3,079 research outputs found

    Deceit: A flexible distributed file system

    Get PDF
    Deceit, a distributed file system (DFS) being developed at Cornell, focuses on flexible file semantics in relation to efficiency, scalability, and reliability. Deceit servers are interchangeable and collectively provide the illusion of a single, large server machine to any clients of the Deceit service. Non-volatile replicas of each file are stored on a subset of the file servers. The user is able to set parameters on a file to achieve different levels of availability, performance, and one-copy serializability. Deceit also supports a file version control mechanism. In contrast with many recent DFS efforts, Deceit can behave like a plain Sun Network File System (NFS) server and can be used by any NFS client without modifying any client software. The current Deceit prototype uses the ISIS Distributed Programming Environment for all communication and process group management, an approach that reduces system complexity and increases system robustness

    Crux: Locality-Preserving Distributed Services

    Full text link
    Distributed systems achieve scalability by distributing load across many machines, but wide-area deployments can introduce worst-case response latencies proportional to the network's diameter. Crux is a general framework to build locality-preserving distributed systems, by transforming an existing scalable distributed algorithm A into a new locality-preserving algorithm ALP, which guarantees for any two clients u and v interacting via ALP that their interactions exhibit worst-case response latencies proportional to the network latency between u and v. Crux builds on compact-routing theory, but generalizes these techniques beyond routing applications. Crux provides weak and strong consistency flavors, and shows latency improvements for localized interactions in both cases, specifically up to several orders of magnitude for weakly-consistent Crux (from roughly 900ms to 1ms). We deployed on PlanetLab locality-preserving versions of a Memcached distributed cache, a Bamboo distributed hash table, and a Redis publish/subscribe. Our results indicate that Crux is effective and applicable to a variety of existing distributed algorithms.Comment: 11 figure

    Simplified Distributed Programming with Micro Objects

    Full text link
    Developing large-scale distributed applications can be a daunting task. object-based environments have attempted to alleviate problems by providing distributed objects that look like local objects. We advocate that this approach has actually only made matters worse, as the developer needs to be aware of many intricate internal details in order to adequately handle partial failures. The result is an increase of application complexity. We present an alternative in which distribution transparency is lessened in favor of clearer semantics. In particular, we argue that a developer should always be offered the unambiguous semantics of local objects, and that distribution comes from copying those objects to where they are needed. We claim that it is often sufficient to provide only small, immutable objects, along with facilities to group objects into clusters.Comment: In Proceedings FOCLASA 2010, arXiv:1007.499

    Optimistic Parallel State-Machine Replication

    Full text link
    State-machine replication, a fundamental approach to fault tolerance, requires replicas to execute commands deterministically, which usually results in sequential execution of commands. Sequential execution limits performance and underuses servers, which are increasingly parallel (i.e., multicore). To narrow the gap between state-machine replication requirements and the characteristics of modern servers, researchers have recently come up with alternative execution models. This paper surveys existing approaches to parallel state-machine replication and proposes a novel optimistic protocol that inherits the scalable features of previous techniques. Using a replicated B+-tree service, we demonstrate in the paper that our protocol outperforms the most efficient techniques by a factor of 2.4 times
    corecore