2,928 research outputs found

    Enriching ontological user profiles with tagging history for multi-domain recommendations

    Get PDF
    Many advanced recommendation frameworks employ ontologies of various complexities to model individuals and items, providing a mechanism for the expression of user interests and the representation of item attributes. As a result, complex matching techniques can be applied to support individuals in the discovery of items according to explicit and implicit user preferences. Recently, the rapid adoption of Web2.0, and the proliferation of social networking sites, has resulted in more and more users providing an increasing amount of information about themselves that could be exploited for recommendation purposes. However, the unification of personal information with ontologies using the contemporary knowledge representation methods often associated with Web2.0 applications, such as community tagging, is a non-trivial task. In this paper, we propose a method for the unification of tags with ontologies by grounding tags to a shared representation in the form of Wordnet and Wikipedia. We incorporate individuals' tagging history into their ontological profiles by matching tags with ontology concepts. This approach is preliminary evaluated by extending an existing news recommendation system with user tagging histories harvested from popular social networking sites

    Features for Killer Apps from a Semantic Web Perspective

    Get PDF
    There are certain features that that distinguish killer apps from other ordinary applications. This chapter examines those features in the context of the semantic web, in the hope that a better understanding of the characteristics of killer apps might encourage their consideration when developing semantic web applications. Killer apps are highly tranformative technologies that create new e-commerce venues and widespread patterns of behaviour. Information technology, generally, and the Web, in particular, have benefited from killer apps to create new networks of users and increase its value. The semantic web community on the other hand is still awaiting a killer app that proves the superiority of its technologies. The authors hope that this chapter will help to highlight some of the common ingredients of killer apps in e-commerce, and discuss how such applications might emerge in the semantic web

    Towards a killer app for the Semantic Web

    Get PDF
    Killer apps are highly transformative technologies that create new markets and widespread patterns of behaviour. IT generally, and the Web in particular, has benefited from killer apps to create new networks of users and increase its value. The Semantic Web community on the other hand is still awaiting a killer app that proves the superiority of its technologies. There are certain features that distinguish killer apps from other ordinary applications. This paper examines those features in the context of the Semantic Web, in the hope that a better understanding of the characteristics of killer apps might encourage their consideration when developing Semantic Web applications

    CHORUS Deliverable 3.4: Vision Document

    Get PDF
    The goal of the CHORUS Vision Document is to create a high level vision on audio-visual search engines in order to give guidance to the future R&D work in this area and to highlight trends and challenges in this domain. The vision of CHORUS is strongly connected to the CHORUS Roadmap Document (D2.3). A concise document integrating the outcomes of the two deliverables will be prepared for the end of the project (NEM Summit)

    Provenance-based trust for grid computing: Position Paper

    No full text
    Current evolutions of Internet technology such as Web Services, ebXML, peer-to-peer and Grid computing all point to the development of large-scale open networks of diverse computing systems interacting with one another to perform tasks. Grid systems (and Web Services) are exemplary in this respect and are perhaps some of the first large-scale open computing systems to see widespread use - making them an important testing ground for problems in trust management which are likely to arise. From this perspective, today's grid architectures suffer from limitations, such as lack of a mechanism to trace results and lack of infrastructure to build up trust networks. These are important concerns in open grids, in which "community resources" are owned and managed by multiple stakeholders, and are dynamically organised in virtual organisations. Provenance enables users to trace how a particular result has been arrived at by identifying the individual services and the aggregation of services that produced such a particular output. Against this background, we present a research agenda to design, conceive and implement an industrial-strength open provenance architecture for grid systems. We motivate its use with three complex grid applications, namely aerospace engineering, organ transplant management and bioinformatics. Industrial-strength provenance support includes a scalable and secure architecture, an open proposal for standardising the protocols and data structures, a set of tools for configuring and using the provenance architecture, an open source reference implementation, and a deployment and validation in industrial context. The provision of such facilities will enrich grid capabilities by including new functionalities required for solving complex problems such as provenance data to provide complete audit trails of process execution and third-party analysis and auditing. As a result, we anticipate that a larger uptake of grid technology is likely to occur, since unprecedented possibilities will be offered to users and will give them a competitive edge

    Semantic Web Application and Framework Development in South African Higher Education Institutions

    Get PDF
    The evolution of the Semantic Web (SW) and its application marked a turning point in how students could benefit from a range of educational web tools and applications enabled by the SW, also referred to as Web 3.0 technology for academic purposes to meet their demands. This shift afforded students the opportunity to obtain meaningful information, collaboration and data filtering to suit their needs. It also offers freedom in how and where they choose to learn. SW tools and applications are progressively being used at several universities worldwide. However, educators’ ability to integrate the use of these tools and applications in teaching and learning appears to be a major problem in almost every development plan of education and educational reform efforts. Moreover, very few educators integrate web tools to their full potential in teaching. This paper probed the integration and use of SW tools and applications in higher education institutions (HEIs), and developed a framework for its adoption in academic processes. The objectives aimed to establish the credible features and benefits of SW tools and applications in HEIs, and how the integration supports students’ academic goals. It is anticipated to improve learning interaction and collaboration, and build a social presence and cohesion among students. The paper employed a systematic literature review, and information and communication technology theory of adoption. The developed framework ultimately suggests that SW tools and applications are beneficial and useful in positively impacting the pedagogical setting. Findings revealed that certain challenges with human factors (technophobia, beliefs), infrastructure, security concerns, ethical and legal issues were identified as a hindrance to be considered during integration. Despite the challenges, these tools and applications provide variety and a new wave of teaching and learning in South African HEIs, which is crucial for meeting the demand of the Fourth Industrial Revolution (4IR) era

    Integrating Human Factors and Semantic Mark-ups in Adaptive Interactive Systems

    Get PDF
    This paper focuses on incorporating individual differences in cognitive processing and semantic mark-ups in the context of adaptive interactive systems. In particular, a semantic Web-based adaptation framework is proposed that enables Web content providers to enrich content and functionality of Web environments with semantic mark-ups. The Web content is created using a Web authoring tool and is further processed and reconstructed by an adaptation mechanism based on cognitive factors of users. Main aim of this work is to investigate the added value of personalising content and functionality of Web environments based on the unique cognitive characteristics of users. Accordingly, a user study has been conducted that entailed a psychometric-based survey for extracting the users' cognitive characteristics, combined with a real usage scenario of an existing commercial Web environment that was enriched with semantic mark-ups and personalised based on different adaptation effects. The paper provides interesting insights in the design and development of adaptive interactive systems based on cognitive factors and semantic mark-ups

    An MPEG-7 scheme for semantic content modelling and filtering of digital video

    Get PDF
    Abstract Part 5 of the MPEG-7 standard specifies Multimedia Description Schemes (MDS); that is, the format multimedia content models should conform to in order to ensure interoperability across multiple platforms and applications. However, the standard does not specify how the content or the associated model may be filtered. This paper proposes an MPEG-7 scheme which can be deployed for digital video content modelling and filtering. The proposed scheme, COSMOS-7, produces rich and multi-faceted semantic content models and supports a content-based filtering approach that only analyses content relating directly to the preferred content requirements of the user. We present details of the scheme, front-end systems used for content modelling and filtering and experiences with a number of users

    The Semantic Grid: A future e-Science infrastructure

    No full text
    e-Science offers a promising vision of how computer and communication technology can support and enhance the scientific process. It does this by enabling scientists to generate, analyse, share and discuss their insights, experiments and results in an effective manner. The underlying computer infrastructure that provides these facilities is commonly referred to as the Grid. At this time, there are a number of grid applications being developed and there is a whole raft of computer technologies that provide fragments of the necessary functionality. However there is currently a major gap between these endeavours and the vision of e-Science in which there is a high degree of easy-to-use and seamless automation and in which there are flexible collaborations and computations on a global scale. To bridge this practice–aspiration divide, this paper presents a research agenda whose aim is to move from the current state of the art in e-Science infrastructure, to the future infrastructure that is needed to support the full richness of the e-Science vision. Here the future e-Science research infrastructure is termed the Semantic Grid (Semantic Grid to Grid is meant to connote a similar relationship to the one that exists between the Semantic Web and the Web). In particular, we present a conceptual architecture for the Semantic Grid. This architecture adopts a service-oriented perspective in which distinct stakeholders in the scientific process, represented as software agents, provide services to one another, under various service level agreements, in various forms of marketplace. We then focus predominantly on the issues concerned with the way that knowledge is acquired and used in such environments since we believe this is the key differentiator between current grid endeavours and those envisioned for the Semantic Grid

    Metadata enrichment for digital heritage: users as co-creators

    Get PDF
    This paper espouses the concept of metadata enrichment through an expert and user-focused approach to metadata creation and management. To this end, it is argued the Web 2.0 paradigm enables users to be proactive metadata creators. As Shirky (2008, p.47) argues Web 2.0’s social tools enable “action by loosely structured groups, operating without managerial direction and outside the profit motive”. Lagoze (2010, p. 37) advises, “the participatory nature of Web 2.0 should not be dismissed as just a popular phenomenon [or fad]”. Carletti (2016) proposes a participatory digital cultural heritage approach where Web 2.0 approaches such as crowdsourcing can be sued to enrich digital cultural objects. It is argued that “heritage crowdsourcing, community-centred projects or other forms of public participation”. On the other hand, the new collaborative approaches of Web 2.0 neither negate nor replace contemporary standards-based metadata approaches. Hence, this paper proposes a mixed metadata approach where user created metadata augments expert-created metadata and vice versa. The metadata creation process no longer remains to be the sole prerogative of the metadata expert. The Web 2.0 collaborative environment would now allow users to participate in both adding and re-using metadata. The case of expert-created (standards-based, top-down) and user-generated metadata (socially-constructed, bottom-up) approach to metadata are complementary rather than mutually-exclusive. The two approaches are often mistakenly considered as dichotomies, albeit incorrectly (Gruber, 2007; Wright, 2007) . This paper espouses the importance of enriching digital information objects with descriptions pertaining the about-ness of information objects. Such richness and diversity of description, it is argued, could chiefly be achieved by involving users in the metadata creation process. This paper presents the importance of the paradigm of metadata enriching and metadata filtering for the cultural heritage domain. Metadata enriching states that a priori metadata that is instantiated and granularly structured by metadata experts is continually enriched through socially-constructed (post-hoc) metadata, whereby users are pro-actively engaged in co-creating metadata. The principle also states that metadata that is enriched is also contextually and semantically linked and openly accessible. In addition, metadata filtering states that metadata resulting from implementing the principle of enriching should be displayed for users in line with their needs and convenience. In both enriching and filtering, users should be considered as prosumers, resulting in what is called collective metadata intelligence
    corecore