is 82.6 % on

average in the unstructured dataset compared to 40.2 % in the structured dataset. These point clouds

also illustrate the higher vertical resolution and larger FOV of the SICK compared to the Velodyne.

The influence of these factors will be discussed in Section 3.4.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.4 – Examples of point clouds from our datasets viewed from different perspectives. (a) and
(b) show acquisition from the SICK in the structured environment. (c) and (d) also show point clouds
from the SICK, but in the unstructured environment. Finally, (e) and (f) show the result of acquisition
from the Velodyne in the unstructured environment. Robot position is represented by a red sphere
with a 1 m radius in each picture.
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3.3 Place Recognition Algorithm

While there are a number of articles presenting place recognition algorithms using different sensors

(e.g. camera [Cummins and Newman, 2011], stereo-camera [Cadena et al., 2012]), the literature of

such algorithms based solely on 3D data is limited. For our place recognition analysis, we choose

to evaluate on our datasets the state-of-the-art algorithm (at the time of the experiments) developed

by Steder et al. [2011b] on our datasets. We will first describe some fundamental concepts used for

place recognition in Section 3.3.1 and then we will give an overview of the Steder algorithm itself in

Section 3.3.2. For the interested reader, the full details of the algorithm are available in [Steder et al.,

2011b].

3.3.1 Fundamental Concepts

The following subsection is an introduction to basic concepts for understanding 3D place recogni-

tion algorithms in general. In particular, conventional methods for representing and comparing 3D

acquisitions will be presented.

Feature Keypoints and Descriptors

The first step in determining whether or not a place has been visited before, is to convert the sensor

data into a format that is more convenient for identification. The generally adopted representation is

a vector of real numbers, called a descriptor. This mathematical representation aims at being more

compact than the original data while trying to capture significant characteristics from a recognition

point of view.

A descriptor can be global, meaning that it tries to capture information about the whole scan, or

local, meaning that it does the same but only for a specific subregion of the scan. When using local

descriptors, one needs to select the keypoints around which the descriptors will be extracted. These

keypoints can be at pre-determined and fixed locations (e.g. division in a simple grid) or selected

using more refined algorithms. A common practice for the latter is to choose keypoints in so-called

interesting regions which are often defined as regions of high gradient (e.g. edges, corners), as these

regions generally contains more information than smooth surfaces. Note that, for simplicity, we might

use the term features as a more general term for keypoints and their respective descriptors in the

remainder of this document.

The concepts of keypoints and descriptors first originated from the computer vision literature. More

recently, they have been adapted for 3D data. Some popular examples of features for both types of data

are shown in Table 1.1. Note that some algorithms propose solutions for both keypoints detection and

descriptors (e.g. SIFT, NARF). However it is not mandatory to use them together as any combination

is generally valid. While all features are different, they were all developed with the same goals in

mind:
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• Distinctiveness: each feature should be easily differentiable with respect to others.

• Repeatability: the feature values should be stable under changes including:

◦ Transformations: rigid transformation for point clouds and projective transformation for

images, but also changes in the pose of the objects and/or the viewpoint.

◦ Noise: small variations in measurements (range/intensity) and occasional erroneous values

(points/pixels).

◦ Resolution: the number of points or pixels representing a given area.

Range Image and NARF Feature

In this subsection, we present the NARF keypoints and descriptors, as well as the 3D data representa-

tion on which they rely: the range image. We will see that the place recognition algorithm, presented

in Section 3.3.2, relies on this 3D representation to determine a matching score between scans.

Range images represent a 3D data point by a pixel position (i.e x and y) and a range value. Note

that the position of the pixel actually represents a horizontal and vertical angular position. For an

omnidirectional LiDAR scan, the corresponding range image is a spherical projection of the points

from the centre of the sensor. Range images can be better defined by the constraints they must meet

to be valid.

Firstly, converting a 3D scan into a range image requires the acquisition to originate from a single

view point and to have a single range value per pixel. It is therefore not possible to use point clouds

acquired with multi-echoes LiDARs or produced by merging multiple scans. Fortunately, the latter

constraints are met in our datasets.

Secondly, every pixel in a range image must have a value. Since LiDARs have a minimal and a

maximal range, the data points outside this interval are ignored. Similarly, when a laser beam hits a

highly absorbing or a reflecting surface at an angle, the sensor will not get any return. Such missing

data points cause pixels of the range image to have no value and are instead considered as far range

(i.e. the maximum range of the sensor).

Finally, the resolution has to be adjusted so that each pixel of the resulting range image covers the same

angular resolution vertically and horizontally. Images being discretized in pixels, the values of these

can either be a weighted average of the laser beam ranges, or the value of the smaller range within his

area, depending on the user preference. The converted scans have a dense and uniform representation

similar to grayscale images, allowing the reuse of standard image processing techniques. Examples

of range images can be seen in Figure 3.5.

As indicated previously, feature keypoints are generally chosen in high gradient regions of the 3D

inputs. A problem arises when the input data is in the form of a point cloud, as it is impossible to

distinguish edges caused by object boundaries from those caused by occlusion. Figure 3.6 present an

example of a partial range image and the corresponding point cloud, where you can see edges caused

36



(a)

(b)

Figure 3.5 – Examples of range images for the Structured-SICK dataset (a) and the
Unstructured-SICK dataset (b). Note that objects appear distorted due to the projection on the
plane. The background colour (light green) corresponds to areas without laser return. All other pixels
represent ranges between 0 m (black) and 40 m (white).

by an object boundary and edges caused by the occlusion of this object. Edges caused by occlusions

can generate meaningless keypoints and the descriptors built based on these keypoints leads to a

poor representation of the environment, which can reduce the place recognition performance. This is

particularly useful in our context of complex environments such as forest, because there are significant

occlusions. The article describing the NARF features [Steder et al., 2011a] details how using range

images allow to differentiate these two types of edges.

The last item to be discussed concerning the NARF features is the descriptor structure. In order to

create this NARF descriptor, one must first compute the normal to the surface at the keypoint location.

A star pattern, as shown in Figure 3.7, is then overlaid on top of a small range image patch, as seen

by an observer looking at the keypoint along the normal. Each beam of the star pattern corresponds

to a single value in the final descriptor. This value captures how much the pixels changes under the

beam (i.e. its gradient). A unique orientation around the normal is finally determined, to ensure that

the NARF descriptor is rotation invariant. This orientation corresponds to that of the beam having

the largest value. An interesting characteristic of the NARF descriptors is that each of them encodes

its own local coordinate system, allowing for a complete six degrees of freedom pose identification.
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(a)

(b)

Figure 3.6 – Example of a partial range image (a) and the corresponding point cloud (b). The red
rectangle highlight a region of the environment where, from the robot point of view, a lamp post
partially occludes a building wall. In the point cloud, this configuration leads to edges on both the
lamp post boundary and the wall itself. In reality, the information contained in this scan does not
allow to know what is behind the post and the edges of the wall are most likely artifacts caused by
occlusion. In contrary, the range image is built taking into account the position of the sensor, thus
allowing to consider only the boundary of the lamp post as edges and ignoring edges on the wall.
Indeed, one can ignore the gap in the wall for the range image, as it is readily explained by the
occlusion of the range image. Determining this occlusion is not possible by nature in a point cloud.
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Figure 3.7 – Illustration of a NARF descriptor calculated on a range image patch. Each of the 20 green
beams are represented by a single value in the descriptor vector, which is represented at the bottom.
In addition, the position in the descriptor of two of those beams are marked with black arrows. The
value attributed to a beam represent how pixels change under it. More precisely, beams that lie on a
flat surface have low values and beams going over a high gradient (i.e. potential object border) have
high values. The red arrow (pointing to the top right) show the extracted dominant orientation around
the normal of the patch. From Steder et al. [2011a].

This is possible due to the fact that we know the normal to the local surface patch and the unique

orientation around the latter. Figure 3.7 illustrates how descriptors are computed.

Scans Comparison

The last item to be discussed in this subsection is the method used to compare two scans. This is

usually accomplished using the descriptors representing the scans. Since a descriptor is a vector

of values representing the underlying data, two descriptors with very similar corresponding values

should also represent similar entities (e.g. objects). Consequently, similarity between descriptors are

generally computed using a simple distance metric (e.g. Euclidean distance, cosine distance).

The comparison between two scans using global descriptors is usually computationally inexpensive.

Indeed, a single descriptor is computed for each scan and the comparison between two of them simply

requires the computation of only one distance metric. Also note that for global descriptors, there is

no such thing as keypoints and the geometric information is intrinsically included in the descriptor

itself. A major drawback of such comparison approach is the high sensitivity to local changes of the

environment, which may for example be caused by dynamic objects. This approach is also sensitive

to small changes in position of the sensor.

From a computational point of view, scans comparison based on local descriptors are more demanding.

Indeed, besides having to calculate several keypoints and their associated descriptors, a method must
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be chosen to compare two scans over all features. In addition, the geometric relationship between

features provides important cues about scans and may thus be considered to improve reliability of

place recognition, albeit at a greater processing cost. Fortunately, using local features generally yield

more robust results regarding local changes and also provides more comparison flexibility for the

user. We will see a number of techniques for comparing scan using local features in the following

paragraphs.

A first approach to compare 3D scans with local descriptors consists in finding local descriptors cor-

respondences between the scans. These correspondences are used to check if there is a valid trans-

formation that aligns the scans. As we deal with data from real, noisy sensors, the vectors of real

numbers representing the features (i.e. the descriptors) will never be exactly the same from one scan

to another. A simple solution to this problem is to use the concept of nearest neighbour to identify

the correspondences. One has to bear in mind that several descriptors may have no valid match due to

background clutter or change in the view point. [Lowe, 2004, Section 7.1] describes how to remove

most of those false matches by comparing the distance of the closest neighbour to that of the second-

closest neighbour. The intuition is that this second-best match is an incorrect one and using this ratio,

only matches that have the closest neighbour significantly closer than the closest next match will be

used, therefore improving reliability.

Once the corresponding descriptors between two scans have been identified, they are used to deter-

mine if there is a valid rigid 3D transformation that aligns the underlying keypoints. The existence

of such valid transformation serves as a first check on the similarity between two scans. This step

also requires a criterion on the number (or ratio) of features correctly aligned, thereby identifying the

scans as originating from the same place or not. This is generally achieved using the RANSAC algo-

rithm [Fischler and Bolles, 1981]. This rigid transformation estimation is computationally expensive,

but has the advantage of being very discriminative. Additionally, it provides relative pose between

scans, which is not possible using global descriptors. The relative pose can, for example, be used to

determine odometry or during map creation process. Figure 3.8 shows keypoints from two scans of

our dataset, as well as examples of correspondences.

A second solution, that speed up comparison when searching for potential matches between scans,

is to represent the set of features of each scan by a BoW [Salton and Michael, 1983]. The concept

of BoW was first used for documents classification. In this context, BoW represented a document

by a vector of occurrence counts of a vocabulary without taking into account their ordering. In our

case, the descriptors are made up of real numbers which allows for an infinity of them; therefore

they cannot be used directly as words. The solution to this problem is to use a clustering algorithm

such as k-means [MacQueen, 1967] to create groups that will represent words, a process known as

quantization. For instance, Cummins and Newman [2008] present examples of visual words that

typically correspond to the cross-piece of windows and other words that correspond to top-left corner

of windows. An advantage of using k-means is that it is an unsupervised algorithm, meaning that no

manual labelling effort is required. Because the BoW approach avoids having to compare all potential
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Figure 3.8 – Examples of NARF keypoints (red squares) found for two different scans of the structured
dataset. Black lines illustrate examples of valid correspondences found across scans. These NARF
keypoints show stability under changes, such as viewpoint, noise and resolution.

feature correspondences between the scans, it significantly reduces the processing time. On the other

hand, this method removes all information regarding the geometric configuration of keypoints in the

scans, which might induce unwanted perceptual aliasing [Mariottini and Roumeliotis, 2011]. BoW is

a rather general representation for which the comparison is relatively fast to compute. Note that the

visual dictionary is generally created in advance, in offline manner, using a large collection of local

descriptors gathered under similar conditions and for similar scenes.

The chosen place recognition method depends on several factors such as the available hardware re-

sources, the desired processing time and the required reliability of the results. Using features cor-

respondences along with geometric check is more computationally expensive than using the BoW

approach, but results are also more reliable. However, we will see in Section 3.3.2 that it is possible

to take advantage of the combined use of these methods.

3.3.2 Overview of the Algorithm

In the following section, we will describe the algorithm used for our experiments. We will first de-

scribe the general idea of the technique and give a brief overview of the two articles behind it [Steder

et al., 2010, 2011b]. For the place recognition algorithm to be used, one must first acquire a set of 3D

scans at approximately regular intervals with a robot equipped with an omnidirectional LiDAR. This

initial set of scans for a given environment, dubbed scans database (D), act as a representation of all

known and visited places. Subsequent scans are used to determine if a match can be found in this

database, and thus establish metrics such as precision and recall. Note that this experimental proce-

dure was repeated in different indoor and structured outdoor environments and with different LiDARs

for both original articles.

In the first version of the algorithm [Steder et al., 2010], they compared a newly acquired scan (z∗)
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Parameters Values for BoW Values for the transformations scoring

Max. feature counts 2000 200

Descriptor size 36 36

Support size 1/10 avg. range 1/5 avg. range

Table 3.4 – The set of NARF parameters used for the BoW pre-ordering step and the candidate trans-
formations scoring step. The support size is the radius around the keypoint, in the 3D space, used to
compute the descriptor. Note that the support size is represented by a proportion of the average range
of all points in the database.

against all scans from the database (z1, ...,z|D|), only using NARF features correspondences. As men-

tioned previously, these features encode a full 3D pose, which in theory allow the determination of the

transformation that aligns two scans based on a single features correspondence. This meant that there

was as many candidate transformations as there were features correspondences between a newly ac-

quired scan (z∗) and a single scan (zi) from the database. Using a series of rules, a score was assigned

to each of these transformations. This score reflected the system belief that this transformation was an

actual match. The transformation having obtained the highest score was used to align z∗ with zi.

Although this technique yielded high recognition rates, it required to compute a score for all can-

didate transformations (i.e. features correspondences) between z∗ and all the scans in the database

(z1, ...,z|D|). For real-time applications, this process is therefore too computationally expensive. An

enhanced version of the algorithm, that we used for our experiments, was presented in Steder et al.

[2011b]. In this version, they first computed a BoW representation for all scans. Based on this rep-

resentation, they ordered all scans of the database from to the most similar (i.e. smallest Euclidean

distance) to the least similar, relative to z∗. The calculation of scores for candidate transformations

was then performed following this order. Consequently, the algorithm could be stopped when no more

time was available and only matches that are less likely valid could be ignored.

Algorithm 1 presents a high level pseudo code of the general scan matching process. A first general

note is that two sets of NARF features are extracted for each scan. This is because there is two

general steps based on the features: the pre-ordering of the scans from the database using the BoW

representation and the scoring of candidate transformations based on features correspondences. The

section based on BoW is presented from line 1 to 12 and uses a given set of feature parameters, while

the second section for scoring candidate transformations is presented from line 14 to line 36 and

use a different set of parameters. Table 3.4 shows the feature parameters used for those two cases.

Authors explain that: “For the BoW approach a high number of features describing small parts of the

environment is most useful. . . However, when matching a new query [scan] z∗ against [the database]

D, a smaller number of more distinctive features is needed”.

The first processing by the algorithm is the creation of the descriptors for all scans in the database

(line 1), which are then used to create the dictionary (line 2). Note that, it would be possible to create
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Algorithm 1 High Level Place Recognition Process [Steder et al., 2011b]
Input:

scanDatabase : the complete database of previous scans (z1, ...,z|D|)
z∗ : the new scan to be matched and localized against the scanDatabase

Output:
potentialMatches : set of (scanDatabase potential match for the z∗, best relative transformation,
transformation score)

1: allBowDescriptors← CALCULATEALLDESCRIPTORSFORBAGOFWORDS(scanDatabase)
2: dictionary← CREATEDICTIONARYFORBAGOFWORDS(allBowDescriptors)
3:

4: function FINDPOTENTIALMATCHES(scanDatabase, z∗, dictionary)
5: newScanBow← COMPUTEBAGOFWORDS(z∗,dictionary) . Keep scan reference
6:

7: initSimilarities← /0 . Set of (scan reference, initial similarity score)
8: for all scan ∈ scanDatabase do
9: scanBow← COMPUTEBAGOFWORDS(scan,dictionary)

10: initSimilarities.append(GETINITSIMILARITY(scanBow,newScanBow))
11: end for
12: sortedSimilarities← SORTBYSCORE(initSimilarities)
13:

14: potentialMatches← /0, i← 1
15: newScanFeatures← GETSCANFEATURES(z∗) . Each feature encodes the 3D pose
16: while time≤ timeout and i≤ |scanDatabase| do
17: scan← GETSCAN(sortedSimilaritiesi)
18: scanFeatures← GETSCANFEATURES(scan) . Each feature encodes the 3D pose
19: sortedMatches← GETSORTEDFEATUREMATCHES(scanFeatures,newScanFeatures)
20:

21: j← 1, bestTrans f oScore = −∞, bestTrans f o← null
22: while j ≤ |sortedMatches| and j ≤ 2000 do
23: trans f o,score← COMPUTEMATCHTRANSFOANDSCORE(sortedMatches j)
24: if score≥ scoreAcceptanceT hreshold and score≥ bestTrans f oScore then
25: bestTrans f oScore← score
26: bestTrans f o← trans f o
27: end if
28: j← j+ 1
29: end while
30:

31: if bestTrans f o 6= null then
32: potentialMatches.append(scan,bestTrans f o,bestTrans f oScore)
33: end if
34:

35: i← i+ 1
36: end while
37:

38: return potentialMatches
39: end function
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a dictionary using a different set of scans (i.e. not the scans from the database) and/or update this

dictionary according to some criteria, but this is not the case here. Once the descriptors have been

produced, they are used to create 200 words (i.e clusters) using k-means. The output dictionary is

then used to create a BoW representation of each scan (line 5 and 9). Based on this representation, all

scans from the database are stored in ascending order, according to the Euclidean distance between

their vectors representing word counts and the vector of the input scan (line 10). The intuition is that

scans with a small distance between them are more likely to originate from the same place. They will

therefore be processed first during the next step, as they are the most promising. This greedy approach

is required because of the timeout (line 16) that might prevent the last scans to be processed.

The features created using the set of parameters for candidate transformation scoring are used to find

potential transformations between each database scan and the input scan (z∗). As indicated previously,

each NARF feature encodes its full 3D pose, therefore a single features match allows the determination

of the transformation that should align the two scans. Since there is 2000 features per scan, there are up

to 2000 transformations to be tested for each scan from the database. To determine the corresponding

features, all pairs of features (one from the processed database scan and one from the input scan) are

ordered by ascending order according to their Manhattan (i.e. L1) distance in the space of descriptors.

Again, descriptors with a small distance between them are more similar and therefore more likely to

be valid matches; they are therefore prioritized for the scoring process.

Although the candidate transformation scoring process is not detailed (line 23), it is an important part

of the place recognition framework that we will briefly describe here. As explained in Section 3.3.1,

range images are linked to the LiDAR sensor model. Each pixel represents the range from the origin

of the sensor to the target for a specific angular position. Considering that the step of aligning the

input scan (z∗) with the database scan (zi) is already completed, one can easily determine where the

pixel p∗ from z∗ will fall into zi, as well as the range value it should have. Let r∗ be the range of the

processed point in z∗ and ri the range of the corresponding point in zi. A score representing how good

r∗ is explained by ri can be computed according to different scenarios presented in Table 3.5.

This scoring process is applied to all validation points and the final score for the candidate transforma-

tion is a function (see [Steder et al., 2011b, Equation 1]) of those individual point scores. To avoid a

small error in the transformation to cause low score, they not only consider the exact matching points,

but also neighbours in small pixel radius.

Finally, note that the set of validation point is a subsample of points, since using all points from the

input scan would be too expensive to compute. Instead, the set of points used is fixed to a predefined

size (200 points for the experiments). Points are chosen to evenly cover the 3D space and to have

some significance in the scene.

This concludes the general overview of the place recognition algorithm [Steder et al., 2011b]. In the

following section, we will explain how we used it to compare the impact of different environments on

the recognition performance.
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Ranges relation Interpretation Effect on the score

|ri− r∗|< ∆rmax The difference between ri and r∗ is within the confi-
dence range. This is most likely a valid correspon-
dence.

Increase ∝ 1− |r
i−r∗|

∆rmax

ri− r∗ > ∆rmax The range of the pixel from the database scan is larger
than the corresponding pixel from the input scan. This
could be caused by a dynamic or partially transpar-
ent obstacle, but this is more likely caused by a wrong
transformation.

Highly decrease

ri− r∗ <−∆rmax The range of the pixel from the database scan is smaller
than the range of the corresponding pixel from the in-
put scan, leading to two subcases :

1) A known obstacle in the database scan hides the
pixel from the input scan.

Slightly decrease

2) The pixel does not exist in the input scan. This could
be caused by an unseen or dynamic obstacle, but it is
more likely caused by a wrong transformation.

Highly decrease

@ : ri =̂ r∗ The pixel from the input scan ends up outside of the
database scan limit (i.e. there is no reference for this
point).

Slightly decrease

ri ≥MAX The range of the pixel from the database scan is larger
or equal to the sensor maximum reading range, leading
to two subcases :

1) Based on the value of the input scan pixel, the corre-
sponding pixel of the database should be closer to the
sensor.

Highly decrease

2) The pixel of the database scan moved away from the
sensor and could possibly be out of range.

Moderately decrease

Table 3.5 – A summary of the different scenarios considered for scoring corresponding pixels of the
range images. The range of the pixel from the input scan is r∗ and the range of the corresponding pixel
from the database scan is ri. Note that, ∆rmax is a positive value representing the maximum difference
in range between the pixels to be considered as a valid correspondence and MAX is the maximum
range for the given sensor.

45



3.4 Results

In this section, we use the algorithm previously described [Steder et al., 2011b] to evaluate place

recognition performance. We first explain how we produce the data for this evaluation and discuss

about some general observations about the results for our three datasets. We then analyze the results

between the unstructured and structured environments as well as between the SICK and the Velodyne

acquisitions.

3.4.1 Data and General Observations

In order to evaluate the place recognition performance, two elements are required. Firstly, a rule

for labelling two positions of the real world as belonging—or not—to the same place, and secondly,

the algorithm prediction for two input scans. In the following subsection, we first discuss these two

elements and present the resulting data. Afterwards, we explain some observations about that data.

Real-World Places

As seen in previous work on topological mapping [Valgren and Lilienthal, 2008, Brunskill et al., 2007]

the notion of a place is ill-defined. A simple rule can be established, however: the closer two points

of the space are to each other, the more likely they are to be considered in the same place. Therefore,

we use the real world physical distance between two acquisitions (d) as an indicator of the likelihood

that they represent the same place. We will now discuss the method used to determine the distance

between scans.

We first use the robot wheel odometry as a rough approximation of the relative pose between two

consecutive scans. In order to reduce the pose estimation error, we then use the Iterative Closest

Point (ICP) algorithm to align their respective point clouds and adjust the odometry accordingly.

These steps are performed sequentially for all scans of the first loop. This process cannot be repeated

independently for the second loop, because the drift accumulation would differ from loop to loop.

The result would be that the calculated physical distance between a point in the first loop and its (true)

corresponding point in the second loop might be significantly erroneous. To address this problem, the

ICP odometry adjustment of the second loop is performed relative to the first loop, thus ensuring that

this difference in drift do not happen. To do this, we first align the first scan of the second loop relative

to the first scan of the first loop using ICP. Thereafter, each scan of the second loop is adjusted with

respect to the scan of the first loop, that theoretically is being the closest, considering the last corrected

pose and the movement of the robot. Figure 3.9 illustrates the resulting pair of paths for each of our

three datasets. Note that this is a 2D representation for which the vertical component is ignored. This

figure shows the absence of discrepancy between the two loops of each dataset.

With the corrected odometry, it is possible to easily obtain the distance between two scans. To do this,

one can simply calculate the norm of the difference in position between the two scans. On the other

hand, it is important to remember that there is an accumulation of drift in the computed odometry,
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making the final loop slightly deformed (visible in Figure 3.9 (b) (c)). This results in a significant

error on the estimated distance between two scans (scani and scan j, where i < j) that are separated

by several acquisitions; for instance, between the first scan and the last scan. To address this problem

we consider a new path going from scan j to scani, in addition to the previously computed path going

directly from scani to scan j. This new path must pass through the loop closure portion (i.e. the link

between the last scan and the first scan). Again, we used ICP to calculate this portion of the path.

Finally, the path for which the scans are closest in terms of acquisition numbers, from scani to scan j

or from scan j to scani, is used for the final calculation of the distance.

Note that all alignment is visually inspected to ensure that ICP had indeed converged to a valid solu-

tion. When this is not the case, the odometry provided by the robot is manually adjusted to enable this

convergence. The second row of Figure 3.10 contains the resulting distance matrices for all pairs of

scans of each of our three datasets. Note that since a distance function is by definition symmetrical,

the distance matrices are symmetric by definition. The values on the main diagonal represent the dis-

tance between a scan and itself and are therefore null. A secondary diagonal of low values is produced

by the small distances between the scans (d) of the first and the second loop. Finally, because we

tried to stop the loop acquisitions approximately at the starting point, we observe small values at those

junction points (at the bottom left corner of the distance matrix for instance).

Algorithm Prediction

For our experiments, we use a C++ implementation of the place recognition algorithm developed

by Steder et al. [2011b], who gratefully provides us with the source code. The software produce a

score between 0 and 1 for each pair of scans in the database. As explained in Section 3.3, this score

reflects the system belief that two scans represent the same place. More precisely, when the score is

zero, the algorithm believes there is no chance that the scans originate from the same place, and when

the score is one, the algorithm is certain that they do not originate from the same place.

The second row of Figure 3.10 represents the scores matrices for our three datasets. Note that the

main diagonal of these matrices are the scores of a scan compared to itself, which always results in a

value of 1. It is possible to observe a slight asymmetry in the matrices caused by the non-symmetric

function used for calculating scores. Note that, for our results analysis, we only consider the values

from the area below the main diagonal.

General Observations

Considering the two previous subsections, we should expect to see a high score for a pair of scans close

to each other and a low score for a pair of distant ones. This relationship can actually be observed by

the similarity of diagonal patterns between the distances matrices and the scores matrices (first and

second rows of Figure 3.10). The third row of Figure 3.10 illustrates this relation with a scatter plot,

where each pair of scans is represented by a single data point relating the physical distance between
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Figure 3.9 – The path resulting from the odometry adjusted with ICP for the two loops of each of
our three datasets. (a) shows the path for the Structured-SICK dataset, (b) shows the path for the
Unstructured-SICK dataset and (c) shows the path for the Unstructured-Velodyne dataset. Note
that each marker represents the location of an acquisition.

the scans (d) and the score produced by the place recognition algorithm. The set of data points seems

to follow a function of the form f (x) = 1/x, which also confirms our intuition.

While it is interesting to observe the complete continuous relationship between these values, practical

uses of place recognition generally require a binary labelling of each pair of scans (either originating

from the same place or not). To determine the ground truth labels (real-world places), a threshold

Tdistance is defined on the distance between the scans (d). All pairs of scans closer than Tdistance are

considered as being in the same place. Similarly for the algorithm predictions, a threshold Tscore is

used in conjunction with output score. All pair of scans obtaining a score higher than this threshold

Tscore are labelled as a match (i.e. the scans originate from the same place). Table 3.6 summarizes how

these two thresholds are used to label data and analyze results. Note that Tdistance, as opposed to Tscore,

Tdistance is not a parameter of the place recognition system, but rather a tool for quantifying results.

The value of Tdistance to consider during the evaluation of results depends on different factors, such as

the environment in which the place recognition algorithm is used. For instance, one might consider

that for indoor environments, places are generally very close from each other (e.g. closer than 4 m).
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d < Tdistance d >= Tdistance

s > Tscore True Positive (TP) False Positive (FP)

s <= Tscore False Negative (FN) True Negative (TN)

Table 3.6 – A summary of scans pairs labelling for results analysis. d represents the distance be-
tween the two scans and s represents the place recognition algorithm output score. Tdistance and Tscore

represent the distance threshold and the score threshold, respectively.

In our context of open outdoor environments, we consider that the value of Tdistance is mainly limited

by the maximum measurement range of the sensor (i.e. approximately 50 m), because over two times

this measurement range, there is no possible overlap between the scans. Choosing a higher value for

Tdistance implies that the robot can be further away from the previously visited place and should still be

able to recognize it. Consequently, maintaining relatively high scores even for higher Tdistance values

is often preferable, because it allows greater flexibility during the robot navigation. The fourth row

of Figure 3.10 shows how the recall decreases as Tdistance increases, which can be explained by the

reduction of overlap between scans, making the place recognition task more difficult.

As indicated in the introduction of this chapter (Section 3.1), SLAM algorithms often use place recog-

nition to detect loop closures. When the robot detects that it is in a place visited before, it can connect

(or merge) these concordant regions and adjust the map accordingly. If two scans are falsely identified

as coming from the same place (i.e. a FP), the SLAM algorithm will distort the map while trying to

connect them. In contrast, if a place is not recognized (i.e. FN), the algorithm simply does not ben-

efit from this cue to adjust the map, without further adverse results. Therefore, FP are significantly

more harmful than FN (sometimes catastrophic to the point of rendering the map useless) and must

be avoided.

A solution to avoid FP is to rely on high-confidence matches (i.e. by choosing a score threshold that

is high enough). In our experiment, the minimum values for this threshold are depicted by the line in

the graphs of the third row of Figure 3.10. In other words, if Tscore is above that line for the considered

value of Tdistance, this will result in no FP. Moreover, the closer the value is from that line, the better

the recall will be. In our case, the recall represents the fraction of real-world places that are correctly

identified by the algorithm (i.e. T P/(T P+FN)). The recall is presented as a function of Tdistance

for different score thresholds in the fourth row of Figure 3.10. One can see that, as we pick a lower

threshold value Tscore, the recall rate increase, as we become more permissive for our matches.

3.4.2 Comparative Analysis

In the previous subsection, we explained how we produce the results and we discussed some observa-

tions for our datasets from a general perspective. We now focus on the main interest of this document,

and analyze how the algorithm behaves in the unstructured environment compared to the structured

environment. We also conduct this comparative analysis between two LiDARs, the SICK LMS151
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Figure 3.10 – Place recognition results overview for our three datasets. First column: The
Structured-SICK dataset. Second column: The Unstructured-SICK dataset. Third column: The
Unstructured-Velodyne dataset. First and second rows: The matrices of distances and scores, re-
spectively. The axes show the ordered sample indices for both loops sequentially. Consequently, all
pairs of scans are represented by a position in the matrices and the colour represent the distance be-
tween the scans of a pair (first row) and the place recognition algorithm output score (second row).
Third row: The association between the distance separating the scans and the score obtained for all
scans pairs, as well as the score limit to avoid any FP as function of the distance between the scans.
Outliers are circled in red. Fourth row: The recall rate as function of the maximum distance (m)
between scans to be considered as originating from the same place (Tdistance).
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and the Velodyne HDL-32E. For these comparisons, we consider how the score changes as function

of d and look for outliers. Finally, even if the current experimental configuration does not allow to

determine the exact source of the differences in results, we suggest some possible causes.

Structured and Unstructured Environments

For this comparison, we expect the performance of the algorithm to be worse for unstructured envi-

ronments than for structured environments. Indeed, we think that the uneven ground, the significant

occlusions and the presence of many small structures (e.g. branches, leaves) in unstructured environ-

ments are harmful to the LiDAR-based place recognition task. In order to evaluate this hypothesis, we

look at the score as function of d (third row of 3.10). As noticed previously, the distribution of points

seems to represent a function of the form f (x) = 1/x. In the case of the structured environment, no

point appears to significantly challenge this distribution, but for the unstructured environment, there

seems to be outliers (circled in red) when the value of d is around 13 m and 25 m. To avoid getting

FP caused by these outliers, the score threshold must be set higher, therefore reducing the recall (see

Figure 3.10 row four).

Another element to suggest that the performance is better in the structured environment is the value of

d for which the score stop decreasing significantly as the value of d increase (i.e. where the distribution

becomes almost horizontal). It can be observed in the third row of Figure 3.10 that this happens for

d of approximately 30 m in the structured environment and approximately 15 m in the unstructured

environment. For d above these values, all data points are spread almost evenly under a horizontal

line (i.e. score value). It is therefore impossible to discriminate pair of scans that originate from the

same place from those that do not originate from the same place based on the algorithm output score.

In other words, the algorithm is able to correctly identify places in a larger radius for the structured

environment than in the unstructured environment.

We will now propose a few possible causes as to why the results are better in the structured envi-

ronment than in the unstructured environment. As indicated in Section 3.2, the average acquisition

range is smaller for the unstructured datasets. Therefore, because of parallax, a given movement of

the robot will have a greater influence on the scan content in this dataset. In addition, the unstruc-

tured environment contains many objects distributed throughout the reachable space by the LiDAR,

which in conjunction with the parallax, creates many different occlusion patterns. In other words,

the objects or parts of objects captured by the LiDAR greatly change as we move the robot. Another

element to consider is the types of object that are present in the various environments. For instance,

the objects present in the structured environment, such as buildings, are potentially better represented

by the NARF features. Indeed NARF features were tested on man-made objects Steder et al. [2011a]

and in structured environments Steder et al. [2010, 2011b]. Finally, because of the structured envi-

ronment ground is almost entirely flat, the alignment between two scans is summed almost entirely

to a translation along the XY plane and rotation about the Z axis. The additional degrees of freedom

(i.e. translation along the Z axis and rotations about X and Y axis) caused by the uneven ground in
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the unstructured environment are likely to make the scans alignment process of the place recognition

algorithm more challenging.

SICK and Velodyne LiDARs

In this section, we are interested in comparing the SICK and the Velodyne performance for place

recognition, as it might help understand how important the choice of the sensor is for this particular

task. In our case, we expected the SICK mounted on the PTU to have better results for place recog-

nition, as it retrieves more information about the scene than the Velodyne. As a reminder, Section 3.2

and more precisely in Table 3.2, provide details about these sensors and the acquired data. One can

notice that, although the Velodyne has a better horizontal resolution than the SICK, it has a smaller

vertical resolution and FOV , as well as a smaller total point counts (refer to Table 3.2).

Our first interesting observation, in the third row of Figure 3.10, is that all the scores obtained with

the Velodyne are below 0.5. This means that the algorithm has very low confidence that any pair of

scans originate from the same place, even when those scans are very close physically from each other.

In comparison, the data obtained with SICK produce scores above 0.7 for scans that are really close.

Consequently, data points are concentrated in the lower part of the graph and the place recognition’s

results will be more sensitive to the choice of score threshold. We can also confirm these observations

with the graphics of the fourth row of Figure 3.10. There, one can see that for all of the Velodyne data,

the recall is 0 when the score threshold is set to 0.75 or 0.5. There is also a greater gap between the

two other curves (i.e for score thresholds of 0.25 and 0.1) over the corresponding curves for SICK.

On the other hand, there seems to be no major differences between those distributions regarding the

value of d for which the score stop decreasing significantly (around 10 m to 15 m). One could argue

that this maximum range is simply due to the closeness of the environment. In addition, it does not

seem to be any significant difference in the amount or distribution of outliers, which is important to

avoid FP.

It can be concluded that there is indeed a difference between the results obtained for these two sensors.

However, this difference may be insufficient to counteract other practical factors. For instance, one

could choose to use the Velodyne for its higher data throughput, despite its slightly worse performance,

and thus avoid having to immobilize the robot for each acquisition.

3.5 Conclusion

This chapter focused on the impact of the level of structure (man-made vs. natural) of an environment

on the performance of a LiDAR-based place recognition algorithm. As explained, these algorithms

are key to solving several important problems of mobile robotics, such as loop closures detection

for SLAM. Our research is therefore useful to assess whether an existing solution based on NARF,

currently operating in structured environments, can also be used successfully for more complex, un-

structured environments. Our experiments were based on real datasets collected with a Husky A200
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robotic platform, using either the SICK or the Velodyne LiDAR as the main sensing device in the two

desired types of environments. An outdoor area containing several man-made structures, including

buildings, was used as our structured environment and a forest area was used as our unstructured en-

vironment. Paths forming a loop were followed by the robot twice in each environment to produce

examples of recognizable places.

After summarizing the concepts of feature keypoints and descriptors, we explained how to convert

point clouds into range images and use this data representation to extract a specific type of feature

called NARF. As mentioned, these features have the advantage to consider only edges produced by

objects boundaries, as opposed to edges caused by occlusion, making them a sensible choice for place

recognition in complex environments. Thereafter, we described the place recognition algorithm we

choose for our comparative analysis, which was presented in [Steder et al., 2011b]. This algorithm

uses NARF features with a technique combining BoW and features matching for scoring two input

scans, according on how they are likely to originate from the same place.

The physical distance between two scans was used to determine whether or not they are considered to

be in the same place. This value was obtained from the odometry corrected using ICP. We expected

to see a generally decreasing relationship between the score of the place recognition algorithm and

the distance between the input scans, which turn out to be true for all our datasets. The results were

also presented using discrete labels to be more faithful to practical uses, in which two scans either

originate or not from the same place. Using these labels, it was possible to identify FP, which must be

avoided when the place recognition algorithm is used for loop closures detection. Furthermore, this

discretization allowed us, for different score thresholds, to compute the recall as function of Tdistance

(i.e. maximum distance between two scans to be considered as originating from the same place).

The first important finding of our comparative analysis was that the unstructured dataset produced

some outliers regarding the relation between the place recognition range and the algorithm output

score, which was not the case for the structured dataset. These outliers greatly reduce the algorithm’s

performance when FP have to be avoided.

Another important observation was that the scores drop significantly faster with distance (separating

the scans) in the unstructured environment when compared to the structured environment. Specifi-

cally, reliable recognition of places was only possible in a radius of less than 15 m in forest, which

is approximately 15 m less than for the open environment between buildings. We also compared the

results for the SICK and Velodyne LiDARs in the unstructured environment. Results for those sensors

were relatively similar, but the samples obtained with the Velodyne got lower scores in general. This

implies that a small change of the score threshold greater impact results.
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Conclusion

The objective of this document was to analyze the influence of complex environments on different

LiDARs used in a context of mobile robotics navigation. Because LiDARs can effectively retrieve the

three-dimensional structure of an environment, they can advantageously be used for several naviga-

tion tasks, such as obstacles avoidance, localization and mapping. The information they provide is

complementary to that of other sensors such as cameras, which capture information on the appearance

of the surrounding scene. Although the literature on mobile robotic navigation is rich, most existing

research deal with indoor or structured outdoor environment. Dealing with complex environments,

such as forest or falling snow conditions, remains a important problem. Therefore, analyzing how

such complex environments influence the LiDAR-based navigation can help to develop algorithms

that are more robust to changing conditions.

In Chapter 2, we focused our attention on the impact of falling snow on LiDAR data. For that matter,

we first presented an overview of LiDARs functioning, which helped understand what could potentially

cause noise in the data. The first issue raised was that, when the spot produced by the laser beam is

not completely on a single target, a method of inference of the distance must be chosen and may

not be suitable for the application. This is generally caused by object edges of small particles. The

second issue raised was that LiDARs acquire data points sequentially, which can lead to a distorted

representation of the scene when the environment is dynamic. Consequently, the dynamic nature

and small size of snowflakes make snowfall a perfect example of challenging condition for LiDAR

acquisition.

To perform our analysis of the impact of falling snow on LiDAR acquisition, we collected data from

four sensors simultaneously, namely the Velodyne HDL-32E, the SICK LMS151, the SICK LMS200

and the Hokuyo UTM-30LX-EW. We acquired data during six snowfalls in a wide variety of condi-

tions. The final dataset used for our analysis contains more than 40 hours of data.

For our analysis, we first observed how the proportion of LiDAR returns caused by snowflakes evolved

over time. We visually represented the short-term evolution by overlaying the snowflakes according

to their spatial arrangement for four subsequent scans. This showed significant quantitative and spa-

tial changes, even over such short time. We observed no pattern in the distribution of snowflakes

and believe it can be modelled by a random process. We also illustrated the long-term evolution by

showing the proportion of return as function of time, for the whole duration an acquisition. The shape
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of this curve provides information on the progress of the weather during this period. Additionally,

we conducted a comparative analysis of the overall sensitivity to snowflakes of our four sensors. We

showed that the SICK LMS200 is the more sensitive with peaks reaching up to 15 % of echoes caused

by falling snow, while other three LiDARs never exceeded 1 %. Beside our temporal analysis, we

analyzed how range can affect the probability to trigger a measurement. Based on a histogram, we

found that the probability density function is close to a log-normal. One final important finding is that

beyond 10 m, snowflakes no longer seem to trigger measurement.

In Chapter 3, we have conducted our analysis at a higher level, by comparing the performance of a

state-of-the-art LiDAR-based place recognition algorithm in different environments. There are two

main reasons for this choice of algorithms . Firstly, the ability of a robot to identify previously visited

places allows to solve several other navigation problems, such as multi-session-mapping, kidnapped

robot and loop closure in SLAM. Secondly, the chosen algorithm proved to be successful in indoor

and structured outdoor environments, but had not been tested in unstructured environments.

For our comparative analysis, we acquired datasets in two different areas of the Laval University cam-

pus using the Husky A200 mobile robot. The first area is our model for a structured outdoor environ-

ment, similar to those on which the original algorithm was tested. In this location, the ground is mostly

flat and the scanned space contains several man-made objects, such as buildings, stairs and lampposts.

The second area, representing our unstructured environment, is in a forest where the ground is uneven

in some parts. We also used two different sensors for our acquisitions, namely the SICK LMS151

and the Velodyne HDL-32E. We used the resulting Structured-SICK, Unstructured-SICK and

Unstructured-Velodyne datasets to evaluate the impact of both the environment and the sensor

choice on the place recognition performance.

We showed the relation between the algorithm output score and the distance separating the input scans.

We consider that the closer two scans are from each other, the more likely they are to represent the

same place. Therefore, we expected an inverse relation between the score and the distance separating

the scans. We also presented the results using binary labels, because practical uses of place recognition

generally required pairs of scans to be identified as originating from the same place or not. For that

matter, all scans for which the distance between them was below a threshold were considered as

belonging to the same place. Similarly, we considered that if the score obtained for a pair of scans

was above a threshold, the algorithm labelled the input scans as representing the same place. This

labelling also enabled us to identify false positives and calculate the recall for different thresholds

combinations. As we explained, false positives must be avoided during SLAM, because they create

false loop closures, which distort the resulting map in a castastrophic manner.

The presentation of results, as described above, enabled us to make our final observations. As ex-

pected, we showed a relation of the form f (x) = 1/x between the algorithm output score and the

distance between two scans. This was true for our three datasets. However, some outliers were ob-

served for the unstructured environment, whereas this was not the case for the structured environment.
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This is important when using the discretized labels, because such outliers can result in FP or, if the

score threshold is adjusted to avoid them, significantly reduce the recall. Our last observation is that

the score decreases more rapidly as a function of the distance between scans in the unstructured en-

vironment than in the structured environment. This means that the algorithm becomes sensitive to

disturbances and noise as the place recognition range increases more quickly in an unstructured envi-

ronment than in a structured environment. The same observation applies when comparing the sensors,

in which case the algorithm become sensitive faster as the range increases for the Velodyne than the

SICK.

To conclude, the goal of this document was to evaluate the influence of complex environments on

LiDAR-based robot navigation. By characterizing LiDARs data acquired during snowfalls and by

comparing performances of LiDAR-based place recognition in forest and in structured outdoor en-

vironment, we showed that these environments can negatively impact robot navigation. Based on

our observations, future research could focus on finding methods to increase robustness to these con-

ditions, for instance by filtering input data. In the case of our place recognition analysis, a better

identification and quantification of the sources causing performance decrease could also help the de-

velopment of better solutions for navigation.
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