968 research outputs found

    Fault Secure Encoder and Decoder for NanoMemory Applications

    Get PDF
    Memory cells have been protected from soft errors for more than a decade; due to the increase in soft error rate in logic circuits, the encoder and decoder circuitry around the memory blocks have become susceptible to soft errors as well and must also be protected. We introduce a new approach to design fault-secure encoder and decoder circuitry for memory designs. The key novel contribution of this paper is identifying and defining a new class of error-correcting codes whose redundancy makes the design of fault-secure detectors (FSD) particularly simple. We further quantify the importance of protecting encoder and decoder circuitry against transient errors, illustrating a scenario where the system failure rate (FIT) is dominated by the failure rate of the encoder and decoder. We prove that Euclidean geometry low-density parity-check (EG-LDPC) codes have the fault-secure detector capability. Using some of the smaller EG-LDPC codes, we can tolerate bit or nanowire defect rates of 10% and fault rates of 10^(-18) upsets/device/cycle, achieving a FIT rate at or below one for the entire memory system and a memory density of 10^(11) bit/cm^2 with nanowire pitch of 10 nm for memory blocks of 10 Mb or larger. Larger EG-LDPC codes can achieve even higher reliability and lower area overhead

    A Self-Stabilizing Hybrid Fault-Tolerant Synchronization Protocol

    Get PDF
    This paper presents a strategy for solving the Byzantine general problem for self-stabilizing a fully connected network from an arbitrary state and in the presence of any number of faults with various severities including any number of arbitrary (Byzantine) faulty nodes. The strategy consists of two parts: first, converting Byzantine faults into symmetric faults, and second, using a proven symmetric-fault tolerant algorithm to solve the general case of the problem. A protocol (algorithm) is also present that tolerates symmetric faults, provided that there are more good nodes than faulty ones. The solution applies to realizable systems, while allowing for differences in the network elements, provided that the number of arbitrary faults is not more than a third of the network size. The only constraint on the behavior of a node is that the interactions with other nodes are restricted to defined links and interfaces. The solution does not rely on assumptions about the initial state of the system and no central clock nor centrally generated signal, pulse, or message is used. Nodes are anonymous, i.e., they do not have unique identities. A mechanical verification of a proposed protocol is also present. A bounded model of the protocol is verified using the Symbolic Model Verifier (SMV). The model checking effort is focused on verifying correctness of the bounded model of the protocol as well as confirming claims of determinism and linear convergence with respect to the self-stabilization period

    A Self-Stabilizing Hybrid-Fault Tolerant Synchronization Protocol

    Get PDF
    In this report we present a strategy for solving the Byzantine general problem for self-stabilizing a fully connected network from an arbitrary state and in the presence of any number of faults with various severities including any number of arbitrary (Byzantine) faulty nodes. Our solution applies to realizable systems, while allowing for differences in the network elements, provided that the number of arbitrary faults is not more than a third of the network size. The only constraint on the behavior of a node is that the interactions with other nodes are restricted to defined links and interfaces. Our solution does not rely on assumptions about the initial state of the system and no central clock nor centrally generated signal, pulse, or message is used. Nodes are anonymous, i.e., they do not have unique identities. We also present a mechanical verification of a proposed protocol. A bounded model of the protocol is verified using the Symbolic Model Verifier (SMV). The model checking effort is focused on verifying correctness of the bounded model of the protocol as well as confirming claims of determinism and linear convergence with respect to the self-stabilization period. We believe that our proposed solution solves the general case of the clock synchronization problem

    Approximate Consensus in Highly Dynamic Networks: The Role of Averaging Algorithms

    Full text link
    In this paper, we investigate the approximate consensus problem in highly dynamic networks in which topology may change continually and unpredictably. We prove that in both synchronous and partially synchronous systems, approximate consensus is solvable if and only if the communication graph in each round has a rooted spanning tree, i.e., there is a coordinator at each time. The striking point in this result is that the coordinator is not required to be unique and can change arbitrarily from round to round. Interestingly, the class of averaging algorithms, which are memoryless and require no process identifiers, entirely captures the solvability issue of approximate consensus in that the problem is solvable if and only if it can be solved using any averaging algorithm. Concerning the time complexity of averaging algorithms, we show that approximate consensus can be achieved with precision of Δ\varepsilon in a coordinated network model in O(nn+1log⁥1Δ)O(n^{n+1} \log\frac{1}{\varepsilon}) synchronous rounds, and in O(ΔnnΔ+1log⁥1Δ)O(\Delta n^{n\Delta+1} \log\frac{1}{\varepsilon}) rounds when the maximum round delay for a message to be delivered is Δ\Delta. While in general, an upper bound on the time complexity of averaging algorithms has to be exponential, we investigate various network models in which this exponential bound in the number of nodes reduces to a polynomial bound. We apply our results to networked systems with a fixed topology and classical benign fault models, and deduce both known and new results for approximate consensus in these systems. In particular, we show that for solving approximate consensus, a complete network can tolerate up to 2n-3 arbitrarily located link faults at every round, in contrast with the impossibility result established by Santoro and Widmayer (STACS '89) showing that exact consensus is not solvable with n-1 link faults per round originating from the same node
    • 

    corecore