41 research outputs found

    CPA\u27s handbook of fraud and commercial crime prevention

    Get PDF
    https://egrove.olemiss.edu/aicpa_guides/1819/thumbnail.jp

    Comparing text-based and dependence-based approaches for determining the origins of bugs

    Get PDF
    Identifying bug origins – the point where erroneous code was introduced – is crucial for many software engineering activities, from identifying process weaknesses to gathering data to support bug detection tools. Unfortunately, this information is not usually recorded when fixing bugs, and recovering it later is challenging. Recently, the text approach and the dependence approach have been developed to tackle this problem. Respectively, they examine textual and dependence-related changes that occurred prior to a bug fix. However, only limited evaluation has been carried out, partially because of a lack of available implementations and of datasets linking bugs to origins. To address this, origins of 174 bugs in three projects were manually identified and compared to a simulation of the approaches. Both approaches were partially successful across a variety of bugs – achieving 29–79% precision and 40–70% recall. Results suggested the precise definition of program dependence could affect performance, as could whether the approaches identified a single or multiple origins. Some potential improvements are explored in detail and identify pragmatic strategies for combining techniques along with simple modifications. Even after adopting these improvements, there remain many challenges: large commits, unrelated changes and long periods between origins and fixes all reduce effectiveness

    Supporting Source Code Search with Context-Aware and Semantics-Driven Query Reformulation

    Get PDF
    Software bugs and failures cost trillions of dollars every year, and could even lead to deadly accidents (e.g., Therac-25 accident). During maintenance, software developers fix numerous bugs and implement hundreds of new features by making necessary changes to the existing software code. Once an issue report (e.g., bug report, change request) is assigned to a developer, she chooses a few important keywords from the report as a search query, and then attempts to find out the exact locations in the software code that need to be either repaired or enhanced. As a part of this maintenance, developers also often select ad hoc queries on the fly, and attempt to locate the reusable code from the Internet that could assist them either in bug fixing or in feature implementation. Unfortunately, even the experienced developers often fail to construct the right search queries. Even if the developers come up with a few ad hoc queries, most of them require frequent modifications which cost significant development time and efforts. Thus, construction of an appropriate query for localizing the software bugs, programming concepts or even the reusable code is a major challenge. In this thesis, we overcome this query construction challenge with six studies, and develop a novel, effective code search solution (BugDoctor) that assists the developers in localizing the software code of interest (e.g., bugs, concepts and reusable code) during software maintenance. In particular, we reformulate a given search query (1) by designing novel keyword selection algorithms (e.g., CodeRank) that outperform the traditional alternatives (e.g., TF-IDF), (2) by leveraging the bug report quality paradigm and source document structures which were previously overlooked and (3) by exploiting the crowd knowledge and word semantics derived from Stack Overflow Q&A site, which were previously untapped. Our experiment using 5000+ search queries (bug reports, change requests, and ad hoc queries) suggests that our proposed approach can improve the given queries significantly through automated query reformulations. Comparison with 10+ existing studies on bug localization, concept location and Internet-scale code search suggests that our approach can outperform the state-of-the-art approaches with a significant margin

    CPA\u27s handbook of fraud and commercial crime prevention

    Get PDF
    https://egrove.olemiss.edu/aicpa_guides/1820/thumbnail.jp

    Fine-grained code changes and bugs: Improving bug prediction

    Full text link
    Software development and, in particular, software maintenance are time consuming and require detailed knowledge of the structure and the past development activities of a software system. Limited resources and time constraints make the situation even more difficult. Therefore, a significant amount of research effort has been dedicated to learning software prediction models that allow project members to allocate and spend the limited resources efficiently on the (most) critical parts of their software system. Prominent examples are bug prediction models and change prediction models: Bug prediction models identify the bug-prone modules of a software system that should be tested with care; change prediction models identify modules that change frequently and in combination with other modules, i.e., they are change coupled. By combining statistical methods, data mining approaches, and machine learning techniques software prediction models provide a structured and analytical basis to make decisions.Researchers proposed a wide range of approaches to build effective prediction models that take into account multiple aspects of the software development process. They achieved especially good prediction performance, guiding developers towards those parts of their system where a large share of bugs can be expected. For that, they rely on change data provided by version control systems (VCS). However, due to the fact that current VCS track code changes only on file-level and textual basis most of those approaches suffer from coarse-grained and rather generic change information. More fine-grained change information, for instance, at the level of source code statements, and the type of changes, e.g., whether a method was renamed or a condition expression was changed, are often not taken into account. Therefore, investigating the development process and the evolution of software at a fine-grained change level has recently experienced an increasing attention in research.The key contribution of this thesis is to improve software prediction models by using fine-grained source code changes. Those changes are based on the abstract syntax tree structure of source code and allow us to track code changes at the fine-grained level of individual statements. We show with a series of empirical studies using the change history of open-source projects how prediction models can benefit in terms of prediction performance and prediction granularity from the more detailed change information.First, we compare fine-grained source code changes and code churn, i.e., lines modified, for bug prediction. The results with data from the Eclipse platform show that fine grained-source code changes significantly outperform code churn when classifying source files into bug- and not bug-prone, as well as when predicting the number of bugs in source files. Moreover, these results give more insights about the relation of individual types of code changes, e.g., method declaration changes and bugs. For instance, in our dataset method declaration changes exhibit a stronger correlation with the number of bugs than class declaration changes.Second, we leverage fine-grained source code changes to predict bugs at method-level. This is beneficial as files can grow arbitrarily large. Hence, if bugs are predicted at the level of files a developer needs to manually inspect all methods of a file one by one until a particular bug is located.Third, we build models using source code properties, e.g., complexity, to predict whether a source file will be affected by a certain type of code change. Predicting the type of changes is of practical interest, for instance, in the context of software testing as different change types require different levels of testing: While for small statement changes local unit-tests are mostly sufficient, API changes, e.g., method declaration changes, might require system-wide integration-tests which are more expensive. Hence, knowing (in advance) which types of changes will most likely occur in a source file can help to better plan and develop tests, and, in case of limited resources, prioritize among different types of testing.Finally, to assist developers in bug triaging we compute prediction models based on the attributes of a bug report that can be used to estimate whether a bug will be fixed fast or whether it will take more time for resolution.The results and findings of this thesis give evidence that fine-grained source code changes can improve software prediction models to provide more accurate results

    A Software Vulnerabilities Odysseus: Analysis, Detection, and Mitigation

    Get PDF
    Programming has become central in the development of human activities while not being immune to defaults, or bugs. Developers have developed specific methods and sequences of tests that they implement to prevent these bugs from being deployed in releases. Nonetheless, not all cases can be thought through beforehand, and automation presents limits the community attempts to overcome. As a consequence, not all bugs can be caught. These defaults are causing particular concerns in case bugs can be exploited to breach the program’s security policy. They are then called vulnerabilities and provide specific actors with undesired access to the resources a program manages. It damages the trust in the program and in its developers, and may eventually impact the adoption of the program. Hence, to attribute a specific attention to vulnerabilities appears as a natural outcome. In this regard, this PhD work targets the following three challenges: (1) The research community references those vulnerabilities, categorises them, reports and ranks their impact. As a result, analysts can learn from past vulnerabilities in specific programs and figure out new ideas to counter them. Nonetheless, the resulting quality of the lessons and the usefulness of ensuing solutions depend on the quality and the consistency of the information provided in the reports. (2) New methods to detect vulnerabilities can emerge among the teachings this monitoring provides. With responsible reporting, these detection methods can provide hardening of the programs we rely on. Additionally, in a context of computer perfor- mance gain, machine learning algorithms are increasingly adopted, providing engaging promises. (3) If some of these promises can be fulfilled, not all are not reachable today. Therefore a complementary strategy needs to be adopted while vulnerabilities evade detection up to public releases. Instead of preventing their introduction, programs can be hardened to scale down their exploitability. Increasing the complexity to exploit or lowering the impact below specific thresholds makes the presence of vulnerabilities an affordable risk for the feature provided. The history of programming development encloses the experimentation and the adoption of so-called defence mechanisms. Their goals and performances can be diverse, but their implementation in worldwide adopted programs and systems (such as the Android Open Source Project) acknowledges their pivotal position. To face these challenges, we provide the following contributions: • We provide a manual categorisation of the vulnerabilities of the worldwide adopted Android Open Source Project up to June 2020. Clarifying to adopt a vulnera- bility analysis provides consistency in the resulting data set. It facilitates the explainability of the analyses and sets up for the updatability of the resulting set of vulnerabilities. Based on this analysis, we study the evolution of AOSP’s vulnerabilities. We explore the different temporal evolutions of the vulnerabilities affecting the system for their severity, the type of vulnerability, and we provide a focus on memory corruption-related vulnerabilities. • We undertake the replication of a machine-learning based detection algorithms that, besides being part of the state-of-the-art and referenced to by ensuing works, was not available. Named VCCFinder, this algorithm implements a Support- Vector Machine and bases its training on Vulnerability-Contributing Commits and related patches for C and C++ code. Not in capacity to achieve analogous performances to the original article, we explore parameters and algorithms, and attempt to overcome the challenge provided by the over-population of unlabeled entries in the data set. We provide the community with our code and results as a replicable baseline for further improvement. • We eventually list the defence mechanisms that the Android Open Source Project incrementally implements, and we discuss how it sometimes answers comments the community addressed to the project’s developers. We further verify the extent to which specific memory corruption defence mechanisms were implemented in the binaries of different versions of Android (from API-level 10 to 28). We eventually confront the evolution of memory corruption-related vulnerabilities with the implementation timeline of related defence mechanisms
    corecore