25,645 research outputs found

    Execution replay and debugging

    Full text link
    As most parallel and distributed programs are internally non-deterministic -- consecutive runs with the same input might result in a different program flow -- vanilla cyclic debugging techniques as such are useless. In order to use cyclic debugging tools, we need a tool that records information about an execution so that it can be replayed for debugging. Because recording information interferes with the execution, we must limit the amount of information and keep the processing of the information fast. This paper contains a survey of existing execution replay techniques and tools.Comment: In M. Ducasse (ed), proceedings of the Fourth International Workshop on Automated Debugging (AADebug 2000), August 2000, Munich. cs.SE/001003

    Cyberbullying Detection System with Multiple Server Configurations

    Get PDF
    Due to the proliferation of online networking, friendships and relationships - social communications have reached a whole new level. As a result of this scenario, there is an increasing evidence that social applications are frequently used for bullying. State-of-the-art studies in cyberbullying detection have mainly focused on the content of the conversations while largely ignoring the users involved in cyberbullying. To encounter this problem, we have designed a distributed cyberbullying detection system that will detect bullying messages and drop them before they are sent to the intended receiver. A prototype has been created using the principles of NLP, Machine Learning and Distributed Systems. Preliminary studies conducted with it, indicate a strong promise of our approach

    Trolls Identification within an Uncertain Framework

    Get PDF
    The web plays an important role in people's social lives since the emergence of Web 2.0. It facilitates the interaction between users, gives them the possibility to freely interact, share and collaborate through social networks, online communities forums, blogs, wikis and other online collaborative media. However, an other side of the web is negatively taken such as posting inflammatory messages. Thus, when dealing with the online communities forums, the managers seek to always enhance the performance of such platforms. In fact, to keep the serenity and prohibit the disturbance of the normal atmosphere, managers always try to novice users against these malicious persons by posting such message (DO NOT FEED TROLLS). But, this kind of warning is not enough to reduce this phenomenon. In this context we propose a new approach for detecting malicious people also called 'Trolls' in order to allow community managers to take their ability to post online. To be more realistic, our proposal is defined within an uncertain framework. Based on the assumption consisting on the trolls' integration in the successful discussion threads, we try to detect the presence of such malicious users. Indeed, this method is based on a conflict measure of the belief function theory applied between the different messages of the thread. In order to show the feasibility and the result of our approach, we test it in different simulated data.Comment: International Conference on Tools with Artificial Intelligence - ICTAI , Nov 2014, Limassol, Cypru

    Crowdsourced real-world sensing: sentiment analysis and the real-time web

    Get PDF
    The advent of the real-time web is proving both challeng- ing and at the same time disruptive for a number of areas of research, notably information retrieval and web data mining. As an area of research reaching maturity, sentiment analysis oers a promising direction for modelling the text content available in real-time streams. This paper reviews the real-time web as a new area of focus for sentiment analysis and discusses the motivations and challenges behind such a direction

    On capacity of optical communications over a lossy bosonic channel with a receiver employing the most general coherent electro-optic feedback control

    Get PDF
    We study the problem of designing optical receivers to discriminate between multiple coherent states using coherent processing receivers---i.e., one that uses arbitrary coherent feedback control and quantum-noise-limited direct detection---which was shown by Dolinar to achieve the minimum error probability in discriminating any two coherent states. We first derive and re-interpret Dolinar's binary-hypothesis minimum-probability-of-error receiver as the one that optimizes the information efficiency at each time instant, based on recursive Bayesian updates within the receiver. Using this viewpoint, we propose a natural generalization of Dolinar's receiver design to discriminate MM coherent states each of which could now be a codeword, i.e., a sequence of NN coherent states each drawn from a modulation alphabet. We analyze the channel capacity of the pure-loss optical channel with a general coherent-processing receiver in the low-photon number regime and compare it with the capacity achievable with direct detection and the Holevo limit (achieving the latter would require a quantum joint-detection receiver). We show compelling evidence that despite the optimal performance of Dolinar's receiver for the binary coherent-state hypothesis test (either in error probability or mutual information), the asymptotic communication rate achievable by such a coherent-processing receiver is only as good as direct detection. This suggests that in the infinitely-long codeword limit, all potential benefits of coherent processing at the receiver can be obtained by designing a good code and direct detection, with no feedback within the receiver.Comment: 17 pages, 5 figure
    • 

    corecore