
J

/Dl iT J i7

/iv- J _-c/_--

J_o£ 7_ '_

Enclosed is a copy of a technical report produced by the ISIS
group. This report was produced under contract number NAC,2-593.

Respectfully yours,

S.san Allen,

ISIS Project Secretary

(607) 255-9198

]'IllsREPORT IS UNCLASSIFIED AND MAY BE DISTRIBUTED WI'I'IIOUTRESTRICTION

(NASA-CR-!86412) DF_C_IT: A FLEXIBLE

UISTRI_!_UTFD FILE SYSTFM (Cornell Oniv.)

35 p CSCL 05B

G3/_2

N90-19923

Unclas

0270872

https://ntrs.nasa.gov/search.jsp?R=19900010607 2020-03-19T23:00:55+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42824502?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Deceit: A Flexible Distributed File System*

Alex Siegel
Kenneth Birman
Keith Marzullo

TR 89-1042
November 1989

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

*This work was supported by the Defense Advanced Research Projects Agency (DoD)
under ARPA order 6037, Contract N0014-87-C-8904, and under NASA-Ames grant
no. NAG 2-593. The views, opinions, and findings contained in this report are those of
the authors and should not be construed as an official Department of Defense position,
policy, or decision.

_o

Deceit: A Flexible Distributed File System *

Alex Siegel,

Kenneth Birman, and Keith Marzullo

{siegel,ken,marzullo}.cs.corneil.edu

Cornel] University

Ithaca, NY

December 7, 1989

Abstract

Deceit, a distributed file system being developed at CorneU, focuses on flexible

file semantics in relation to efficiency, scalability, and reliability. Deceit servers are

interchangeable and collectively provide the illusion of a single, large server machine

to any clients of the Deceit service. Non-volatile replicas of each file are stored on

a subset of the file servers. The user is able to set parameters on a file to achieve

different levels of availability, performance, and one-copy serializability. Deceit also

supports a file version control mechanism. In contrast with many recent DFS efforts,

Deceit can behave like a plain Sun Network File System server and can be used by any

NFS client without modifying any client software. The current Deceit prototype uses

the ISIS Distributed Programming Environment for all communication and process

group management, an approach that reduces system complexity and increases system
robustness.

"This work was supported by the Defense Advanced Research Projects Agency (DoD) under ARPA order

6037, Contract N0014-87-C-8904, and under NASA-Ames Grant No. NAG 2-593. The views, opinions,

and findings contained in this report are those of the authors and should not be construed as ati officlal
Department of Defense position, policy, or decision.

1 INTRODUCTION

1 Introduction

This paper discusses the Deceit Distributed File System which is being developed at CorneU

University. The research emphasis of the Deceit system is a more flexible file semantics

to address the problems of scalability 1, efficiency, and reliability. Our premise is that it

is valuable for the user to be able to adjust system semantics on a per file basis. Needed

features may be employed without paying a penalty for unused features. The default

behavior is equivalent to NFS.

Users select atypical features by overriding the default selections established by Deceit.

Here are some of the choices that a user or system administrator might make:

• Availability--there are many techniques known for handling machine crashes and

communication loss. Different solutions offer varying levels and types of resilience

and cost. For example, data replication reduces the probability that the file wiU

become unavailable for reading, but file updates become more expensive.

• Update propagation--there is a delay between when a client issues an update and

when that update is apparent to other clients. Some applications may have con-

straints on this delay.

• Causality--constraints may exist between files to provide file consistency. By having

the file system enforce such constraints, the user may augment or reduce the concur-

rency of updates and the success of file caching. For example, a run-time debugger

may require that an executable file and its source file are consistent.

• Update stability--it may not be necessary for an update to be_ _written to non-volatile

storage or sent to all replicas immediately. Asynchronous update propagation can

produce dramatic improvements in performance. Note that an update can be visible

to all clients before it is has been delivered to all file replicas. The difference between

update propagation and stability is clarified below.

The user can dynamically set fi/e parameters to select the method that Deceit uses to

provide the above properties. This paper describes the components of the Deceit file

system which provide these file parameters and also gives a less detailed description of the

lln this discussionscalabilitywillreferto the total number of fileservers rather than the number o["

clients.

2 GENERAL ARCHITECTURE 3

_L

entire architecture. Some additional features that we plan to add in the near fut'ure are

discussed also.

There are many existing distributed file systems including RNFS, Andrew, Sprite, Locus.

Amoeba, SWALLOW, DFS, and Cedar (see bibliography for an extensive list of references).

We are deeply indebted to these other distributed file systems for many of Deceit's design

features. A full presentation of other distributed file systems is beyond the scope of this

paper, and a partial presentation would inevitably be unfair, so we only compare Deceit

to NFS in this paper.

This organization of this paper is as follows. Section 2 gives a general description of the

architecture with the major assumptions underlying the Deceit design. Section 3 describes

the file replication management protocols. Section 4 describes the parameters that a user

can set on a file. Section 5 is a detailed description of the logical structure of Deceit.

Section 6 describes some example scenarios where Deceit might be used, and Section 7 is

the conclusion.

2 General Architecture

2.1 Contrast between NFS and Deceit

One way to understand the Deceit architecture is to contrast it to the NFS architecture[47,

48,46]. In a normal NFS implementation, each server machine maintains a set of files

disjoint from the sets maintained by all other servers. These sets are structured into

directory trees, and each server may provide more than one directory tree. The file name

space 2 is built by linking together the directory trees provided by the servers into a single

tree. This linking is done separately at each client. Refer to Figure 1 for an example

directory tree. Clients may communicate with any subset of the NFS servers, but servers

normally never communicate with each other; of course, servers may act as normal clients

to each other.

Deceit and NFS use the same client/server communication protocol (i.e. the same transport

and RPC interface), so a Deceit service appears to be a NFS file service to a client. As

a result, Deceit provides a normal NFS name tree. All NFS operations are supported

2The file name space for a file system is the mapping between full path names and logical or physical
files.

2 GENERAL ARCHITECTURE 4

I

[/usr /bin
!

................ /%'sT- /lib
I

I I l

II i Dr 1I_ .j

I

' / /h 1 if,,, usr ome S.eoe. me o

erver

boundaries

/bin_/sh

Figure 1: Example NFS directory tree

with no change to any client software. The fde handle is an important component of the

NFS protocol. A file handle is associated with each file or directory, and clients usually

refer to files or directories by file handle. This type of handle for files is common in the

file system literature[26,34,36]. Since Deceit uses the NFS protocol, Deceit provides file

handles. These file handles are guaranteed to be unique and usable as long as a replica of
the file exists.

A main difference between Deceit and NFS is that files are not statically bound to any

particular server; with Deceit, flies may move freely between servers. If a client request

arrives for a file at a server which does not have that file, the request is automatically

forwarded to a server that has the file. The reply is propagated backwards along the same

path. All servers provide an identical file service to clients so that clients have to explicitly

connect to only one server in order to access the entire Deceit service. A comparison

between Deceit and normal NFS communications paths is provided in Figure 2. When

one machine fails, Deceit clients can connect to another machine and continue operation;

standard NFS client software does not provide this capability. Users may think of Deceit

as a single, highly reliable and responsive server.

2 GENERAL ARCHITECTURE

ICUe t ¢IDIIE

Server

D

NFS Communication Paths

Deceit Communication Paths

Figure 2: communication paths

A second difference is that Deceit allows replicationof fies. Files may have non-volatile

replicason any subset of the servers. It isimportant for disk and communication e_ciency

that fies are not always replicated on every server,since such a high degree of replication

is unnecessary for most applications. To this end, the user can specify a desired replica-

tion level and can provide explicit control over the placement of filereplicas,ifdesired.

Directories are handled similarlyto files;they are stored on a subset of the availableservers.

A third di_erence is that Deceit supportsa fileversion control mechanism. A user may

explicitlyproduce, manipulate, and delete specificversions of a fie. Also, a user can inquire

about the relationships between versions and ask Deceit to delete obsolete versions. This

2 GENERAL ARCHITECTURE G

version control mechanism is "blended" into NFS semantics so that its use is optional.

Deceit provides a superset of NFS functionality. To allow the user to access this function-

ality, Deceit has additional commands and file operations beyond normal NFS operations.

Clients access these features by using special RPCs and by reads and writes to invisible

control files. Special commands are provided to list all versions of a file, locate all replicas

of a file, modify file parameters, reconcile directory versions, and provide other fimctions.
These commands are discussed below.

2.2 Cells

In the above discussion, it was assumed that all clients could directly access any Deceit

server, but this property is not necessarily true. Deceit servers can be subdivided into cells

to prevent Deceit from being non-secure (and inefficient) in a very large implementation.

Each cell is an independent instantiation of Deceit with distinct files and processes. Each

cell maintains its own name space, and replication must be contained within a cell. A

cell provides security and administrative boundaries. In our present implementation, cells

correspond to ISIS site clusters. An example of Deceit cells is shown in Figure 3.

Access between ceils is provided through a logical directory. There is a logical direc-

tory called the global root directory. It cannot be listed, as it implicitly contains the

full machine names of every accessible Deceit server. Instead, it is used indirectly as a

subdirectory of a normal directory. For example, if a user is in the Cornell computer sci-

ence cell and wants to access files in the MIT computer science cell, he picks a machine

"foo.cs.mit.edu" at MIT where a Deceit server is running. By executing the command "cd

/priv/global/foo.cs.mit.edu", a user can access the MIT cell with normal file operations.

The global root directory is a subdlrectory of "/priv." The Cornell cell acts as a client to

the MIT cell. Mount and access restrictions are applied as with any client.

2.3 Design Assumptions

A list of assumptions about the environment where a system will be used is fundamental to

any design. We will provide a short summary of our assumptions here. The assumptions

are grouped into three categories: network architecture, failure, and typical operational

behavior.

2 GENERAL ARCHITECTURE

CELL

mount

CELL

[-]- single Deceit server

Figure 3: Example configuration of Deceit servers with cells

Network Assumptions

The target environment is a network of computers used in a client/server fashion. Some of

the computers may be diskless, and some may be large dedicated file servers. We believe

that NFS offers an adequate file system interface for our purposes, and NFS is widely

accepted, hence all file requests from the clients are via the standard NFS interface. Under

normal conditions, all machines can communicate directly with each other through an

underlying network. Communication is symmetric: if a can send a message to b, then b

can send a message to a. The servers are grouped into administrative subsets called cells,

such that each cell is managed by a single centralized administration. Cells are assumed to

be a small number of local area networks (e.g. 10-100 machines). Network communication

is secure: messages are sent to the correct destination with a correct sources address, and

messages can not be examined by machines which are not the intended receiver. Since all

communication between servers is through the ISIS distributed system[2,3], all of the ISIS

2 GENERAL ARCHITECTURE

communication assumptions are present in Deceit.

Failure Assumptions

We assume that machines may crash without notificationS; messages may be lost dur-

ing transmission; and the network may experience long term communication partition. _

All machines have roughly independent failure probabilities. Network partitions may be

frequent. Within a cell, servers trust each other, but between cells there is minimal trust.

3E_

Operational Assumptions

Predictable file access patterns are central to the design and performance of Deceit. Many

of Deceit's design decisions were based on results from studies which were done in an

academic environment [39,14,13,44].

Deceit's operational assumptions are as follows. Files tend to be written or read in their

entirety with a stream of operations. Nearly simultaneous writes by two clients to the

same file are very rare. Files experience long periods of total inactivity punctuated by

high activity where they may be rewritten several times in a few minutes. File activity

tends to cluster in a small number of directories. The vast majority of NFS operations are

get attribute (get basic file attributes), lookup (find a file by name in a directory), read, and

write. Most files are small, i.e. less than 20 kilobytes.

2.4 Related Topics

The ISIS distributed system is used for crash and partition detection, communication

primitives, and process group management[33,22]. Some features that ISiS provides are:

several group broadcast protocols, atomic group membership change, mechanisms for lo-

cating group members by group name, fight-welght processes with signals and semaphores,

architecture independent communication, and process state transfer. As a detailed discus-

sion of ISIS would be a digression, the reader is referred to [4] for more information.

3For a more detailed discussion of machine and communication failure models, please refer to [3].

4Some readers may be aware that early versions of ISIS blocked during network partitions. As part of
our work on Deceit, and other ISIS applications, this issue was reexamined. We expect a version of ISIS
capable of surviving network partion to be available shortly.

3 REPLICATION MANAGEMENT 9

Throughout this paper, the term "user" will be used to refer to the person or process

who is initiating file system operations. In practice, some file system operations will need

to be restricted beyond normal file security. For example, a system administrator ma.v

mandate that users can generate at most three replicas of a file. The separation of power._

between users and system administrators is a fruitful area of research. In this paper, these
distinctions will not be discussed.

3 Replication Management

Replication is one of the most important mechanisms in Deceit. If critical system compo-

nents are distributed over several machines, then it is more likely that one of them will be

unavailable at any time. Replicating components is an obvious solution. There are only a

few file systems that allow files to be replicated among a set of servers[10,9,19,30,8,37].

Note, however, that caching is an important form of replication. Since caching is used in

all file systems, then they all must support some form of replication. The Andrew File

System[21] is a good example. Andrew supports caching on a client disk and in client

memory. Deceit also supports client memory caching.

A desirable property of any replicated data system is one-copy seriaIizability s. A file f

exhibits one-copy serializability if the results of reads and writes to f are indistinguishable

from the outcome of performing the same operations in a setting where there is only one

replica of f. One-copy serializability is a useful property since it implies that the ex.istence

of multiple replicas is hidden at the user level.

3.1 Replica Generation

Associated with each Deceit file is a minimum replica level that can be defined and changed

through a special command. If file f has a minimum replica level of r, then Deceit will

insure that there are at least r non-volatile replicas of f as long as enough servers are

available. To do so, new replicas may need to be generated. Associated with f is a server,

t, called the token holder of f. The token holder is responsible for generating and deleting

file replicas. Tokens will be discussed in more detail in Section 3.3. There are four ways

that a replica can be generated:

SOne-copy serializability is defined assuming all interprocess communication is through files.

3 REPLICATION MANAGEMENT i0

.

0

3.

.

The token holder t may lose contact with a replica, t counts the number of correct

replies to an update broadcast for f. If the number of replies drops below r, then

t will create new replicas. If there are no updates, replicas may become unavailable

and later available without causing a new replica to be generated.

If the minimum replica level is increased, t will create new replicas.

A user may request the token holder t to create or delete a replica on a specific server

with a special command. Users may inquire about the current location of all replicas

for a file with another special command.

A server may request that a replica be generated in order to improve read perfor-
mance.

-..:

Method 4 occurs as follows. If a client accesses file f through a server s which does not

have a replica of f, then the operation is forwarded to a server which has a replica of f. As

a background activity, a local non-volatile replica is generated on s to speed future reads

and help ensure availability. In this manner, file migration is achieved with the replication

mechanism. Each client slowly gathers its working set of files to the server to which it

has connected. In some cases, the user may prefer that a replica is not automatically

generated; this parameter may be set by the user.

Replicas are generated with a file transfer protocol from an existing replica. A replica

holder feeds a copy of the file to the site where the replica is being generated through a

TCP connection. Non-blocking I/O and careful buffer management allow the connection

to run at high efficiency. The token holder delays updates during replica generation to

prevent inconsistency.

Eventually, there may exist several unneeded replicas of a file. The token holder t will

delete these extra replicas when an update occurs instead of updating them. They are

deleted in least-recently-used order. The user may ask t to delete a replica with a special
command.

Some existing DFSs allow files to be divided into segments for caching or replication. This

option allows finer grain control over data movement and more efficient access to very large

files. Unfortunately, it does not work well with the NFS protocol, and it greatly increases

the complexity of the system. We have decided not to provide this option at the present
time.

3 REPLICATION MANAGEMENT 11

3.2 File Groups

For any file, f, there is an explicit process group of servers that need current information

about f, which we will call the fi/e group of f. A process group is a set of machines

or processes; there must be a mechanism for broadcasting messages to all members and

sending messages to individual members. Deceit represents each file group with an ISIS

process group.

The file group for f contains all servers that have a replica of the file or have cached

information about the file. This set is a superset of the replica holders, and it includes

those servers which cache only timestamps or mode bits. The fundamental operation

within a file group is update distribution. An update to f originates from a client and is

given to its server. That server then broadcasts the update to all members of f's file group;

no other servers receive this update for f. Refer to Figure 4 for a schematic description

of update distribution. The concept of a file group is fundamental to the scalability of the

entire system, since only the size of f's file group affects the speed of updates to f.

In Deceit, a server needs to join a file group before it is allowed to broadcast an update

to, or have a replica of, that file. Joining a file group is an expensive operation and may

require a global search to find a member of the group. This operation is one of the main

obstacles to scaling Deceit to an arbitrary size. Deceit limits global search to within a

Deceit cell to ameliorate this problem. As a result, file groups must stay within a single

cell.

We believe that much of the complexity of distributed file systems arise in problems analo-

gous to those found in group management. For example, a read/write quorum protocol can

be viewed as a protocol for atomically broadcasting data updates to a group of replicas.

The problem of locating a file replica by file handle is similar to the problem of locating

a group member by group name. It would be interesting, but beyond the scope of our

present discussion, to compare file systems in these terms.

3.3 Write-tokens

To coordinate access to replicated data, we use a urrite-token protocol. This protocol is

based on one presented in [33,42]. A write.token[27,28] is associated with each file group.

Only a server that holds the token is allowed to distribute updates to the corresponding

3 REPLICATION MANAGEMENT 17.

Server

Server

Server

Server

Server C_ent

Server

X - Replica holder - File group member

Figure 4: Update Distribution

file group. An update requires only one communication round 6 if the token is held. A

write-token protocol works well when update streams tend to originate from one source for

long periods of time as in a file system; under those conditions most updates will require

only one broadcast.

The token holder synchronously collects only the first s correct replies, where ,_ is the write

safety level of the file. After these s replies have been collected, the original client RPC

that requested the update will return.

A server that lacks a token must acquire it before distributing an update for that file.

Token acquisition requires one round, but it is only done for the first in a series of updates.

eA communication round is the distribution of a message to a set of processes. The collection of sylJ-

chronous replies is included in the round.

3 REPLICATION MANAGEMENT 13

To acquire a token, a server broadcasts a token reciuest to that file group. The server that

holds the token broadcasts a token pass in response. It is necessary for correctness that

the updates arrive in identical order at all servers regardless of token movement.

There are several optimizations to this protocol. One optimization is to broadcast an

update in the same message with a token request, replica holders execute those updates

upon receiving the corresponding token pass. Another optimization is to pass an update

to the current token holder instead of requesting the token if it is likely that there will

be only one update; for example, a small file that is overwritten in a single update will

probably not be updated again soon. Deceit currently uses neither of these optimizations.

3.4 Global One-copy Serializability

The write-token scheme described in Section 3.3 is sufficient to achieve one-copy serializ-

ability in a file system containing only one file, but a real file system will require a stronger

mechanism. Global one-copy serializability is defined as the property that clients should

observe one-copy serializability on the whole file system rather than simply on individual

files. A related property is real-time consistency; if one user writes a file and calls a friend

on the phone, the friend should be able to observe the update within a bounded delay.

Global one-copy serializability is stronger than simple one-copy serializability as is shown

in Figure 5. In this example, files z and y are initially empty. Client c_ appends to z and

then appends to y. Concurrently, client c2 successfully reads from y and then observes

that z is empty. This result is impossible if there is only one replica of z and y. Yet z and

y separately exhibit one-copy serializability.

An obvious solution is to wait for the update to complete at every member of the file

group before allowing a unite call to return to a client. Unfortunately, this can lead to bad

performance, particularly in the case where a replicated file is being written with a stream

of small updates. A more efficient mechanism that allow updates to complete concurrently

is called for.

Deceit provides global one-copy serializability with a stability notification mechanism. Be-

fore a file can be modified, all members of the file group are notified that the file is unstable.

All available r replicas must be so notified before any updates can occur (the failure of the

rA replica at server b is available to a if a can communicate with b. ISIS provides a clean notion of

availability since failure detection is coordinated with communication.

3 REPLICATION MANAGEMENT 14

c2 reads z

1

c_ app!nds X

cl appends y

c2 re!ds

Time History of Operations with Files z and y

. time

! T !o Lcl appends z c2 re ds y

c2 re dsz clap ndsy

time

Separate Time Histories of z and y

F

Figure 5: Illustration of One-copy Serializability Example

token holder during stability notification is discussed in Section 3.5). After stability no-

tification, all file reads and inquiries are forwarded to the token holder. Only the token

holder's replica needs to be updated before a write can return to a client. One:copy

serializability is guaranteed because, in effect, the token holder's replica is now the "pri-

mary" replica. After a short peri0d of no write activity, the token holder notifies all other

members of the group that the file is stable again. Table 1 gives a short summary of the

sequence of events required in a normal update. Stability notification is normally invisible

to applications, and its main effect is on performance and update visibility to clients.

The main benefit of stability notification is that updates become visible to =all clients

simultaneousiy. 8 On the other hand, _ Overhead is incurred at the beginning and end

Sin a distributed system, simultaneous events may not appear to happen at the same physical time since

communication delay introduces uncertainty.

3 REPLICATION MANAGEMENT 15

Precondition

token is not held

replicas are not marked as unstable

Action

acquire token

mark replicas as unstable

true distributed update

failure detected count update replies

insufficient replicas

period of no write activity

generate new replicas

mark replicas as stable

Table 1: Typical Sequence of Events in an Update

of a stream of updates. This overhead can be expensive if updates are short and rare.

Also, reads that are concurrent with updates are more expensive. By default, Deceit uses

stability notification, but the client can specify that stability notification is not used.

3.5 Crash and Partition Failures

The algorithm presented in Sections 3.1 to 3.4 must be resilient to failure. The mechanisms

that Deceit uses for this purpose are presented below.

Histories and Version Pairs

Associated implicitly with each replica of file f is an update history f.h. An update history

is a list of all updates to the file and which server issued these updates. History f.h is an

ancestor of history f.h _ if f.h is a prefix of f.h'. The histories that all replicas of a file pass

through form a tree under the ancestor relation; this tree is called the histo_3 tree. Two

histories are incomparable if neither is an ancestor of the other.

Deceit does not explicitly store the full history of a replica. Instead, Deceit maintains a

one-to-one mapping from histories to integer pairs (vt, v2) where vl is the major version

number, and v2 is the subversion number s. v2 is incremented on every update, and vt is

changed to a new unique number every time there is a potential branch in the history

tree. These branch points are recorded with a replica so that version number pairs can be

°In the literature, this value is often called an update counter.

3 REPLICATION MANAGEMENT IG

compared as if the histories that they represent were available. For example, the relation

(vl = v_ A v2 < v_) :, (f.h is an ancestor of f.h') always holds.

A version pair is stored with each write token. The token version pair can be compared

to a replica version pair to quickly decide if a replica has received every update through

that token. This version pair is available to the user through a special command so that

the user can determine if a file has been modified.

Token Generation

If a client wishes to update a file, and no write token is available for the specified version,

a new token will be generated. Assume that the file being updated has major version

number v,, and a replica is available with version pair (vl,v2). Server s can generate a

new token by picking a globally unique major version number v[and building a token with

version pair (v[, v2), then s stores v, with the new token. Replicas corresponding to the

new token are generated by copying the original replica.

Generating a new token is more than simply generating a new version pair. Every file

replica is associated with only one token. The new token represents a distinct new file

with a distinct set of replicas. After the new token is generated, enough replicas are

generated to satisfy the minimum replica level constraint. File data is drawn from the

existing available replica.

It may be necessary to constrain when a token can be generated. Deceit provides file

parameters settings that provide this capability. There are three options. The first option

is to totally inhibit the generation of new write-tokens. This option has the advantage that

a server can always write to a file after it has acquired the write-token, but it is easy to

suffer long term loss of file availability. The second option is to allow a server to generate

or use a token only if the majority of the replicas are available. A token becomes disabled

if the majority of the replicas becomes unavailable. This option provides relatively high

availability, and multiple versions can be generated only during transitional periods. On

the other hand, it is more difficult to implement, and write availability may be lost in the

middle of a stream of updates. The third option is to not restrict token generation at all.

Deceit uses this second option as the default.

Restricting updates to the majority partition requires a mechanism for counting the number

of available replicas. Replicas are normally counted by counting the correct replies to an

update broadcast. ALl replica generation must be accomplished through the token holder,

3 REPLICATION MANACEMENT 17

so that the token holder always has an upper bound on the total number of rephcas. For

purposes of computing a majority, the total number of replicas is taken to be the ma:_imum

of the minimum replica level and the upper bound on the number of replicas. For a server

without access to the token, the total number of replicas is assumed to be the minimum

replica level; the number of available replicas is determined by broadcasting an inquiry to

the file group.

-v

Version Control System

During a partition event, multiple file versions can be generated. It follows that Deceit

must be capable of maintaining distinct versions which are distinguished only by different

values for the major version number, vl. The facility by which this is accomplished may also

be accessed directly at the user level as a normal file versioning system, such as in a source

code management system. Deceit uses a simple mechanism: file names can be qualified

with version numbers using a special syntax. For example, major version 3 of "foo" can be

referred to as "foo;3." By using this form of file name, specific versions can be created 1°,

modified, and deleted. By using an unqualified filename, the user automatically requests

the most recent available version. A directory entry actually uses the unqualified filename,

so creating a new file version does require an update to a directory. The system behaves

similarly to the VAX/VMSll[ll] version control system, except that VMS produces a new

version on every file update, while Deceit produces new versions only during partitions or

when explicitly requested.

Local Non-volatile Storage

Several types of information must be kept in non-volatile storage to allow recovery from

a crash. Each server stores all file data for its replicas. This data includes: the actual

data of the file, the replica state, and the version pair. Additionally, each server stores

all state information relating to each token that is held. Also, each server stores a non-

volatile copy of the map between file haudles and local file names. Some of a server's

non-volatile storage is updated immediately when values change, and some of it is written

asynchronously, depending on safety.

mDeceit selects major version numbers carefully to insure global uniqueness. Users must be careful when

creating new versions during a partition to preserve uniqueness.
IIVAX/VMS is a Trademark of Digital Equipment Corporation

3 REPLICATION MANAGEMENT 1s

3.6 Crash Scenarios

In order to clarifythe usage of the crash resiliencemechanisms, several example scenarios

are presented.

Non-token Replica Crash

When a server s recovers from a crash, it contacts the token holder for each file f such

that s has a replica but no token for f. Each token carries the version pair that replicas

should have if they are up to date. If s finds that it has an obsolete replica of f, s destroys

it. Since the history for the replica of s is a prefix of the history associated with the token,

no update will be lost.

Token Crash

Token loss is detected when a server attempts to contact a token holder during the course

of normal read or update operations. Let us assume that server s needs to distribute

an update for a file, but it can not contact the current token holder. Subject to token

generation constraints, s can generate a new token. Since s now holds the token for a

version of the file, s can complete the original operation.

Assume that s could not contact the old token holder s' because s I had crashed. When

s' recovers, it will be notified about the creation of the new version during its recovery

protocol, s' will note that the new version is a direct descendent of the old version and

destroy the old version and all of its replicas.

Partition

Now consider the scenario where there was a network partition, but no updates were issued

to the file in the partition with the token. Read access on the token holder side continues

normally, since it is dif_cult distinguish between this scenario and the case where the other

replicas simply crashed. Write access in the partition which does not contain the old token

may cause a new token to be generated. When the partition is resolved, the old token

holder will be notified. It will appear to the clients as if the token had actually been

moved, and the updates were propagated very slowly to some servers.

3 REPLICATION MANAGEMENT 19

The hard case is when a partition occurs and updates are issued to the file on both sides

concurrently. In this case both of the incomparable versions of the file are kept, ancl a

notification is logged into a well known file. It is the responsibility of the user to resolve

such conflicts. By allowing the user to resolve incomparable versions, the semantics of the

file may be used for resolution [5,52,20]. Both versions are made available to the user and

may be edited, modified, or deleted independently. Since concurrent updates are assumed

to be rare, this case should occur very rarely.

Stability Notification in the Presence of Failure

If the token holder t for a file f loses contact with some of f's replicas during an update

distribution, those replicas might be left in an inconsistent state. Stability notification is

used to detect this case. Before an update is distributed, all available replicas are marked

as unstable. Therefore, if replica states are inconsistent, then all inconsistent replicas wiU

be marked as unstable.

Inconsistency is detected when a read is given to a server s which has an unstable repfica

of f, and s is unable to contact t. In order to respond to a read, s must locate a stable

replica, s produces a stable replica by broadcasting to f's file group to determine the state

of all available replicas. If there is a stable replica at server s _, the operation is forwarded

to s'. If no replica is marked as stable, s forces the most up to date replica to be stable,

and all obsolete replicas are destroyed.

Disastrous Failure

Despite all of these precautions, with a suitably pathological sequence of crashes and

recoveries, it is still possible to produce non-one-copy serializability. For example, if an

obsolete file replica recovers and all other replicas simultaneously crash, the file will appear

to go back in time. We could solve this problem by inhibiting token generation and by

consulting the token holder during every operation, but this solution would destroy most

of the benefit of replication.

4 FILE SEMANTICS 20

4 File Semantics

Deceit associates the following semantic parameters with each file:

Minimum Replica Level - the minimum number of valid replicas that must be main-

tained. For example, a minimum replica level of 3 would force Deceit to maintain a

valid replica on at least 3 separate servers. By default, the value is 1.

, Write Safety Level - the number of replica servers that must reply to an update

before a write RPC returns to a client. A value of 0 produces asynchronous unsafe

writes; a value greater than or equal to the number of available replicas produces

slow and fully synchronous writes. By default, the value is 1.

. Stability notification - specifies whether stability notification is to be used. Stability

notification guarantees global one-copy serializability and real-time update propaga-

tion, but there is a performance cost. The default is to use stability notification.

. File migration - should Deceit automatically attempt to create a non-volatile replica

of file f on a server that receives requests from a client for f. For some applications,

it may be bad to automatically generate local replicas. For example, for a very large

data file, generating a local replica may consume too much disk space. The default

is that file migration not be used.

. Write Availability Level - determine when Deceit can generate a new write-token if

a token has been lost. If this flag is set to "high", then a token may be generated

whenever one is needed. A high availability means it is likely that multiple file

versions will result due to a partition. A value of "medium" allows a new token to be

generated by server s only when s can contact a majority of the replicas, and a token

is disabled if fewer than the majority is available. As a result, some replicas may

occasionally be "read only," but multiple file versions will occur less frequently. A

value of "low" prevents the production of additional tokens. Loss of file write access

may be frequent and long term, but there is no chance of generation of multiple
versions. The default value is "medium."

5 SYSTEM COMPONENTS "2_1

5 System Components

The Deceit server consists of two components as shown in Figure 6. The first component

is a distributed reliable segment server. The segment server provides a simple, flat, reliable

distributed file service with no user level security or user specified names. There is no

notion of directories or links in the segment server. The segment server implements all of

the update, replication, and versioning protocols, and it is the layer where file parameters

exist. On top of the segment server is a full NFS file service which uses the segment server

for storage and communication, called the NFS file service envelope.

File Service

Envelope

SegmentServer

Clients ...
NFS

client/server /

protocol //

File Service

Envelope

Segment [Server

UI_IX '
file

operati_

Machine

Boundary

File ServiceEnvelope

l'qormal -

procedure
call

SegmentServer

DJceit

interserver

protocol

Figure 6: Expanded view of Deceit architecture

Deceit does not directly address most security issues. It is assumed that communication

between instances of the segment server is secure (e.g. encrypted or physically secure).

Also, the local files used for storage by the segment server are inaccessible to unauthorized

5 SYSTEM COMPONENTS 9O

users. Client/server communication is secured, and client authentication is provided using

DES encryption in the NFS interface. It is beyond the scope of this discussion to provide

a detailed description of these mechanisms.

5.1 Segment Server

A segment contains an array of bytes that can be indexed by an offset. Associated with

a segment is the data in the segment, the values for each of the semantic parameters, a

version number pair, a process group, and read and write timestamps. The interface to

the segment server consists of five normal procedure calls: create, delete, read, write, and

setparam. Create has no arguments and simply returns a handle for a new segment of zero

length. Delete takes a segment handle and deletes all storage allocated for it. Read reads

a portion of a segment. Write modifies a segment by replacing, appending, or truncating

data in the segment. Setparam is used to specify semantic parameters on a segment.

It is valuable to have a form of serial transaction 12 when accessing a segment. Many

distributed files systems, particularly earlier ones, had strong mechanisms for executing

an atomic transaction. For example, DFS[45] had an extensive transaction mechanism

which involved locking and intention lists. SWALLOW[50,49] used a system of virtual

time stamps to provide serializability. The Alpine File System[6] used log files to provide

-_ recoverability. Later distributed files systems had weaker atomicity guarantees in order to

_" provide better performance.

To help provide a transactional capability, Deceit employs the version number pair. A read

call not only returns data, but it also returns the version pair associated with that data.

A write also returns the version pair of the segment after the write has completed. A write

call can also have a version pair as a parameter; in this case the urr/te will succeed only

if the version pair of the segment matches the version pair in the call when the data is

actually updated, otherwise an error will be returned. Using this feature, a limited type
of serial transaction can be achieved.

This notion of version pairs can be used to implement an optimistic concurrency control

mechanism. A read implicitly begins a transaction with the establishment of a specific

version pair for the segment. Writes are then issued with that version pair. A transaction

t_An atomic transaction two properties: recoverability and serializability. Recoverability means that the

transaction completes or fails entirely. Serializability means that the transactions exhibit behavior consistent

with some total ordering. A serial transaction is a transaction that only provides serializability.

5 SYSTEM COMPONENTS 23

is implicitly completed when the last write completes successfully. A write which returns

an error due to the use of the wrong version pair is similar to a transaction which has

been aborted due to the detection of non-serial behavior. Unfortunately, there is no way

to back out of previous updates. The application which attempted the write can restart

with the original read or abandon the attempt entirely. In effect, transactions have been

transformed into light weight tasks which run at the level above the segment server.

A good example of this behavior is the addition of an entry to a directory in the Deceit

file system. The directory is read, and a position is selected in the directory for adding the

entry; this may overwrite an existing dead entry or append a new entry. Then, an update

is given to the segment server with the version pair returned by the original read. If a

version pair conflict occurs, the whole operation is restarted.

,;Ta-

5.2 NFS File Service Envelope

The full file service is built on top of the reliable segment server. The principle is that

every file, directory, or soft link is mapped into a unique segment. All NFS operations

are mapped into creates, deletes, reads, and writes on segments. The UNIX kernel does a

similar transformation when it transforms user file operations into disk operations. The fuU

file service inherits the distributed nature of the segment server to provide a full distributed

file system. Although the NFS envelope implementation is a large piece of software, it is

totally independent of the underlying implementation of the segment service. In principle,

it will never need to be changed despite radical changes in the segment server protocols.

Links and Garbage Collection

Since the segment server does not have a notion of links, it is the responsibility of the

NFS envelope to decide when a file is no longer accessible, so the storage for it can be

deallocated. Since both directories and files may have multiple versions, and since creation

of new links may be hidden behind partitions, it can be very difficult to decide when to

delete the segment for a file [29]. A normal NFS system has the advantage of centralized

control and single file versions, so a simple link count suffices (however the link counts can

be corrupted by an ill timed crash.)

We see two solutions to the prOblem: The first solution is to extend the concept of a link

count. The link count would correspond to the total number of link copies, where every

5 SYSTEM COMPONENTS 24

replica of every version of a directory referring to the file is counted once. Refer to Figure 7

for an example of this type of link count. The link count is stored in the segment as normal

data. To maintain safety, it would be impossible to add a link to a file unless the file was

write available. Unfortunately, it would also be unsafe to create new replicas or versions

of directories unless each file in the directory was also write available. Another severe

disadvantage is that when the link count becomes corrupted, it is extremely expensive (or

impossible) to recalculate.

Directory 1]
Version 1]1

epl. 1 epl. 2 epl. 3

Version 3

Directory 2
Version 1

Repl. 1 Repl. 2 _epl.
X X IX

Version 2

Repl. 1 Repl. 2

X
Repl. 3

X- hard link to file

The total link count is 9.

Figure 7: Example of Link Count Computation

The solution we chose is more complex. An uplink list of directory file handles is stored

with each file. The NFS envelope attempts to maintain the property that if file f is in

directory d, then d is in the uplink List of some version of f. When a hard link is made to

f in directory d, d is added to the uplink list of all versions of f which can be updated at

that time. Deceit also keeps a standard hard link count with f, but it is only considered

to be a hint. When the link count goes to zero, the NFS envelope checks every available

version of every directory in the uplink list. If none have a link to the file, the segment is

deallocated; otherwise, the link count is corrected.

Our solution has several drawbacks. A file f may neither be moved nor additional links

made unless the uplink list of some version of f can be safely modified. Also, a server s

may add an uplink to f, but another server s' may never see that uplink if s' can only

contact a disjoint set of versions. As a result, s' may prematurely attempt to deallocate f.

5 SYSTEM COMPONENTS 25

Another drawback is that if the link count of f is corrupted so that it is too large, f may

never be garbage collected. Finally, when a file is moved, two directories, a link count, and

an uplink list must be modified in some safe order. Garbage collection is discussed again

briefly in Section 7.

5.3 Client Agents

The agent is a simple but important component of Deceit. The agent is the client software

which interfaces between the user process and the NFS protocol. Currently, the agent runs

in the kernel, but the agent can be in several possible locations. Refer to Figure 8. These

different configurations provide widely differing performance.

User
program

Agent

normal procedure call,

interprocess communication,

kernel call,

or remote procedure call

user loadable library,
kernel procedure,

or auxiliary user process

localinterprocess communication,

or remote procedure call(NFS)

Server

Figure 8: Example Agent/Server Configurations

The agent satisfies two primary functions. First, the agent provides caching. The agent

5 SYSTEM COMPONENTS 26

caches file and directory data as well as information specific to the client/server protocol

such as NFS file handles and server information. Another agent function in Deceit is

failover. When one server fails, the agent must select another to continue operation. This

second capability requires an extension to the NFS protocol.

A third optional agent function is using an access shortcut. Normally, a server forwards

a requests for which the server does not have a replica. It is more efficient for the agent

to cache file locations and directly communicate with the correct servers. This capability

requires an extension to the NFS protocol.

Deceit currently uses the standard NFS client software provided in the Sun operating

system. This software does not provide failover or shortcuts. A new agent is being written

which will run as an auxiliary user process, and it will provide full functionality. An agent

which can be loaded as a user library and directly issues NFS RPCs is planned, and this

agent should greatly improve file performance.

A user library that acts as an agent is not easily implemented for several reasons. First,

since the NFS protocol requires file handles and there is no way to easily extract file handles

from the SunOS kernel, each user process will have to go through the full mount protocol

to get file handles. Also, since files will be cached in the user process virtual memory space,

processes will have to use some type of coordination protocol to share cached files.

5.4 ISIS

We made the decision to use ISIS after some consideration; an early version of Deceit did

not use ISIS at all. When we used ISIS, several issues arose:

ISIS requires a separate configuration and installation phase in addition to the one

required for Deceit. This requirement was an inconvenience during development, and

it will continue to be a problem in the future. A stand-alone package requiring little

or no additional configuration information would be preferable.

Deceit exposed several performance and development problems in ISIS. Group mem-

bership change, high volume state transfer, as well as other operations were too

expensive. Some ISIS features, such as partition tolerance, were underdeveloped

when Deceit began development. These issues are being addressed. Future versions

of ISIS should allow Deceit to have satisfactory performance.

6 SCENARIOS 27

Q

One particular problem was the huge number of process groups that could be gen-

erated by Deceit. In the current implementation of ISIS, process groups are ai1

expensive resource. More specifically, ISIS does not efficiently support more than

100-1000 process groups. Future versions of ISIS should support larger numbers of

process groups. Future versions of Deceit will be more careful with generating and

deleting process groups.

ISIS saved a large amount of development time. We started to use ISIS after real-

izing that we were reimplementing much of the ISIS functionality in Deceit. ISIS

also provides useful debugging primitives. We estimate that at least 6 months of

development was saved.

6 Scenarios

The previous sections provided a great deal of detail about Deceit without much discussion

about applications. To show how Deceit could be used to solve real problems, two impor-

tant application scenarios are listed below. For each scenario, there is a short description

of the scenario, followed by a description of how Deceit could be used efficiently in this

application.

6.1 Academic Public Workstation Environment

This environment is characterized by a large number of small, inexpensive, and unreliable

machines. Administrative control is often poor. Users spend the bulk of their time editing

or compiling. Files tend to be small, and their physical location is relatively unimportant,

but high availability is valuable.

This scenario is the easiest to solve since Deceit is being developed and tuned in this

environment. All of the semantic parameter defaults should be adequate. Users will

typically want to set the replication level to 2 or 3 on important source and text files; other

files can be regenerated if necessary. The system administrator should set the replication

level to be 2 or 3 on all important system directories, binaries, and libraries. Adding new

servers is simply a matter of configuring ISIS to run on the server, and executing the Deceit

server daemon. Files can be moved transparently from one server to another by the system

administrator at any time to provide better disk balancing.

7 CONCLUSIONS 28

6.2 Data Collection and Dispersion

A large class of applications requires bulk data movement and manipulation. For example,

NASA collects huge amounts of data at several remote stations which is processed in a

central computing facility. A product development team uses large detailed specifications

to drive simulations which can be at a distant location. This environment is characterized

by a small number of large machines with large numbers of peripheral machines attached

to them. Extremely large files are common. Users collect large quantities of data on some

machines and analyze it at other machines. Since _e sizes often are at the limits of disk

space, controlling the location of the data is necessary. There may be large geographical

distances within the system.

For a very large data file, the user can turn of[automatic localization to prevent uncon-

trolled generation of file replicas. Also the minimum replica level should be 1 until the file

has reached its final destination, and then it may be set to 2 to provide a single backup.

Since data versioning may lead to version conflicts, the write availability level will probably

need to be "medium" or even "low." Data files can be quickly copied from one server to

another using the blast file transfer mechanism in Deceit by manually forcing the creation

of a replica on the target server andthen deleting the replica on the source server. At any

time during the manipulation of the data location, the file data is available for reading and

writing via any server.

7 Conclusions

We believe Deceit provides enough flexibility so that most applications can have acceptable

performance and availability. All the basic features necessary for a full distributed file

system with replication have been provided. Deceit performance is not understood if the

environment does not satisfy the operational assumptions in Section 2.3. In such cases, we

may be required to add new operational modes be added to Deceit.

A version of Deceit exists and is used at Come]l, although it is not yet in general use.

Except for inter-cell communication, all of the features described above are implemented.

Development is still at an early stage, and we expect fundamental architectural changes

as our experience continues. Performance measures would be premature at this stage of
our effort.

REFERENCES 20

Two serious problems still need to be addressed. The first is file contention bottlenecks.

Certain files and directories such as the root directory will be accessed very frequently by

all servers. It is fortunate that these files tend to have read only access. It may be valuable

to have special file modes which are optimized for this combination of properties[38,24].

Another problem is the use of links and directories as discussed in Section 5.2. The current

solution is unsatisfactory, so we are looking for other solutions. Hopefully, a solution to this

problem may also offer a solution to the root directory contention problem. One possibility

that we are investigating is the use of file uplinks to allow non-volatile directories to be

discarded.

There are some performance problems with the process group management protocol.

Group joins are expensive, and broadcasts are more expensive than need to be. Also,

using a huge number of ISIS groups has a unacceptable effect of ISIS performance. Since

Deceit uses process groups in a restricted and well defined way, it is inefficient to use gen-

era/ ISIS groups for each file group. Several methods to improve performance are being

investigated.

Acknowledgements

The authors would like to thank Patrick Stephenson and Robert Cooper for their careful

reading of early versions of this manuscript.

References

[1]

[2]

[3]

Gregory R. Andrews, Richard D. Schlichting, Roger Hayes, and Titus D. M. Purdin.

The Design of the Saguaro Distributed Operating System. In [EEE Transactions of

Software Engineering, pages 104-118. IEEE, January 1987. Vol. SE-13 and No. 1.

K. Birman and T. Joseph. Exploiting Virtual Synchrony in Distributed Systems. In

Proceedings of the Eleventh ACM Symposium on Operating Systems Principles, ACM,

November 1987. Order no. 534870.

Kenneth Birman and Thomas Joseph. Reliable Communication in the Presence of

Failures. In ACM Transactions of Computer Systems. Association for Computing

Machinery, February 1987. Vol. 5 and No. 1.

REFERENCES 3O

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Kenneth P. Birman, Thomas A. Joseph, Kenneth P. Kane, and Frank Schmuck. ISIS

- A Distributed Programming Environment - User's Guide and Reference Manual. Cor-

nell University Computer Science Department, Ithaca, New York.

Pearl Brereton. Detection and Resolution of Inconsistencies Among Distributed Repli-

cation of Files. In Operating Systems Review, pages 10-15. Association for Computer

Machinery, January 1983. Vol. 17 and No. 1.

Mark R. Brown, Karen N. Kolling, and Edward A. Taft. The Alpine File System. In

ACM Transactions on Computer Systems, pages 261-293. Association for Computer

Machinery, November 1985. Vol. 3 and No. 4.

Luis Felipe Cabrera. QuickSilver Distributed File Services: An Architecture for Hor-

izontal Growth. In i988 IEEE _2nd Conference On Computer Workstations, pages

23-37. IEEE, March 1988. 88CH2441-4.

John L. Carroll, Darrell D. E. Long, and Jehan-Francois Paris. Block-Level Consis-

tency of Replicated Files. In The 7th International Conference on Distributed Com-

puting Systems, pages 146-153. IEEE, September 1987. Order no. 801.

Dean Daniels and Alfred Z. Spector. An Algorithm for Replicated Directories. In

Operating Systems Review, pages 24-43. Association for Computer Machinery, January
1986. Vol. 20 and No. 1.

Danco Davcev and Walter A. Burkhard. Consistency and Recovery Control for Repli-

cated Files. In Proceedings of the Tenth A CM Symposium on Operating Systems Prin-

ciples, pages 87-96. ACM, December 1985. Order no. 534850.

Digital Equipment Corportion, Maynard, Massachusetts. VAX/VMS - Introduction to

VAX/VMS, vax./vms version 4.0 edition, September 1984. Order No. AA-Y500A-TE.

Jeremy Dion. The Cambridge File Server. In Operating Systems Review, pages 26-35.

Association for Computer Machinery, October 1980. Vol. 14 and No. 4.

Rick Floyd. Directory Reference Patterns in a UNIX Environment. Technical Report

179, University of Rochester, August 1986.

Rick Floyd. Short-Term File Reference Patterns in a UNIX Environment. Technical

Report 177, University of Rochester, March 1986.

REFERENCES 31

[15]

[16]

[17]

Marek Fridrich and W. Older. The FELIX File Server. In Proceedings of the Eighth

Symposium on Operating Systems Principles, pages 37-44. ACM, December 1981. Or-

der no. 534810.

David K. Gifford, Roger M. Needham, and Michael D. Schroeder. The Cedar File

System. In Communications of the ACM, pages 288-298. Association for Computer

Machinery, March 1988. Vol. 31 and No. 3.

Anna Hac. Distributed File Systems - A Survey. In Operating Systems Review, pages

15-18. Association for Computer Machinery, January 1985. Vol. 10 and No. 1.

[18] Robert Hagmann. Reimplementing the Cedar File System Using Logging and Group

Commit. In Proceedings of the Eleventh A CM Symposium on Operating Systems Prin-

ciples, pages 155-162. ACM, November 1987. Order no. 534870.

[19] Mauriee Herlihy. Comparing How Atomicity Mechanisms Support Replication. In

Proceedings of the Fourth Annual ACM Symposium on Principles of Distributed Com-

puting, pages 102-110. ACM, August 1985. Order no. 536850.

[20] Susan Horwitz, Jan Prins, and Thomas Reps. Integrating Non-Interfering Versions

of Programs. In Fifteenth Annual ACM Symposium on Principles of Programming

Languages, pages 133-145. ACM, January 1988. Order no. 549880.

[21] John H. Howard, Michael L. Kazar, Sherri G. Menees, Davit A. Nichols, M. Satya-

narayanan, Robert N Sidebotham, and Michael J. West. Scale and Performance in a

Distributed File System. In ACM Transactions of Computer Systems. Association for

Computing Machinery, February 1988. Vol. 6 and No. 1.

[22] Thomas A. Joseph and Kenneth P. Birman. Low Cost Management of Replicated

Data in Fault-Tolerant Distributed Systems. In A CM Transactions of Computer Sys-

tems. Association for Computing Machinery, February 1986. Vol. 4 and No. 1.

[23] Nancy P. Kroner, berg, Henry Levy, and William D. Streeker. VAXdusters: A Closely-

Coupled Distributed System. In A CM Transactions on Computer Systems, pages 130-

146. Association for Computer Machinery, May 1986. Vol. 4 and No. 2.

[24] Keith A. Lantz, Judy L. Edighoffer, and Bruce L. Hitson. Towards a Universal Di-

rectory Service. In Operating Systems Review, pages 43-53. Association for Computer

Machinery, April 1986. Vol. 20 and No. 2.

REFERENCES 32

[25]Edward D. Lazowska, John Zahorjan, David R. Cheriton, and Willy Zwaenepoel. File

Access Performance of Diskless Workstations. In A CM Transactions on Computer

Systems, pages 238-268. Association for Computer Machinery, August 1986. Vol. 4
and No. 3.

[26]

[27]

[28]

[2o]

Paul J. Leach, Bernard L. Stumpf, James A. Hamilton, and Paul H. Levine. UIDs as

Internal Names in a Distributed File System. In Proceedings of the First Symposium

on Principles of Distributed Computing, pages 34-41. ACM, August 1982.

Gerard LeLarm. Algorithms for Distributed Data Sharing Systems which use Tickets.

In Third Berkeley Workshop, pages 259-272, August 1978.

Gerard LeLann. Distributed Systems - Architecture and Implementation, Art Advanced

Course, volume !05 of Lecture Notes in Computer Science, chapter 12, pages 278-282.

Springer-Verlag, 1981.

Barbara Liskov and Rivka Ladin. Highly Available Distributed Services and Fault-

Tolerant Distributed Garbage Collection. In Proceedings of the Fifth Annual ACM

Symposium on Principles of Distributed Computing, pages 29-39. ACM, August 1986.
Order no. 536860.

[3o] Keith MarzuUo and Frank Schmuck. Supplying High Availability with a Standard

Network File System. Technical report, Department of Computer Science at Cornell

University, December 1987. 87-888.

[31] James G. Mitchell. A Comparison of Two Network-Based File Servers. In Communi-

cations of the ACM, pages 233-245. Association for Computer Machinery, April 1982.
Vol. 25 and No. 4.

[32] Sape J. Mullender. A Distributed File Service Based on Optimistic Concurrency

Control. In Proceedings of the Tenth ",4CM Symposium on Operating Systems Principles,

pages 51--62. ACM, December 1985. Order no. 534850.

[33] Sape J. Mullender, editor. D(stributed Syste_i chapter 13:14. Addison-Wesiey]i989.

[34] Roger M. Need.ham. Adding Capability Access to Conventional File Servers. In

Operating Systems Review, pages 3-4. Association for Computer Machinery, January
1979. Vol. 13 and No. 1,

REFERENCES 33

[35]

[36]

[37]

[38]

[39]

[4o]

[41]

[42]

[43]

[44]

Michael N. Nelson, Brent B. Welch, and John K. Ouserthout. Caching in the Sprite

Network File System. In A CM Transactions of Computer Systems. Association for

Computing Machinery, February 1988. Vol. 6 and No. 1.

D. M. Nessett. Identifier Protection in a Distributed Operating System. In Operating

Systems Review, pages 26-31. Association for Computer Machinery, January 1982.
Vol. 16 and No. 1.

Jerre D. Noe and Agnes Andreassian. Effectiveness of Replication in Distributed

Computer Networks. In The 7th International Conference on Distributed Computing

Systems, pages 508-513. IEEE, September 1987. Order no. 801.

John Ousterhout and Fred Douglis. Beating the I/O Bottleneck: A Case for Log-

Structured File Systems. In Operating Systems Review, pages 11-28. Association for

Computer Machinery, January 1989. Vol. 23 and No. 1.

John K. Ousterhout, Herve Da Costa, David Harrison, John A. Kunze, Mike Kupfer,

and James G. Thompson. A Trace-Driven Analysis of the UNIX 4.2 BSD File System.

In Proceedings of the Tenth A CM Symposium on Operating Systems Principles, pages

15-24. ACM, December 1985. Order no. 534850.

Loretta Guarino Reid and Philip L. Karlton. A File System Supporting Cooperation

between Programs. In Proceedings of the Ninth A CM Symposium on Operating Systems

Principles, pages 20-29. ACM, October 1983. Order no. 534830.

M. Satyanarayanan. A Survey of Distributed File Systems. Technical report, Depart-

meat of Computer Science at Carnegie Mellon University, February 1989. CMU-CS-

89-116.

Frank Bernhard Schmuck. The Use of E]ficient Broadcast Protocols in Asynchronous

Distributed Systems. PhD thesis, CorneU University, August t988.

Michael D. Schroeder, David K. Gifford, and Roger M. Needham. A Caching File

System For a Programmer's Workstation. In Proceedings of the Tenth A CM Sympo-

sium on Operating Systems Principles, pages 25-34. ACM, December 1985. Order no.

534850.

Carl Staelin. File Access Patterns. Technical Report CS-TR-179-88, Princeton Uni-

versity, September 1988.

REFERENCES 34

[45]H. Sturgis, J. Mitchell, and J. Israel. Issues in the Design and Use of a Distributed

File System. In Operating Systems Review, pages 55-69. Association for Computer

Machinery, July 1980. Vol. 14 and No. 3.

[46] sun microsystems, Mountain View CA. Network File System Protocol Specification,

February 1986.

[47]

[48]

[49]

[5o]

[51]

[52]

sun microsystems, Mountain View CA. Remote Procedure Call Programming Guide,

February 1986.

sun microsystems, Mountain View CA. Remote Procedure Call Protocol Specification,

February 1986.

Liba Svobodova. Management of Object Histories in the Swallow Repository. Techni-

ca/report, Laboratory for Computer Science at Massachusetts Institute of Technology,

July 1980. MIT/LCS/TR-243.

Liba Svobodova. A Reliable Object-Oriented Data Repository for a Distributed Com-

puter System. In Proceedings of the Eighth Symposium on Operating Systems Princi-

ples, pages 47-58. ACM, December 1981. Order no. 534810.

Andrew S. Tanenbaum and Sape Mullender. An Overview of the Amoeba Distributed

Operating System. In Operating Systems Review, pages 51-64. Association for Com-

puter Machinery, July 1981. Vol. 15 and No. 3.

Bruce Walker, Gerald Popek, Robert English, Charles Kline, and Greg Thiel. The

LOCUS Distributed Operating System. In Proceedings of the Ninth A CM Symposium

on Operating Systems Principles, pages 49-70. ACM, October 1983. Order no. 534830.

