20,565 research outputs found

    The complex networks of earth minerals and chemical elements

    Get PDF
    We study the large-scale organization of the mineral-mineral (MMN) and element-element (EEN) complex networks by analyzing their topological structures. We see that the MMN and EEN are homogeneous, display large cliquishness, small average path length and large average degrees. Most of these networks display uniform degree distribution with the exception of the weighted EEN, which display a power-law degree distribution with exponential tail. All these topological characteristics appear to be consequence of the evolutionary mechanisms giving place to the minerals on Earth mantle, which as a whole display a relatively uniform major element composition. We also study the correlations between some topological network parameters and the abundance of chemical elements in different scenarios. Good correlation is obtained between the weighted degree and the abundance of elements in Earth's crustal rocks

    Hydrogen bond network topology in liquid water and methanol: a graph theory approach

    Get PDF
    Networks are increasingly recognized as important building blocks of various systems in nature and society. Water is known to possess an extended hydrogen bond network, in which the individual bonds are broken in the sub-picosecond range and still the network structure remains intact. We investigated and compared the topological properties of liquid water and methanol at various temperatures using concepts derived within the framework of graph and network theory (neighbour number and cycle size distribution, the distribution of local cyclic and local bonding coefficients, Laplacian spectra of the network, inverse participation ratio distribution of the eigenvalues and average localization distribution of a node) and compared them to small world and ErdƑs–RĂ©nyi random networks. Various characteristic properties (e.g. the local cyclic and bonding coefficients) of the network in liquid water could be reproduced by small world and/or ErdƑs–RĂ©nyi networks, but the ring size distribution of water is unique and none of the studied graph models could describe it. Using the inverse participation ratio of the Laplacian eigenvectors we characterized the network inhomogeneities found in water and showed that similar phenomena can be observed in ErdƑs–RĂ©nyi and small world graphs. We demonstrated that the topological properties of the hydrogen bond network found in liquid water systematically change with the temperature and that increasing temperature leads to a broader ring size distribution. We applied the studied topological indices to the network of water molecules with four hydrogen bonds, and showed that at low temperature (250 K) these molecules form a percolated or nearly-percolated network, while at ambient or high temperatures only small clusters of four-hydrogen bonded water molecules exist

    A simple spatiotemporal evolution model of a transmission power grid

    Get PDF
    In this paper, we present a model for the spatial and temporal evolution of a particularly large human-made network: the 400-kV French transmission power grid. This is based on 1) an attachment procedure that diminishes the connection probability between two nodes as the network grows and 2) a coupled cost function characterizing the available budget at every time step. Two differentiated and consecutive processes can be distinguished: a first global space-filling process and a secondary local meshing process that increases connectivity at a local level. Results show that even without power system engineering design constraints (i.e., population and energy demand), the evolution of a transmission network can be remarkably explained by means of a simple attachment procedure. Given a distribution of resources and a time span, the model can also be used to generate the probability distribution of cable lengths at every time step, thus facilitating network planning. Implications for network's fragility are suggested as a starting point for new design perspectives in this kind of infrastructures.Peer ReviewedPostprint (author's final draft
    • 

    corecore