15 research outputs found

    Topological analysis of the power grid and mitigation strategies against cascading failures

    Get PDF
    This paper presents a complex systems overview of a power grid network. In recent years, concerns about the robustness of the power grid have grown because of several cascading outages in different parts of the world. In this paper, cascading effect has been simulated on three different networks, the IEEE 300 bus test system, the IEEE 118 bus test system, and the WSCC 179 bus equivalent model, using the DC Power Flow Model. Power Degradation has been discussed as a measure to estimate the damage to the network, in terms of load loss and node loss. A network generator has been developed to generate graphs with characteristics similar to the IEEE standard networks and the generated graphs are then compared with the standard networks to show the effect of topology in determining the robustness of a power grid. Three mitigation strategies, Homogeneous Load Reduction, Targeted Range-Based Load Reduction, and Use of Distributed Renewable Sources in combination with Islanding, have been suggested. The Homogeneous Load Reduction is the simplest to implement but the Targeted Range-Based Load Reduction is the most effective strategy.Comment: 5 pages, 8 figures, 1 table. This is a limited version of the work due to space limitations of the conference paper. A detailed version is submitted to the IEEE Systems Journal and is currently under revie

    Distributed Generation and Resilience in Power Grids

    Full text link
    We study the effects of the allocation of distributed generation on the resilience of power grids. We find that an unconstrained allocation and growth of the distributed generation can drive a power grid beyond its design parameters. In order to overcome such a problem, we propose a topological algorithm derived from the field of Complex Networks to allocate distributed generation sources in an existing power grid.Comment: proceedings of Critis 2012 http://critis12.hig.no

    Epidemic and Cascading Survivability of Complex Networks

    Get PDF
    Our society nowadays is governed by complex networks, examples being the power grids, telecommunication networks, biological networks, and social networks. It has become of paramount importance to understand and characterize the dynamic events (e.g. failures) that might happen in these complex networks. For this reason, in this paper, we propose two measures to evaluate the vulnerability of complex networks in two different dynamic multiple failure scenarios: epidemic-like and cascading failures. Firstly, we present \emph{epidemic survivability} (ESES), a new network measure that describes the vulnerability of each node of a network under a specific epidemic intensity. Secondly, we propose \emph{cascading survivability} (CSCS), which characterizes how potentially injurious a node is according to a cascading failure scenario. Then, we show that by using the distribution of values obtained from ESES and CSCS it is possible to describe the vulnerability of a given network. We consider a set of 17 different complex networks to illustrate the suitability of our proposals. Lastly, results reveal that distinct types of complex networks might react differently under the same multiple failure scenario

    Optimizing the robustness of electrical power systems against cascading failures

    Full text link
    Electrical power systems are one of the most important infrastructures that support our society. However, their vulnerabilities have raised great concern recently due to several large-scale blackouts around the world. In this paper, we investigate the robustness of power systems against cascading failures initiated by a random attack. This is done under a simple yet useful model based on global and equal redistribution of load upon failures. We provide a complete understanding of system robustness by i) deriving an expression for the final system size as a function of the size of initial attacks; ii) deriving the critical attack size after which system breaks down completely; iii) showing that complete system breakdown takes place through a first-order (i.e., discontinuous) transition in terms of the attack size; and iv) establishing the optimal load-capacity distribution that maximizes robustness. In particular, we show that robustness is maximized when the difference between the capacity and initial load is the same for all lines; i.e., when all lines have the same redundant space regardless of their initial load. This is in contrast with the intuitive and commonly used setting where capacity of a line is a fixed factor of its initial load.Comment: 18 pages including 2 pages of supplementary file, 5 figure

    Context-Independent Centrality Measures Underestimate the Vulnerability of Power Grids

    Full text link
    Power grids vulnerability is a key issue in society. A component failure may trigger cascades of failures across the grid and lead to a large blackout. Complex network approaches have shown a direction to study some of the problems faced by power grids. Within Complex Network Analysis structural vulnerabilities of power grids have been studied mostly using purely topological approaches, which assumes that flow of power is dictated by shortest paths. However, this fails to capture the real flow characteristics of power grids. We have proposed a flow redistribution mechanism that closely mimics the flow in power grids using the PTDF. With this mechanism we enhance existing cascading failure models to study the vulnerability of power grids. We apply the model to the European high-voltage grid to carry out a comparative study for a number of centrality measures. `Centrality' gives an indication of the criticality of network components. Our model offers a way to find those centrality measures that give the best indication of node vulnerability in the context of power grids, by considering not only the network topology but also the power flowing through the network. In addition, we use the model to determine the spare capacity that is needed to make the grid robust to targeted attacks. We also show a brief comparison of the end results with other power grid systems to generalise the result.Comment: Pre-Proceedings of CRITIS '1

    Effects Comparison of Different Resilience Enhancing Strategies for Municipal Water Distribution Network: A Multidimensional Approach

    Get PDF
    Water distribution network (WDN) is critical to the city service, economic rehabilitation, public health, and safety. Reconstructing the WDN to improve its resilience in seismic disaster is an important and ongoing issue. Although a considerable body of research has examined the effects of different reconstruction strategies on seismic resistance, it is still hard for decision-makers to choose optimal resilience enhancing strategy. Taking the pipeline ductile retrofitting and network meshed expansion as demonstration, we proposed a feasible framework to contrast the resilience enhancing effects of two reconstruction strategies—units retrofitting strategy and network optimization strategy—in technical and organizational dimension. We also developed a new performance response function (PRF) which is based on network equilibrium theory to conduct the effects comparison in integrated technical and organizational dimension. Through the case study of municipal WDN in Lianyungang, China, the comparison results were thoroughly shown and the holistic decision-making support was provided
    corecore