185 research outputs found

    From computer-aided to intelligent machining: Recent advances in computer numerical control machining research

    Get PDF
    The aim of this paper is to provide an introduction and overview of recent advances in the key technologies and the supporting computerized systems, and to indicate the trend of research and development in the area of computational numerical control machining. Three main themes of recent research in CNC machining are simulation, optimization and automation, which form the key aspects of intelligent manufacturing in the digital and knowledge based manufacturing era. As the information and knowledge carrier, feature is the efficacious way to achieve intelligent manufacturing. From the regular shaped feature to freeform surface feature, the feature technology has been used in manufacturing of complex parts, such as aircraft structural parts. The authors’ latest research in intelligent machining is presented through a new concept of multi-perspective dynamic feature (MpDF), for future discussion and communication with readers of this special issue. The MpDF concept has been implemented and tested in real examples from the aerospace industry, and has the potential to make promising impact on the future research in the new paradigm of intelligent machining. The authors of this paper are the guest editors of this special issue on computational numerical control machining. The guest editors have extensive and complementary experiences in both academia and industry, gained in China, USA and UK

    Toolpath and machining parameters optimisation of the cavities of a knee prosthesis tibial insert

    Get PDF
    The main purpose of this paper is to demonstrate the applicability of conventional cutting tools in the machining of a custom tibial insert of a knee prosthesis. This study also aims to reduce the roughness and minimize the production time. In this work the optimisation of cutting strategies and parameters was achieved through the design and construction of a test-part containing the most important complex surfaces of the femoral cavities, the focus of the study. The milling was carried out in accordance with the Design Of Experiment and the Taguchi method and was performed in two stages to reduce the number of analysed factors. The achieved parameters are applied to the machining of a modelled tibial insert made of UHMWPE, using a NC machine with three axes. The initial parameters studied were the cutting method, axial and radial depth of cut, the direction of the feed and the feed rate. Three strategies were studied: two Blend, resulting in radial and spiral toolpaths, and one Parallel. According to the spiral strategy, an arithmetical mean roughness of R a = 1.1 μm was obtained, representing an improvement of 45% relatively to the initial phase value of 2.0 μm, with the Parallel toolpath. An overall improvement of 34% in time efficiency of the finishing operation was achieved after changing the machine settings. This study supports the conclusion that high-speed milling is an expeditious process to produce customized tibial inserts.publishe

    Additive Manufacturing for Nautical Design An Automated Approach to Marine Manufacturing

    Get PDF
    How can additive manufacturing (AM) technology be applied to automate the production of small marine vessels? For the past 50 years small (below 40 meters) marine vessel manufacturing has been dominated by moulded fiber-reinforced plastics (FRP). There are several shortcomings to this manufacturing method that affect both the formal outcome and the manufacturing process of boats built in FRP: 1) manufacturing requires the use of expensive moulds, 2) formal geometric freedom is limited by moulds which reduce the potential for customization, and 3) special assemblies and structural reinforcements must be moulded separately and joined using a time-consuming hand lay-up process. The use of AM may reduce cost of production by eliminating need for moulds, allow greater ease of customization, and improve worker safety by limiting exposure to harmful materials and chemicals. The purpose of this research project is to evaluate existing AM technology and assess its potential for application to small marine vessel manufacturing. The project aims to investigate new methods for generating novel AM tool paths and demonstrate through proof of concept that it may be possible to produce the complex topological surfaces and assemblies that are common in marine vessels using multi-bias additive manufacturing (MBAM). However, AM is a broad term that describes a variety of different ways to manufacture objects. As such, AM can be applied to marine manufacturing in a variety of different ways, in different phases of the manufacturing process, and to different extents. At the same time, building boats is a complex process that presents specific problems that must be addressed in any automation solution. Several marine vessel construction projects have already been completed using AM which can serve as case studies for understanding the opportunities and challenges for applying AM to the marine sector. A review of the current state of the technology and qualitative analysis (QA) of case studies provides a set of guidelines for designing a manufacturing method that may prove effective for producing small marine vessels using AM. The project relied on design-based research (DBR) to develop a series of experimental extruder prototypes for novel toolpath testing on excerpts from a small reference vessel. The combination of QA and DBR experimentation point to a manufacturing solution using articulated robotic manipulators and a continuous fiber thermoset plastic extruder using a modified version of the fused filament fabrication process. This kinematic solution can be extended with external linear or rotational axes and/or by mounting robotic manipulators within a large gantry. This will allow the extruder to approach the work using a wide range of orientations that will be optimal for both the geometry of marine vessels and the requirements of MBAM extrusion. Meanwhile, toolpath generation using the software Grasshopper with KukaPRC plugin demonstrated a proof of concept for creating MBAM toolpaths optimized for small marine vessels. While the method proved feasible for smaller excerpts there remain significant challenges to successful deployment of this manufacturing method that can only be addressed with additional research

    CNC Milling Toolpath Generation Using Genetic Algorithms

    Get PDF

    Discrete modeling of sculptured surface machining for robust automatic feedrate selection

    Get PDF
    Traditional feedrate selection techniques currently used in three and five-axis CNC machining reduces milling efficiency. Manually estimated feedrates tend to be conservative and constant, greatly increasing mill time. The goal of this research is to develop robust techniques and software tools for automatically generating optimized feedrates for use on three and five-axis CNC mills, to both simplify the feed selection process and to increase the safety and efficiency of the milling operation through milling process simulation. The simulation software estimates milling force vectors for each tool move, and identifies a feedrate that maintains a desired peak force. The desired cutting force value may be selected to prevent cutter breakage, maintain part tolerance, or meet some other criteria. Other conditions are also considered, such as maximum allowable chip thickness and machine constraints. This allows for the generation of variable feedrates that are optimized for each tool move. The software consists of three distinct portions: a discrete mechanistic model, a discrete geometric model, and a CNC machine model. The mechanistic model estimates cutting forces as a function of cut geometry, cutter/stock relative velocity, and material constants. The geometric model keeps track of the changing in-process stock geometry and provides the cut geometry parameters required by the mechanistic model. The CNC machine model calculates the cutter/stock relative velocity based on feed inputs, machine kinematics, and controller behavior. A feed value is calculated in an iterative manner for each tool move based on the force estimates. The results of this research have produced accurate force estimates during sculptured surface machining, and have also demonstrated that this approach at automatic feedrate selection is feasible. Testing of feedrate selection has included the five-axis milling of production turbomachinery in an industrial environment. An average improvement in efficiency of 20% has resulted from the use of the optimized feeds

    Postprocesamiento CAM-ROBOTICA orientado al prototipado y mecanizado en células robotizadas complejas

    Full text link
    The main interest of this thesis consists of the study and implementation of postprocessors to adapt the toolpath generated by a Computer Aided Manufacturing (CAM) system to a complex robotic workcell of eight joints, devoted to the rapid prototyping of 3D CAD-defined products. It consists of a 6R industrial manipulator mounted on a linear track and synchronized with a rotary table. To accomplish this main objective, previous work is required. Each task carried out entails a methodology, objective and partial results that complement each other, namely: - It is described the architecture of the workcell in depth, at both displacement and joint-rate levels, for both direct and inverse resolutions. The conditioning of the Jacobian matrix is described as kinetostatic performance index to evaluate the vicinity to singular postures. These ones are analysed from a geometric point of view. - Prior to any machining, the additional external joints require a calibration done in situ, usually in an industrial environment. A novel Non-contact Planar Constraint Calibration method is developed to estimate the external joints configuration parameters by means of a laser displacement sensor. - A first control is originally done by means of a fuzzy inference engine at the displacement level, which is integrated within the postprocessor of the CAM software. - Several Redundancy Resolution Schemes (RRS) at the joint-rate level are compared for the configuration of the postprocessor, dealing not only with the additional joints (intrinsic redundancy) but also with the redundancy due to the symmetry on the milling tool (functional redundancy). - The use of these schemes is optimized by adjusting two performance criterion vectors related to both singularity avoidance and maintenance of a preferred reference posture, as secondary tasks to be done during the path tracking. Two innovative fuzzy inference engines actively adjust the weight of each joint in these tasks.Andrés De La Esperanza, FJ. (2011). Postprocesamiento CAM-ROBOTICA orientado al prototipado y mecanizado en células robotizadas complejas [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/10627Palanci

    Smooth and Time-Optimal Trajectory Planning for Multi-Axis Machine Tools

    Get PDF
    This thesis presents novel methods for feedrate optimization and toolpath smoothing in CNC machining. Descriptions of the algorithms, simulation test cases, and experimental results are presented. Both feedrate optimization and toolpath smoothing are essential for increasing manufacturing efficiency while retaining part quality in CNC machining. The application of high-speed machining also necessitates the use of high feedrates, and smooth toolpaths which can be safely traversed at high feeds. However, problems occur when the feedrate is increased without check. High tracking error in machining may cause part tolerance errors. Transient vibrations due to jerky movement can lead to poor part surface quality. High speed trajectories may also demand greater torque than what the feed drives are capable of producing, which affects the motion controller’s ability to follow the trajectory correctly. The condition of the machine is also a concern, with the potential for damage or excessive wear on the machine’s components, if excessive axis velocity or jerk (i.e., rate of change of acceleration) is commanded. The feedrate scheduling algorithm developed in this thesis combines linear and nonlinear programming in a dual-windowed implementation. Linear programming (which is computationally fast) is used to quickly provide a near-optimal guess, based on axis velocity, acceleration, and jerk constraints. The solution is then refined through the use of nonlinear optimization. In the latter step, requiring more computations, the commanded motor torque and expected servo error are constrained directly, leading to shorter movement time. A windowing alignment procedure is presented which allows for these two optimization methods, each with different problem constraints and solutions horizons, to work in tandem with one another without risking infeasible boundary conditions between the windows. The algorithm is validated in simulation and experiment studies. Case studies analyzing the parameters of the optimization algorithm are also presented, and the configuration which is most computationally efficient is determined. A toolpath generation method is presented in which Euler-spiral pairs are used to smooth sharp corners, with an algorithm that integrates directly with the developed feedrate optimization The result is an exactly arc-length parametrized, G2-continuous toolpath whose axis derivatives can be computed very efficiently, which helps reduce the overall computation time. A repositioning toolpath method is also developed to reduce the cycle time of multi-layer contouring operations. This method replaces circular arc based repositioning segments between contouring passes (commonly used in industry) with a smooth Euler spiral based curve. This avoids tangent and curvature discontinuities, allowing for smoother motion with lower velocity and acceleration demands, while also reducing the overall motion. The repositioning toolpath has also been integrated with feedrate optimization and validated in simulation results

    Metodologia avançada para simulação de processos de estampagem incremental

    Get PDF
    Doutoramento em Engenharia MecânicaThe framework of the present work supports the numerical analysis of the Single Point Incremental Forming (SPIF) process resorting to a numerical tool based on adaptive remeshing procedure based on the FEM. Mainly, this analysis concerns the computation time reduction from the implicit scheme and the adaptation of a solid-shell finite element type chosen, in particular the Reduced Enhanced Solid Shell (RESS). The main focus of its choice was given to the element formulation due to its distinct feature based on arbitrary number of integration points through the thickness direction. As well as the use of only one Enhanced Assumed Strain (EAS) mode. Additionally, the advantages include the use of full constitutive laws and automatic consideration of doublesided contact, once it contains eighth physical nodes. Initially, a comprehensive literature review of the Incremental Sheet Forming (ISF) processes was performed. This review is focused on original contributions regarding recent developments, explanations for the increased formability and on the state of the art in finite elements simulations of SPIF. Following, a description of the numerical formulation behind the numerical tools used throughout this research is presented, summarizing non-linear mechanics topics related with finite element in-house code named LAGAMINE, the elements formulation and constitutive laws. The main purpose of the present work is given to the application of an adaptive remeshing method combined with a solid-shell finite element type in order to improve the computational efficiency using the implicit scheme. The adaptive remeshing strategy is based on the dynamic refinement of the mesh locally in the tool vicinity and following its motion. This request is needed due to the necessity of very refined meshes to simulate accurately the SPIF simulations. An initially mesh refinement solution requires huge computation time and coarse mesh leads to an inconsistent results due to contact issues. Doing so, the adaptive remeshing avoids the initially refinement and subsequently the CPU time can be reduced. The numerical tests carried out are based on benchmark proposals and experiments purposely performed in University of Aveiro, Department of Mechanical engineering, resorting to an innovative prototype SPIF machine. As well, all simulations performed were validated resorting to experimental measurements in order to assess the level of accuracy between the numerical prediction and the experimental measurements. In general, the accuracy and computational efficiency of the results are achieved.O presente trabalho assenta na análise numérica do processo de Estampagem Incremental por Único Ponto (SPIF) recorrendo ao refinamento adaptativo da malha através do Método dos Elementos Finitos (FEM). Nomeadamente, a atenção é dada à redução do tempo de cálculo baseado no esquema de integração implícito em combinação com um elemento finito do tipo “sólidocasca” predefinido. O principal motivo da escolha do tipo de elemento finito deve-se à sua formulação possibilitar a atribuição de um número arbitrário de pontos de integração na direção da espessura combinado com a utilização de um único modo de deformação acrescentada e integração reduzida no plano. Além disso, as vantagens incluem a utilização de leis constitutivas tridimensionais, análise automática de contacto em dupla face e espessura, uma vez que é um elemento hexaédrico de 8 nós. Inicialmente, uma revisão da literatura relacionada com o processo de estampagem incremental (ISF) é apresentada evidenciando as contribuições recentemente desenvolvidas, explicações do aumento da formabilidade do material em ISF e com maior ênfase o estado-de-arte das simulações numéricas pelo FEM do processo SPIF. Seguidamente, é apresentado a descrição dos conceitos teóricos que suportam e foram utilizados ao longo desta pesquisa, resumindo tópicos de mecânica não-linear relacionada com o código LAGAMINE, formulação de elementos finitos e leis constitutivas. O principal objetivo do presente trabalho é a aplicação do método de refinamento adaptativo combinado com um elemento finito sólido-casca, a fim de melhorar a eficiência computacional usando o esquema de integração implícito. A estratégia de refinamento adaptativo é baseada no refinamento dinâmico da malha localmente na proximidade da ferramenta e acompanhando o seu movimento. Este requisito é devido à necessidade de malhas muito refinadas para simular com precisão as simulações SPIF. A malha inicialmente refinada requer enorme tempo de cálculo e uma malha grosseira leva a resultados inconsistentes devido a problemas de contato. Neste sentido, o refinamento adaptativo evita o refinamento inicial total da malha e consequentemente melhora a performance computacional da simulação. Os testes numéricos realizados são baseados em casos estudo e em testes experimentais realizados na Universidade de Aveiro, Departamento de Engenharia Mecânica, recorrendo a uma máquina protótipo inovadora construída propositadamente para SPIF. Todas as simulações realizadas são validadas recorrendo às medições experimentais, de modo a avaliar o nível de precisão entre a previsão numérica e as medições experimentais. Em geral, a precisão e a eficiência computacional dos resultados são alcançados

    Numerical and experimental studies of asymmetrical Single Point Incremental Forming process

    Full text link
    The framework of the present work supports the numerical analysis of the Single Point Incremental Forming (SPIF) process resorting to a numerical tool based on adaptive remeshing procedure based on the FEM. Mainly, this analysis concerns the computation time reduction from the implicit scheme and the adaptation of a solid-shell finite element type chosen, in particular the Reduced Enhanced Solid Shell (RESS). The main focus of its choice was given to the element formulation due to its distinct feature based on arbitrary number of integration points through the thickness direction. As well as the use of only one Enhanced Assumed Strain (EAS) mode. Additionally, the advantages include the use of full constitutive laws and automatic consideration of double-sided contact, once it contains eighth physical nodes. Initially, a comprehensive literature review of the Incremental Sheet Forming (ISF) processes was performed. This review is focused on original contributions regarding recent developments, explanations for the increased formability and on the state of the art in finite elements simulations of SPIF. Following, a description of the numerical formulation behind the numerical tools used throughout this research is presented, summarizing non-linear mechanics topics related with finite element in-house code named LAGAMINE, the elements formulation and constitutive laws. The main purpose of the present work is given to the application of an adaptive remeshing method combined with a solid-shell finite element type in order to improve the computational efficiency using the implicit scheme. The adaptive remeshing strategy is based on the dynamic refinement of the mesh locally in the tool vicinity and following its motion. This request is needed due to the necessity of very refined meshes to simulate accurately the SPIF simulations. An initially mesh refinement solution requires huge computation time and coarse mesh leads to an inconsistent results due to contact issues. Doing so, the adaptive remeshing avoids the initially refinement and subsequently the CPU time can be reduced. The numerical tests carried out are based on benchmark proposals and experiments purposely performed in University of Aveiro, Department of Mechanical engineering, resorting to an innovative prototype SPIF machine. As well, all simulations performed were validated resorting to experimental measurements in order to assess the level of accuracy between the numerical prediction and the experimental measurements. In general, the accuracy and computational efficiency of the results are achieved
    corecore