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Abstract

Software plays a crucial role in gaining a competitive advantage in the market. Soft-
ware should meet user needs and be rapidly delivered. Therefore, modern software de-
velopment projects are forced to shorten the intervals between releases. However, the
size of the products and the scale of product development are growing due to increasing
demands for multiple system functionalities or integrated systems. Increasing the scale
of a product leads to an increase in the number of bugs in the product. Developers are
in a dilemma to fix numerous bugs within a short development period, which is shrinking
over the years.

Developers cannot fix all the reported bugs by the next release date; therefore, man-
agers are required to prioritize the bugs to be fixed before the release and assign developers
to fix those bugs. The managers utilize a significant amount of time for this work because
of the large number of bug reports that have to be read.

To mitigate the workload, many bug assignment methods have been proposed with
an aim to automate the assignments. However, Park et al. report that most of the
methods tend to concentrate the assignment of bugs to specific developers. The task of
concentrating on specific developers, by the traditional methods, would reduce the number
of bugs that they can actually fix by the next release date. This is because most projects
have releases planned in advance, and the scope of the developers (even well-experienced)
is limited to the number of bug-fixes by the release date.

This thesis proposes the Release-Aware and Prioritized Task-assignment Optimization
Framework (RAPTOR), which moderates the bug-fixing loads for specific developers in
order to increase the number of bugs fixed by the release date. In this thesis, we show that
RAPTOR: (1) can mitigate the situation in which bug-fixing tasks are concentrated to a
small number of developers; (2) increases the number of high priority bugs that developers
can fix by the next release date; (3) reduces the time developers devote to fixing bugs,

compared with the manual bug triaging method and other existing methods.
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Chapter 1
Introduction

Software plays a crucial role in gaining a competitive advantage in the market. Soft-
ware should meet user needs and be rapidly delivered. Therefore, modern software devel-
opment projects are forced to shorten the intervals between releases. The importance of
shortening the release intervals is represented by the popularized remark “Release early,
release often” by Eric S. Raymond [1]. Releasing products rapidly and frequently allows
developers to gain feedback from users and respond to the changing needs of users. Re-
cently, modern software development projects, such as Google Chrome, Mozilla Firefox,
and Facebook Mobile app, have released a product every 2-6 weeks. For instance, Firefox
shifted from traditional intervals of 3 months to shorter intervals of 6 weeks. Firefox
adopted the rapid release cycle to compete with Google Chrome’s success in the market

with the same cycle.

While release cycles have become shorter, the size of the products and the scale of
product development are growing due to increasing demands for multiple system func-
tionalities or integrated systems. For instance, the size of the source code of the Google
Chrome project was 1.2 million lines in the initial release, in the year 2008, but it has
been constantly increasing and has reached over 25 million lines in 2019 .

Increasing the scale of a product leads to an increased chance of bugs in the product.

!OpenHub:  https://www.openhub.net/p/chrome/analyses/latest/languages_summary, Last Ac-
cessed: January 2020



As bugs in a released version may result in financial losses or a loss of customers, project
managers should handle the following software quality risks that induce bugs into released

products:

e Residual risk
This kind of risk is where developers decide not to fix the bugs because of certain
limitations, such as technical issues or time constraints. During the development,
developers will try to address these risks to prevent failures in the next release. In

software engineering, bug triaging studies [2, 3] mitigate this risk.

e Control risk
This kind of risk is where developers try fixing the bug, but the fix is not adequate.
Therefore, the bugs will emerge again after the fix. The studies about re-opened
bugs [4, 5] address this risk.

e Detection risk
This kind of risk is where a bug exists in the product but developers do not detect
it. Once the bug is exposed through the testing or review process, a detection risk

becomes a residual risk. The bug prediction studies [6, 7] address this risk.

e Potential risk
This kind of risk is where there are suspicious parts in source code, but they are
not identified as bugs. If these parts are modified, they may turn into bugs. The
technical debt studies [8, 9, 10] address this risk.

A myriad of bugs and an abundance of source code in modern software development
makes project managers face difficulties in dealing with these types of risks. This thesis
addresses the residual risk because project managers have been suffering from handling

numerous bugs during the shrinking development periods.



1.1. MOTIVATION AND GOAL

1.1 Motivation and Goal

Due to the growing scale and complexity of products, projects receive a large number
of bug reports. While developers have to fix numerous bugs, the amount of time they
have has been shrinking over the years. Developers cannot fix all the bugs by the release
date; therefore, managers are required to prioritize the bugs to be fixed before the release
and assign developers to fix those bugs. Before prioritizing and assigning bugs, managers
must read the bug reports. However, this work consumes a significant amount of time
because of the large number of bug reports [3].

To mitigate the workload, many automated bug assignment methods have been pro-
posed [2, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. The most common approach is
to use classifiers such as Support Vector Machine or Naive Bayes. To assign a bug to a
developer, the classifiers are trained with pairs of the description (text data) of bugs and
the fixer. When a new bug is reported, the classifier takes the description of the new bug
as input and assigns the relevant developers. The classifier can recommend developers
who are capable of dealing with newly-reported bugs with relatively high precision (about
70%-75%).

However, these existing methods have not been utilized by projects. One of the reasons
should be a task concentration problem. Park et al. reported that most of the methods
tend to concentrate on assigning bugs to specific developers [23]. This is because most
of the methods use machine learning classifiers, and the amount of training data for each
developer is imbalanced. Developers do not fix an equal number of bugs, resulting in an
imbalanced training dataset.

The tendency of the traditional methods to assign bugs to specific developers would
end up reducing the number of bugs that they can fix by the next release date. This
is because most projects have tight deadlines, and even well-experienced developers
are limited by time constraints. In short and time-based release cycles adopted
by modern software projects, tasks are concentrated such that products are released even
though developers are aware of the numerous bugs in the products. This indicates that the

existing method increases the residual risk. To reduce the residual risk, a new method
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is needed to take into consideration the number of tasks that developers address and
mitigate the task concentration by the existing methods [2, 18].

In addition, in order to reduce residual risk, it is necessary to decrease the impacts of
the bugs contained in the product. This is because developers might not be able to fix all
reported bugs by the release date, and their impacts of bugs are different. Bugs range from
problems that are caused by the carelessness of the users, such as a typo in a document,
to emergencies that significantly impact the users (e.g., a system crash [24])[25]. Such
bugs, which have high impacts, should be specified and removed by exerting as much
efforts as required by projects. Therefore, before assigning bugs to developers, we need a
method to prioritize and choose the bugs that need to be fixed by the release date and
bugs that can be carried over the future releases. Finally, the products that are released
should have only those bugs that have a minor impact. That is, severe bugs must be fixed
before the current release and minor bugs can be carried over to the next release.

In this thesis, to reduce residual risks, we construct the Release- Aware and Prioritized
Task-assignment Optimization fRamework (RAPTOR). Figure 1.1 illustrates an overview
of RAPTOR. RAPTOR aims to fix more number of bugs that highly impact users or
developers by the release date; it also makes aware of the cost of bug-fixing and the
probabilities that developers can fix bugs as well as the previous methods do. RAPTOR
imposes certain limitations on assigning bugs to each developer so that the developer can
fix the assigned bugs for a specific period. Under the constraints, RAPTOR can find the
best combination of bugs and developers for the project so that it moderates workload

and chooses bugs that severely affect users.
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Figure 1.1: The overview of RAPTOR. RAPTOR prioritizes bugs and calculates the costs
for bug-fixing, probabilities that each developer can fix the bug, and the workloads of each
developer. With these parameters, RAPTOR generates a formula and solves it to find

the best combination of bugs and developers.



1.2. THESIS OVERVIEW

1.2 Thesis Overview

We now provide a brief overview of this thesis (see Figure 1.2). We first provide the
necessary background material about bug-triaging in Chapter 2. We conduct 3 empirical

studies which are explained in Chapters 3 to 5. These studies are classified into 2 sub-goals

as follows.
p
Background Goal Fix more bugs that highly impact on users or developers
(To reduce residual risk)

N\
Y y

'a —\

Sub-Goals Which bugs should be fixed Who should be assigned to fix more
L for the next release? bugs by the next release date?
J
| |
v
Chapter 2: Chapter 3:
Bug Triage and i
Software Release A Survey Study of the Bug-fixing
Importance
Empirical
Studies l ,
Chapter 4: Chapter 5:
Release-aware Bug Priority Prediction Release-aware Bug-fixing Task
assignment

Figure 1.2: An overview of the thesis

Which bugs should be fixed for the next release?

Chapter 3: While the development period has been shrinking, the number of bugs
has been raising. This makes it hard for developers to fix all reported bugs by the next
release date. Therefore, developers have to decide which bugs should be fixed by the next
release and which ones should be carried over to a later release. However, most of the
existing literature on bug assignments do not take into account the existence of releases;
therefore, they do not make decisions on the bugs that need to be fixed first, and do not
consider taking decisions on carrying over some bugs to a future release. To make matters
worse, most of the studies treat all bugs equally. Bugs range from problems that users do

not care about (e.g., typo in documents) to emergencies that greatly concern users (e.g.,

6
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a system crash [24])[25]. If this is not taken into consideration, it can lead to wastage of
human-resource; for example, important bugs remain to be fixed by the next release.
The approaches which are similar ours are priority/severity predictions; however, they
do not make decisions for the next release. In order to predict priority/severity, they use
classifiers trained with various data, such as tag or text data, in bug reports. However,
several studies warn that priority /severity does not indicate accurate values because 65%
of bug reports are mislabeled [26]. Hence, many studies have defined serious bugs that
impact on the product or process (which are named high impact bugs) [27, 28, 29, 30, 31]
and built models to predict them. However, it is not sure whether developers consider
these bugs as being highly impactful on the product or process. First, we address the

following challenges to generate a strategy for prioritizing bugs.

Challenge I:
Identify the bugs that highly impact users or products

In the first challenge, we interviewed 322 developers from GitHub to identify the bugs
that are impactful based on those they encountered in practice. We manually inspect
and classify actual bug reports from the responses. As a result, we show that there are
a wide variety of high impact bugs. Particularly, developers think security and breakage
bugs are highly important for FLOSS developers. Furthermore, we show that 66% of the
high impact bugs have a higher importance in the projects (especially in the projects that
strictly handle bugs). This helps us select bugs for the next release when the projects

have a myriad of bugs.

Chapter 4: In the second challenge, we try to predict the priority, which represents
the importance of bug-fixing, used by developers. The prediction will play a crucial role
in selecting which bugs should be fixed by the next release date. Although some studies
address building priority prediction models, the accuracy of the prediction is quite low.
This is because they use data derived from the complete development process. Most
projects have release cycles, and the data is produced in requirements analysis, design,
implementation, test, and debug phases. The previous studies do not distinguish what

developers do in each period of the release cycle.
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Moreover, depending on the type of release, such as major or minor, developers switch
their focus, such as either on implementing new features or fixing existing defects. Further-
more, depending on what they focus on, the characteristics of the produced data would
vary. Disregarding the characteristics for specific periods makes the quality of data-driven
tools lower. However, most studies about defect management support (including priority
prediction work) assume that the characteristics for all periods never change across the
release cycle.

Utilizing the contents of work (the characteristics) in each period would improve the
accuracy. Specifically, our bug assignment method is designed for the test and debug
phase, and we need a priority prediction method specialized for these periods. Therefore,

we address the following challenges;

Challenge 1I:

Predict the importance of bugs for specific periods

In this challenge, we show that developers’ activity varies during the release cycle.
Based on these findings, we build release cycle-aware models from which data is derived
from appropriate periods. We conduct a case study on the Eclipse Platform project and
find that cycle-aware models outperform the traditional model, which uses the bug data

during the whole development.

Who should be assigned to fix more bugs by the next release

date?

Chapter 5: As another important factor in decision making, we address assigning
appropriate developers in order to increase bug-fixes by the next release date. This study
tries to solve the problem of concentrating assignments on a small number of particular
developers, which leads to a reduction in the number of bug-fixes in the projects by the
next release date. Even well-experienced developers are limited to the number of bug-fixes
because of the limited time before the next release. Thus, a new method is needed that
takes into consideration the number of tasks that developers address and mitigates the

task concentration done by the existing methods.

8
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Challenge III:
Build the release-aware bug assignment method in order to increase bug-

fixes by the next release date

In this study, we impose limitations on assigning bugs to each developer so that the
developer can fix the assigned bugs within a specific period. We formulate bug-triaging
problems and the constraints that need to be imposed. We use mathematical programming
to find the best combination of bugs and developers for the project.

We conduct a case study on the Eclipse Platform, GNU compiler collection, and
Mozilla Firefox and show that RAPTOR (1) mitigates a situation where bug-fixing tasks
are concentrated to a small number of developers; (2) increases the number of high pri-
ority bugs that developers can fix by the next release date; and (3) can reduce the time
developers devote to fixing bugs, compared with the manual bug triaging method and
other existing methods.

Chapter 6: Finally, we evaluate the performance of combining the above two meth-
ods, priority prediction, and task-assignment method. We find that RAPTOR with prior-
ity predictions can assign bugs so that the project can fix more bugs with higher priority

by the next release date.



Chapter 2
Background

This chapter introduces how bugs in products are managed and fixed. First, we intro-
duce bug-triage and the use of bug tracking systems. Then, we explain the relationship
between software release and bug-triage. Finally, we describe the necessary activities in

the bug-triage process and the related work.

2.1 Bug-Triage Using Bug Tracking Systems

When users (including developers) face a problem or find a bug, they report the
bug or problem to the project. In order to receive and manage numerous reports, most
projects have prepared a Bug Tracking System (abbr. BTS), such as Bugzilla, Jira, and
Redmine. Figure 2.1 shows the example of bug reports in Bugzilla. The reports include
various information such as the description of the bug (@ in Figure 2.1) and the user’s
environment, such as the name of the product, version, hardware (2 in Figure 2.1), and
severity (®). If developers need further information to fix the bugs, the reporter discusses
the issues in the form of BTS ((®)). Also, discussions among developers, such as about
the cause or the strategy for fixing a bug, are held in the same form.

After reporters write a report and submit it, the report will be available to be seen
by all developers. Managers read each of the bug reports listed in the BTSs (Figure 2.2)
and confirm whether the bug needs to be fixed. If the bug needs to be fixed by the next

10



2.1. BUG-TRIAGE USING BUG TRACKING SYSTEMS

eclipse

Bugzilla - Bug 25467 Accelerator Menu performance]

Home | New | Browse | Search | Search [?] | Reports | Requests | Help |

Bug 25467 - Accelerator Menu performance problems (GTK & Motif)

Status: RESOLVED FIXED

Alias: None

Product: Platform
@ Component: UI (show other bugs)
Version: 2 1 [&
Hardware: PC Windows 2000

Importance: P1 critical (vote)
Target Milestone: ... [Z~~J>~<_

Assignee: Chris McLaren —ECA Y <~~~ @
QA Contact: RS @

URL:
Whiteboard:
Keywords:

Duplicates (1): 25777 (view as bug_list)
Depends on:
Blocks:

Attachments

The benchmark code (6.05 KB, text/plain)
2002-10-30 16:04 EST, Steve Northover

Add an attachment (proposed patch, testcase, etc.) View All

no flags | Details

Note
’7You need to log_in before you can comment on or make changes to this bug. ‘

.' Chris McLaren 2002-10-28 15:24:44 EST Description
1

1

'GTK and Motif have significant performance problems using the hidden menu in

its current form. I looked at a profile and found that at least 70@ms is spent

Iin AcceleratorMenu.setAccelerators on these platforms (every time we

jrecalculate the menu - which can be as often as switching editors). I am hoping ®
jthat this has to do with the fact that the hidden menu is being disposed of and

jrecreated with new menu items each time setAccelerators is called. Can someone

1look at this, and perhaps reuse MenuItem instances if that proves to be the

Windows 98, PII-433-256 - 110ms
fotif RedHat PII-450-256 - 438ms
(GTK RedHat 8.0 PIII-500-512 - 180ms

[

[These times don't look that bad, given the machines I am running on. Do you
want me to investigate further? Is it possible that the UI code is calling
rthis API multiple times instead of just once when switching between editors?

Problem? _ e o 1
i" Steve Northover 77" 2002-10-2911:02:29 EST " Comment1,
1
:This is a P1. Chris to assist SN constructing a benchmark. @ 1
- !
1
1 Steve Northover 2002-10-30 16:04:57 EST Comment 2 :
1
1
!Created attachment 2292 [details] 1
IThe benchmark code 1
1
1
1
1
1 Steve Northover 2002-10-30 16:36:22 EST Comment 3 :
1
1
Results: 1
! 1
1
1
1
1
1
1
1

Figure 2.1: The example of bug reports in Bugzilla
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release, managers inform the developers with a priority tag (The priority tag is shown at
(® in Figure 2.1).

After determining that the bug should be fixed, managers assign the bug to developers.
The assigned developer develops a patch to fix the bug and then sends it to the project.
Finally, the patch is verified by other developers and merged into the project’s repository.

These activities (i.e., reading, prioritizing, and assigning bugs) are collectively called
bug triage. Bug triage is a necessary activity in the process of fixing bugs. Several studies

reported that bug-triage affects the time required for bug-fixing [32].

% eCI I pse DOWNLOAD GETTING STARTED MEMBERS PROJECTS MORE ~

Bugzilla - Bug List

Home | New | Browse | Search | search [2?] | Reports | Requests | Help | Log_In | Terms of Use | Copyright Agent

Thu Sep 5 2019 04:58:36 EDT
Show Search Description

542 bugs found.

D Product Comp Assignee A % Resolution Summary Changed

445489 Platform Team platform-team-inbox UNCO  --- T i Could not instantiate provider 2018-10-01
516869 Platform Team jarthana NEW - SOCKS proxy_not working_with local sockets 2017-06-13
254683 Platform Team platform-cvs-inbox NEW — Refresh issue in the synchronize view 2010-07-15
311056 Platform Team platform-cvs-inbox NEW - CVS: "Compare With / Another Branch or Version... / BASE" unnecessaril the remote changes 2011-10-28
100623 Platform Team platform-team-inbox NEW - [Repo View] Add "Open with" actions to CVS Repositories view context menu 2015-04-01
127808 Platform Team platform-team-inbox NEW - [Actions] Team context menu should be available on editors for repository files 2009-05-08
169633 Platform Team platform-team-inbox NEW - [Sync View] Add 'expand all' toolbar icon to the synchronize view 2012-06-11
173457 Platform Team platform-team-inbox NEW - [Actions] Convert Team action set to new menu support 2009-12-16
175693 Platform Team platform-team-inbox NEW === [Actions]_Convert popup menus to new menu support 2014-04-21
193321 Platform Team platform-team-inbox NEW == [Sync View] Migrate Compare with Each Other to the Synchronize view 2009-03-18
194625 Platform Team platform-team-inbox NEW -— [Preferences] Request an icon for the Ignore Resources Preference Transfer 2015-04-01
207216 Platform Team platform-team-inbox NEW - Enhancement History View 2007-10-24
207863 Platform Team platform-team-inbox NEW - Import Project from CVS should scan for Java source directories 2007-10-30
210517 Platform Team platform-team-inbox NEW - Change sets lost after shutting down Eclipse quickly after startup 2007-11-21
210525 Platform Team platform-team-inbox NEW - shutdown takes several minutes 2007-11-21
210727 Platform Team platform-team-inbox NEW - OutOfMemoryError while refreshing branches in CVS repositories view 2019-03-16

Figure 2.2: The list of reported bugs in Bugzilla
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2.2 Bug Triage and Software Release

Software release is the process of delivering a new product that contains new function-
alities or bug-fixes. In many cases, software development does not complete in a single
iteration. Products are released in iterations to enhance them to satisfy customers or to
adapt to the environmental changes.

Two strategies are known for releasing products, time-based strategy and feature-
based strategy [33] [34]. Projects with feature-based release strategies first specify the
functionalities to be implemented in the next release. Then, the developers implement
the functionality and assure the quality by testing and reviewing. After all the features are
completed, they can release the product to the public. Sometimes, deadlines are set up in
advance but tend to be flexible. This strategy is often employed in product development
in which all bugs are considered fatal and unacceptable, such as banking systems.

On the other hand, projects with time-based release strategies determine the release
date in advance. The developers release only the functionalities that are ready by the
release date. The developed products are released in short terms, such as 2-6 weeks, in
order to adapt to changes in the market. Such release strategies tend to be accepted
by projects that prefer delivering product value and receiving early feedback instead of
troubling users with bugs (e.g., web-browsers). In open-source software development,
Openstack and Firefox shifted to rapid release. Firefox had a time-based release strategy,
every 3 months, but changed the development duration to 6 weeks so that it can compete
with Google Chrome, which had already adopted rapid release.

Due to fierce competition in the market, modern software development tends to adopt
time-based release, thereby forcing developers to complete not only feature implementa-
tions but also refactoring, testing, and bug-fixing before the tight deadline.

Such time-based release generates time pressure on developers, which would trigger
prioritization, and bugs will be carried over to future releases. Figure 2.3 shows the
overview of the bug triage process and the effect of release pressure. This is because
projects cannot fix all the bugs by the next release date. Hence, developers need to

prioritize bugs in order to decide which bugs should be fixed by the immediate release
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: BugTriage :

E %( ) % carry-over E

Read .'.o.oooooo.o oocoooo> m% 2
If no release pressure u

s @

Other bugs Time Human resource

Fixed Bug

Figure 2.3: The process of the bug triage affected by release pressure

date and which ones should be carried over to future releases. To appropriately prioritize
bugs, developers need to take into consideration not only the target bug but also the other
unfixed bugs, the remaining time before the next release date, and the available human
resources. If there are many unfixed bugs, less time before release, or fewer human
resources, the number of bugs carried over to the future releases will increase. In modern
software development, such prioritization and decision-making would play a crucial role

in reducing the risk of annoying users with product bugs.
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2.3 Bug Prioritization

2.3.1 Prioritization

Software projects receive a large number of bug reports every day [35]. Even if the
existence of defects is confirmed, they will not always be fixed by the subsequent release.
This is due to the fact that time and human resources available are limited. Developers
must give utmost importance to fixing bugs that have greater impacts on their products
and users. To share information on bugs that should be fixed fast, developers often utilize
priority or severity tags prepared in bug reports. The levels of priority and severity are
defined on the Eclipse project’s web page ! (Shown in Table 2.1).

By definition, priority tags are set by developers to inform which defects should be
fixed first whereas severity tags are set by reporters (including end-users and developers) to
indicate how serious the impact of the defect is on their products, users, and development
process. By looking into the descriptions of priority and severity levels, we can see that
the priority levels are defined more ambiguously than the severity levels, which suggests us
not to simply decide the priority. In order to decide the priority levels, developers might
acquire various information such as not only the symptom of the bug to set priorities
but also the situation of the project, etc. For example, developers need to read each bug
report manually, and make comparison ring with other bugs whose priority is already set.
Moreover, developers need to consider how many defects have not been fixed yet, how
much human resources are available, and where the current progress is in their release
cycle.

Thus, setting priorities is well known as time-consuming work [36]. Ideally speaking,
even after the bugs are set a priority once, the priority should be regularly reviewed
because various events happen in the project and the situation of the project varies day
by day. However, this is impossible in reality because the reviewing priority will burden

to the developers and developers have not already had enough time.

'Eeclipse Priority: https://wiki.eclipse.org/Eclipse/Bug_Tracking, Last Accessed: January 2020

15



2.3. BUG PRIORITIZATION

Table 2.1: The levels of priority and severity defined on the Eclipse project web page

Priority
P1 “stop ship” defect i.e. we won’t ship if not fixed
P2 intent is to fix before shipping but we will not delay the milestone or release
P3 nice to have
P4 low priority
P5 lowest priority
*“P1” is the highest and “P5” is the lowest priority.
Severity
blocker the bug blocks development or testing of the build (for which there is no work-
around)
critical implies “loss of data” or frequent crashes or a severe memory leak
major implies “magor loss of function”
normal default value, reqular issue, some loss of functionality under specific circum-
stances, typically the correct setting unless one of the other levels fit
minor something is wrong, but doesn’t affect function significantly or other problem
where easy workaround is present
trivial cosmetic problem like misspelled words or misaligned text, but doesn’t affect
function (such as spelling errors in doc, etc.)
enhancement | request for enhancement (also for “magjor” features that would be really nice to
have)

*“blocker” is the highest and “trivial” is the lowest severity.
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2.3.2 Related Work

To eliminate the effort of priority tagging, many studies have tackled automated pri-
ority predictions with machine learning algorithms [3, 36]. Kanwal et al. proposed a
classification-based approach with Naive Bayes and Support Vector Machine (SVM) [36].
The proposed classifiers take a set of bug reports as an input which contains both cat-
egorical (e.g., severity) and text features, and known priority tags. In addition to the
inherent features in bug reports, Tian et al. leverage various metrics from multiple fac-
tors such as project’s daily activity factor (e.g., how many bugs are reported during a
day), related-report factor (e.g., how high priority the similar bugs have), and so forth
[3].

In this thesis, Chapter 4 addresses the same kind of priority predictions but focus
on specific periods (i.e., testing and debugging phase). The previous studies use data
collected from the whole development period without specification. However, priority
is used for the next release. The usage of priority would vary depending on the type
of release (e.g., major or minor) and the remained time before the next release date.
Therefore, we build release-cycle aware models with the data in specific periods based on

the release cycle.

However, several studies warn that priority/severity does not indicate accurate values
because 65% of bug reports are mislabeled [26]. Hence, many studies have defined serious
bugs that have a bigger impact on the product or process (which are named high impact
bugs) [27, 28, 29, 30, 31] and build models to predict them. However, it is not sure whether
developers consider these bugs as being highly impactful on the product or process. In
the first step of this thesis, Chapter 3 conducts a survey to determine what kind of bugs
developers think of being impactful. Then we try to find out whether those bugs are
critical by conducting a practical investigation. Finally, we investigate whether the bugs

that developers responded have higher importance.
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2.4 Bug Assignments

2.4.1 Manual Bug Assignments and Its Limitation

While a myriad of bugs are daily reported in projects, managers dedicatedly read each
of them to assign it to a developer so they could be assigned to their matching developer.
It is hard to select an appropriate developer because there are not only numerous bugs
but also developers (especially, during the coding and testing phases). Particularly, the
managers face difficulties while trying to decide on aspects such as the set of skills each
developer has and the number of bugs each developer is currently addressing.

These difficulties would often lead to reassignments. This happens when the bug is
assigned to another developer from the first assigned one because he/she cannot fix the
bug. One reassignment Induces an additional delay of 50 days during the bug-fixing
process in Eclipse Platform and Mozilla Firefox. The reassigned bugs account for about
40% of all bug fixes [11]. Reassignments should be prevented as much as possible because

not only do they waste human resources but also delay the bug-fixing [13].

2.4.2 Related Work

In order to assign bugs to their appropriate developers or reduce the amount of effort
coming from that procedure, many methods have been proposed over a decade [2, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. We summarize bug assignment methods in Table
2.2 and below.

Expertise-aware methods aim to assign bugs to the developer who has appropriate
expertise which is calculated from similar bugs that developers previously fixed [2]. The
similarity of bug reports is measured from the description present in the bug reports
[2, 21, 35, 37, 38, 39, 40, 41, 42] or source code history [14, 20, 43, 44]. Anvik and Murphy
built a classifier (e.g., Naive Bayes [45], SVM [46]) with the sets of words in the bug
report and the name of the developer who fixed the bug [35]. The model can recommend
developers who are capable of dealing with newly reported bugs with relatively high
accuracy (about 70%-75%).
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Activeness-aware methods try to assign bugs to active developers [21, 39, 44, 47].
Wang et al. measured developers’ activity scores in each component for a few months
and built a method assigning bugs to the active developer who has the highest score in
the component that the bug involves [47]. This method does not need training classifiers
but has improved about 20% of the assignment accuracy compared to expertise-aware
techniques.

Experience-aware methods aim to assign bugs to developers who have contributed
to projects [17, 22, 48]. Naguib et al. have proposed a method to rank developers based
on the times of bug fixing activities (e.g., number of fixed bugs, number of comments,
and so forth) [17]. The method achieved an average accuracy of 88% with the top 10
recommendations and outperformed the expertise-aware method [40].

Cost-aware methods aim to reduce bug fixing time, to keep the accuracy of as-
signments [18, 22, 23]. Park et al. have extended Anvik’s method [35] and presented
CosTriage which takes the cost of bug-fixing into consideration [18]. CosTriage requires
estimating the cost of the time to fix each bug. It is calculated by using the average
time to fix similar bugs while taking into account the possibility of the assignment being
appropriate (calculated in the same way as Anvik’s method). Costriage assigns a bug to
the most appropriate developer. This method is based on the ratio of the accuracy level
compared to the bug-fixing speed (determined beforehand). While the accuracy decreases
by approximately 5% compared with Anvik’s method, Costriage can reduce 7%-31% of
the average bug-fixing time.

Importance-aware methods consider the levels of priority or severity contained in
bug reports which shows the importance of fixing the bug [15, 48, 49]. Priority and severity
levels show how important it is to fix bugs for developers and users, respectively. Lin et
al. have built a model considering priority and severity in addition to text data, which
was used to conduct an empirical study with the data including Chinese characters and
showed non-textual data is comparable to textual data [15]. These approaches are close
to ours, but still different. They are in fact made for assigning the appropriate developers.
Our methods are mainly focused on decision-making (i.e., which bugs should be fixed by

the next release date).
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Release-aware methods aim to assign bugs so that the amount fixed by the next
release date can be increased. Although the other methods (described above) have the
advantages of recommending appropriate developers or reducing bug-fixing time, those
methods tend to assign bugs to the few most active developers [18, 23] (we will call this
the “task concentration problem”). Even experienced developers can only fix a limited
number of bugs. In fact, most projects have short release cycles with usually limited
remaining time before the next release. This is detrimental, and thus should be taken
into account when developing methods. To the best of our knowledge, there are no
assignment methods that consider releases. In this thesis, Chapter 5 tries to build a
release-aware method in order to increase the number of bugs before the next release. We
place a limitation on the number of tasks that are assigned to each developer during a
given period; the method assigns bugs under the constraint while considering developers’
skills.

20



2.4. BUG ASSIGNMENTS

Table 2.2: An overview of prior studies about bug-assignment methods

Types of the awareness for bug-assignment methods

Paper Dataset
Expertise | Activeness | Experience Cost Importance

Cubrani; 2004 [37] v Eclipse

Anvik; 2006 [35] v Eclipse, Firefox,
Gcece

Lin; 2009 [15] v v SoftPM

Anvik; 2011 [2] v Eclipse, Firefox,
Gecc, Mylyn,
Bugzilla

Wu; 2011 [41] v Firefox

Tamrawi; 2011 [21] v v FireFox, Eclipse,
Apache, Net-
beans, FreeDesk-
top, Gee, Jazz

Park; 2011 [18] v v Apache, Eclipse,
Linux, Mozilla

Linares-Vasquez; 2012 [43] v ArgoUML, JEdit,
MuCommander

Servant; 2012 [44] v v iBugs

Somasundaram; 2012 [40] v v Eclipse, Mylyn,
Mozilla

Kumar Nagwani; 2012 [48] v v Mozilla

Naguib; 2013 [17] v v Atlas, Birt, Uni-
case

Zhang; 2013 [22] v v v Eclipse, JBoss

Wang; 2014 [47] v v Eclipse

Xia; 2015 [42] v GCC, OpenOf-
fice, Mozilla,
Netbeans, Eclipse

Shokripour; 2015 [39] v v Eclipse, Net-
beans, ArgoUML

Park; 2016 [23] v v Apache, Eclipse,
Linux, Mozilla

Lee; 2017 [38] v Eclipse, Firefox,
Industrial

Sharma; 2017 [49] v v Firefox, Bugzilla
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Chapter 3

A Survey Study of the Bug-fixing

Importance

3.1 Introduction

Several studies have proposed methods to predict the priority of bugs reports [3, 36].
However, Saha et al. warn that priority/severity does not reflect the actual values that
should show because 65% of bug reports are mislabeled [26]. Hence, many studies have
defined serious bugs that impact on the product or process (which are named high impact
bugs) [27, 28, 29, 30, 31] and build models to predict them. Still, it is still unsure
which/what bugs developers think are highly impactful on the product or process for
developers.

In this study, we ask what kind of bugs developers think are impactful and encounter
in practice, through a survey with 322 notable GitHub developers. To the best of our
knowledge, this work is the first survey focusing on only high impact bugs. This chapter

addresses three research questions as follows;

RQ1: What kinds of high impact bugs are mainly considered high impact by
OSS developers?
With a closed question, we asked developers which bugs that prior work has studied

is highly impactful. We found that security bugs are the most frequent answer.

22



3.1. INTRODUCTION

RQ2: What kinds of high impact bugs do OSS developers encounter most fre-
quently?
With an open question, we asked developers what high impact bugs developers en-
counter so far. We manually classified the responses including free text and found

that breakage bugs are the most frequent and the security bugs is following.

RQ3: Do high impact bugs have a higher importance?
With the bugs that developers responded as high impact, we investigate if they have
higher importance. We found that 66% of the bugs have higher priority or severity
than the default level.

Chapter Organization: The rest of this chapter is organized as follows. Section
2 introduces some existing studies on finding and fixing high impact bugs. Section 3
describes the study design and Section 4 shows the survey and classification results. We

discuss the results in Section 5. Finally, Section 6 concludes this chapter.
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3.2 High Impact Bug

Over the past two decades, the SE community have dedicated considerable efforts to
help software developers to predict faults in modules, localize and repair faults in source
code, and so on. Although the traditional studies had not thoroughly considered the
characteristics nor the impacts of bugs, in recent years they began to tackle the impacts
of bugs on users and the development process. In what follows, we introduce some existing

studies on finding and fixing high impact bugs.

A SECURITY BUG [27] can cause serious problems that often impact on uses of
software products directly. Since Internet devices (e.g., smartphones) usage is increasing
every year, security issues of software products are of interest to many people. In general,

security bugs are fixed as soon as possible.

A PERFORMANCE BUG [28] is defined as “programming errors that cause sig-
nificant performance degradation.” The performance degradation contains poor user ex-
perience, laggy application responsiveness, lower system throughput, and waste compu-
tational resources [50]. [28] showed that a performance bug needs more time to be fixed

compared with a non-performance bug.

A BREAKAGE BUG [29] is a type of functional bug which is introduced into a
product when the source code is modified to add new features or to fix existing bugs.
Though it is well-known as regression, a breakage bug mainly focuses on regression in
functionalities. A breakage bug causes problems that make available functions in one

version unusable after releasing newer versions.

A BLOCKING BUG [30] is a bug that prevents other bugs from being fixed. It
is often caused due to a dependency relationship among software components. Since a
blocking bug inhibit developers from fixing other dependent bugs, it can highly impact on
developers’ task scheduling since a blocking bug takes more time to be fixed [30] (i.e., a
developer would need more time to fix a blocking bug and other developers need to wait

for being fixed to resolve the dependent bugs).
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A SURPRISE BUG [29] is a new concept of software bugs. It can disturb the
workflow and/or task scheduling of developers since it appears at unexpected times (e.g.,
bugs detected in post-release) and locations (e.g., bugs found in files are rarely changed
in pre-release). As a result of a case study that uses a dataset of a proprietary, telephony
system which has been developed for 30 years, [29] showed that the co-changed files and
the amount of time between the latest pre-release date and the release date can be good

indicators of predicting surprise bugs.

A DORMANT BUG [31] is also a new concept on software bugs and is defined as
“a bug that was introduced in one version (e.g., Version 1.1) of a system, yet it is not
reported until after the next immediate version (i.e., a bug is reported against Version
1.2 or later).” [31] showed that 33% of the reported bugs in Apache Software Foundation

projects were dormant bugs and were fixed faster than non-dormant bugs.
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3.3 Study Design

3.3.1 Overview

In this study, we e-mail and ask notable developers in GitHub! to answer a ques-
tionnaire about high impact bugs. After aggregating collected responses, we show the
developers’ demographic information (Q1), and the distribution of the bugs that are con-
sidered high impact (Q2-1). As the questionnaire includes an open question (Q2-2) to
tell us actual bug reports which caused troubles in the past, we manually inspect the bug
reports and categorize them by symptoms. Finally, we access the links of high impact

bugs and investigate if their importances in the bug reports are higher or not.

3.3.2 Participant Selection

In order to select notable developers to invite to our survey in this study, we use
contribution which represents the amount of the developer’s commit activity to GitHub
repositories and can be calculated with GitHub API 2. First, we make a list of all reposi-
tories in GitHub and calculate the total number of contributions for each repository. Note
that we only calculate contributions for the most committed repositories if the reposito-
ries have the same name, since forked repositories partly (sometimes largely) include the
same commits from original repositories and we need to avoid multiple counts for the same
contributions by the same developer. Next, the total contributions of each developer is
calculated based on the selected repositories above, and we choose candidates who mark
over 100 contributions. Finally, we sent e-mails to 22,228 candidate developers to ask

them to participate in our survey.

!Github: https://github.com/, Last Accessed: January 2020
2GitHub APT: https://developer.github.com/v3/, Last Accessed: January 2020
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Table 3.1: The questionnaire for our survey

[Q1. Profile]

Q1-1 | Your main project
Q1-2 | Your experience with OSS development
Q1-3 | Your motivation to participate in OSS development

[Q2. High impact bugs]

Q2-1 | What kind of bug would be much more important to be fixed?

- a bug threatening systems’ security (Security bug)

- a bug deteriorating system’s performance (Performance bug)

- a bug blocking other bug fixes (Blocking Bug)

- a bug found in unexpected timing and location (Surprise bug)

- a bug introduced in older releases and found in a newer releases (Dormant bug)

- a bug introduced in a newer release and breaking functions of older releases (Breakage bug)

- others [free text]

Q2-2 | Please tell us high impact bug(s) you encountered in the past.

3.3.3 Questionnaire

We prepare Google Forms for our survey which consisted of three questions to know the
developers demography (Q1), one closed question to reveal a distribution of high impact
bugs considered important by developers (Q2-1), and one open question to collect and
further analyze actual reports on high impact bugs (Q2-2). The detail contents are shown
in Table 3.1.

3.3.4 Categorization of Bug Symptoms

Based on the responses of Q2-2, we collect actual bug reports from developers’ projects
and confirm the symptoms of the bugs, in order to discuss what techniques have been
already proposed or that will be required to find and fix those high impact bugs. The
first and second authors independently and manually inspect symptoms of actual high
impact bugs and classify them by the card sort technique [51]. After the independent
classification, the two authors discuss each classification result together and merge the

results by mutual consent to make one classification. Here, the inspectors include one
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Ph.D. student (first author), who worked at a software company for two years as a full-
time developer, and one professor who has been studying OSS development over ten

years.

3.4 Survey and Classification Results

3.4.1 Developer Demography (Q1)

As we described earlier, we invited 22,228 developers to join our survey. During the
two weeks survey period, we got responses from 322 developers. Table 3.2 shows the
product domains where the developers participated. We can see “web application” is
the most popular domain (7%) but it does not stand out from the others. The product
domains spread across a wide area. We can assume that the results of our survey reflect
a wide range of situations across OSS development. Table 3.3 shows the developers’
experience with OSS development. The majority of the developers have over five years
experiences. It is no surprise because we only invite active developers who have made at
least over 100 commits to GitHub repositories. Table 3.4 shows developers’ motivations
to OSS development. 59% (126+64) of the developers contribute to OSS projects as part

of work.

3.4.2 RQ1: What Kinds Of High Impact Bugs Are Mainly Con-
sidered High Impact By OSS Developers?

In Q2-1, we asked the developers to select one of the six kinds of high impact bugs
which are introduced in the previous section and have been well-studied in the SE com-
munity. Table 3.5 shows the responses from the developers. We can see the OSS devel-
opers from GitHub attach greater importance on security bugs (53%) and breakage bugs
(22%). It was unexpected for us that the other four bugs attract less attention from the
OSS developers. It partly indicates the perception of gaps between researchers and OSS
developers. Some researchers in the SE community might misunderstand OSS developers’

actual needs.
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Table 3.2: Product domains where GitHub developers join (Q1-1)

Domain # 1 % Domain # 1 % Domain # %

web application 22 | % database 3% machine learning 5 2%
development tool 19 | 6% network server 9| 3% Ul 51 2%
analysis 19 | 6% messaging tool 9| 3% mobile app 5| 2%
language & compiler | 17 | 5% education 8| 2% desktop system 4 1%
0s 15 | 5% simulator 7| 2% mail 4| 1%
graphic 14 | 4% finance 71 2% browser 3 1%
game 13 | 4% resource monitoring | 7 | 2% others 37 | 11%
programming tool 12 | 4% image editor 6 | 2% no answer 34 | 11%
blog 11 | 3% network tool 6 | 2%

embedded OS 9| 3% security tool 6| 2% Total 322 | 100

Table 3.3: Experience with OSS develop-

ment (Q1-2)
Experience Developers
more than five years 213
three to five years 63
one to three years 45
less than one year 1

Table 3.4: Motivation to participate in OSS
development (Q1-3)

Motivation | Developers
hobby 111
work 126
both 64
other 21

Table 3.5: A distribution of high impact

bugs (Q2-1)

high impact bugs | # %

Security bug 171 | 53%
Breakage bug 72 | 22%
Performance bug | 20 | 6%
Blocking bug 16 | 5%
Dormant bug 12 | 4%
Surprise bug 7T 2%
others 24 | 7%
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Researchers in the SE community have been studying to help developers find and fix
bugs especially in terms of impacts on users’ satisfaction and during the development
process (release) [52]. Although high impact bugs have been studied individually so far,
it was not clear if OSS developers are mostly concerned with particular high impact bugs.

From the result of Q2-1, we now answer RQ1 as follows.

Answer to RQ1: Researchers have been dedicating to provide a means to find and

fix a variety of high impact bugs, but OSS developers mainly emphasize a focus on

security and breakage bugs.

3.4.3 RQ2: What Kinds Of High Impact Bugs Do OSS Devel-

opers Encounter Most Frequently?

In Q2-2, we asked the developers to describe the high impact bugs they have encoun-
tered in the past. Many of the developers described characteristics of high impact bugs
in the free text format and also gave us direct links to actual bug reports which present
symptoms discussed among developers and users.

Table 3.6 shows symptoms of bugs considered high impact by the respondents (Ref in
the table will be used in the discussion section). In the table, we count multiple times if
a developer described several high impact bugs. The percentage in the table is the ratio
of developers’ answers in each category, but the total percentage does not become 100%
due to the above reason. As we described earlier, we manually inspected and categorized
the information on high impact bugs by symptom. In what follows, we summarize the
classification result.

We had 249 valid answers from 192 developers about symptoms of high impact bugs
which actually get OSS developers in trouble in the past. In Table 3.6, the most common
symptom was “unexpected processing” responded by 17% of developers (42 cases). As
regards “unexpected processing”, we could confirm less in common with bug reports. They
ranged from different calculation results to unexpected rendering. The next most frequent
was “sudden stop” responded by 16% of developers (39 cases). The corresponding bug
reports shown by the developers suggested us that it often happened due to null pointer
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Table 3.6: The number of categorization based on the symptoms in actual bug reports.

The related researches are shown in Ref column.

Category Subcategory Description # % Ref
. Users cannot install, compile or start an
disable start o 19 8% | [53][54][55]
application
. A function never start once a user clicks
never start function 21 8% | [29][56][57][58]
a button
sudden stop A program suddenly stops during run- 39 | 16% | [24][59][60][61]
ning
Behav-
. . A program does not output or behave
lor unexpected processing 42 | 17% | [57][62]
as developers expected
A process never finish (e.g, hang up and
never finishing state . P . (e, §up 5 2%
infinite loop)
unable to login Users cannot login a system 4 2%
Lack of items in display, wrong warn-
others ) pA Y & 8 3%
ings, lower user experiences etc.
A program lowers performance (e.g, too .
lower performance 13 5% | [28][63][64][65]
large memory usage)
Effect A program damages other systems (e.
damage other systems prog & Y (ce 5 2%
OS cannot boot)
others Making a disk full etc. 3 1%
. Security defects allow an attack to
vulnerability ) 22 9% | [66][67][68]
cause an abnormal behavior
An impersonating account accesses to a
Secur- unauthorized access P . & 28 | 11% | [69][70][71]
ity server, service, or data
Massive accesses from multiple termi-
DDoS . 7 3%
nals make a service unable
A program deletes data in a product
data loss 12 5%
(e.g., user data and database breakage)
Data
A program produces incorrect or dupli-
incorrect data prog P P 1 0%
cated data
. It forces developers to change a archi-
architecture change . 3 1%
tecture or core program in a product
Devel- Developers cannot reproduce a re-
reproduce 3 1%
opment ported bug
others Blocking other bugs fixed etc. 4 2%
Compatibility is broken (e. API,
compatibility P Y (e, 7 3%
Reput- hardware and OS)
ation . A product can not guarantee an execu-
execution env. 3 1%

tion environment
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exception, run-time error exception, segmentation error, and overflow. Although the
above two are related to “Behavior” of a program, the third and fourth most common
symptoms were “Security” concerns such as “vulnerability” and “unauthorized access.”
About “vulnerability,” the corresponding bug reports suggested the developers especially
concerned with XSS and SQL injection attacks. The OpenSSL problem (i.e., Heartbleed)
and the hidden way of leaking user data were included in bug reports about “unauthorized
access.”

In RQ1, 53% of developers think that security is the biggest concern among high
impact bugs in the previous studies. However, the result in RQ2 shows that the developers
come across high impact bugs about behaviors more often than the one about security. In
fact, one developer said, “Since the mentioned project is (mostly) a client-side javascript
library, security problems aren’t common.” Based on the results here, we answer RQ2 as

follows.

Answer to RQ2: OSS developers most frequently encounter bugs relating to be-
haviors such as unexpected behaviors and sudden stops. Security bugs such as vul-

nerabilities and unauthorized accesses are also often encountered.
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3.4.4 RQ3: Do High Impact Bugs Have a Higher Importance?

RQ2 showed that there are many kinds of high impact bugs. This variety requires
substantial effort to build models to detect each kind of bugs. Hence, we need to find
easier ways to distinguish bugs. Several studies utilize some attributes to represent im-
portance (e.g., severity, priority) [3, 36, 72] while others argue that these are unreliable
[26]. Therefore, we need to investigate if the severity and priority tags are useful for
detecting high impact bugs. In RQ3, we access the links of high impact bugs from the
responses and investigate what percent of them have a higher importance. Investigating
the importance is close to the previous study [26] but we examine the high impact bugs
admitted by the respondents whereas they randomly selected the bugs.

As a result, we could access 136 bugs and found 68 bugs have any priority or severity
placements. We investigated the importance of 68 bugs and found that 45 bugs (66%)
have a higher importance, which is not a small number of bugs because the percentage is
usually low [3, 36]. This suggests priority and severity might help to detect high impact
bugs.

Answer to RQ3: 66% of the bugs have a higher importance than the default level

where projects provide an importance label in BTS.
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3.5 Discussions

3.5.1 What Kinds of High Impact Bugs Should Be Studied
Newly by the SE Community in Order to Support OSS

Developers?

In this study, we found there are a variety of high impact bugs. However, we still do
not know whether these bugs are studied or not. In this section, we investigate if prior

work covers the high impact bugs that developers’ responded.

The percentages in Table 3.6 are indicated in boldface if the corresponding symptoms
account for about 80% of all the symptoms (i.e., the developers frequently encounter
the symptoms with boldface.). For the majority of the symptoms, we surveyed existing
studies which have tried to find or resolve the symptoms and showed references as “Ref”
in Table 3.6.

The percentages of the symptoms in “Behavior” category are relatively high and these
have been well-studied by the SE community [24, 29, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62].
For instance, “never start function” is well studied breakage bugs [29] so-called regressions
which disable existing functions due to additional changes to software products. Although
in the chapter we did not introduce this as a high impact bug, “unexpected processing” is
well studied as a functionality bug or feature bug [57]. “disable start” and “sudden stop”

are also studied as build process bugs [55] and crash bugs [24], respectively.

As we confirmed “vulnerability” and “unauthorized access” achieved relatively high
attention from the developers, security bugs are also considered high impact by researchers
and have been well studied [65, 66, 67, 68, 69, 70, 71]. “Lower performance” in “Effect”
category is also well studied [28, 63, 64, 65] as performance bugs. However, to the best of
our knowledge, there is no study on “data loss” in “Data” category which is of relatively
high concern to OSS developers (5%). For instance, a bug on “data loss” in “Data”
category is observed when deleting data related to the operation under a condition. Other
data loss bugs occurred due to executing the wrong processing of multi-transaction or by

using variables not multi-threaded (e.g., HashMap in Java). In fact, loss of users’ data

34



3.5. DISCUSSIONS

such as their pictures was recently reported in the update of Windows 10 3. We regard it
is one of the perception gaps between OSS developers and SE researchers and should be

studied, allowing us to address the issue.

3.5.2 Threats to Validity

Internal validity: The categorization of Table 3.6 may not be perfect. We have
a good deal of knowledge about software, but we also recognize the limitations of our
knowledge about specific domains. We also might bias in creating the category.

External validity: Although the developer demography consists of developers work-
ing in a wide range of product domains, a judgment if a bug has high impact or not would
depend on a product domain.

Construct validity: To avoid bias in the developers responses, we asked them about
high impact bugs without providing rigorous definitions of high impact bugs. Attitudes
towards high impact bugs might be different among the developers.

3Ars Technica: https://arstechnica.com/gadgets/2018/10/microsoft-suspends-distribution-of-latest-
windows-10-update-over-data-loss-bug/, Last Accessed: January 2020
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3.6 Chapter Summary

Several studies have proposed methods to predict the priority of bugs reports. How-
ever, Saha et al. warn that priority/severity does not reflect the actual values that should
show because 65% of bug reports are mislabeled [26]. Hence, many studies have defined
serious bugs that impact on the product or process (which are named high impact bugs)
[27, 28, 29, 30, 31] and build models to predict them. However, it is not sure whether
developers consider these bugs as being highly impactful on the product or process.

In this study, we asked what kind of bugs developers think are impactful and encounter
in practice, through a survey with 322 notable GitHub developers. We inspected the
responses and manually classified the bugs that affect seriously the users or process,
included in the responses. As a result, we found that security and breakage bugs are
highly important for OSS developers. Furthermore, we investigated if the high impact
bugs, which developers responded, have higher importance and found 66% of the bugs
have higher priority or severity than the default level, indicating that the importance of

bugs help us to detect high impact bugs.
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Chapter 4

Release-aware Bug Priority

Prediction

4.1 Introduction

Many studies dedicate considerable effort to supporting bug management or bug fixing
process, proposing various prediction methods such as bug prediction [73], bug-fixing
time prediction [74], bug priority/severity prediction [3, 36, 72, 75]. Traditionally, to
build priority/severity prediction models, most studies utilize all the accessible data or
randomly chosen data [3, 36, 72, 75]. For example, we investigated the basis of datasets
in priority and severity prediction studies during their generation and found 13 priority
prediction studies and 24 severity prediction studies in total. Out of them, 6 and 14
studies (46% and 58% of the studies) used data during defined periods (e.g.,1/Jan/2001 —
31/Dec/2006 from Eclipse) in priority and severity predictions, respectively. Also, these
studies advance no reason for choosing the defined period. Further, 2 and 8 studies
(15% and 33% of the studies) lack details of datasets (e.g., these only mention the use
of Firefox or commercial software) in the priority and severity studies, respectively. 5
priority studies (38% of the studies) randomly selected data from bug tracking systems
(none of the severity studies). 2 severity studies (8% of the studies) collected data based

on a specific software version (e.g., Eclipse 3.1) while none of the priority studies created
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datasets based on versions.

Most of the studies indicate unawareness of the presence of releases, implying these
unwittingly assume uniform activities within iterations ! (i.e., performing the same task
in every day) and across iterations (conducting an identical task in each iteration), which
is frequently untrue. Some studies [76, 77, 78] raise the concern of changing properties of
data with time (across iterations), which causes lower performance of prediction models
over time [79, 80]. For example, modern software development projects (e.g., agile soft-
ware development) add new features in products for short periods. Even if during the
short period, projects follow the software development process (i.e., planning, designing,
implementing, and testing), the activity at any point in this period differs.

Recently, the assumption in software development projects are more difficult to sat-
isfy. To facilitate multiple agile teams working in parallel, many large companies or OSS
projects adopt the release train practice which coordinates releases across multiple teams
and delivers the products at the same time with fixed and strict schedules. Consequently,
shortening the release cycle is now frequent, causing developers to switch development
phases in shorter than usual periods. This creates datasets to include multiple iterations of
the planning, designing, implementing, and testing phases. Prediction models from such
datasets are opaque because these are unaligned with the sequence of events, thereby
reducing the performance. To the best of our knowledge, there is no empirical evidence
and the impact remains unclear, although Adams and McIntosh suggest the anticipated
impacts on software engineering studies by the release cycle [81].

This chapter examines the impact of the release cycle alignment on defect management
prediction, especially, bug priority prediction. This is the focus because priority prediction
is a very important field, whereas studies till date focused on defect prediction. We
propose release cycle-aware models trained on data in a defined period, Although the
original dataset contains multiple releases, we split it into several subsets aligned with
the major releases and measure the impact of the alignment. Moreover, we compare the

prediction performance while changing the datasets granularity to produce finer-grained

Tterations are fixed-length timeboxes in software development, and projects usually contain the aims

in the iteration at the beginning of iterations.
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analysis/models.

To investigate the impact of the release cycle alignment on the defect management
process, we also address the following research questions (RQs) in this chapter:

RQ1. Do defect management activities vary within the release cycles?

We found that various bug fixing activities and the frequency of priority setting vary
during the release cycle. We also observed two types of metrics vary or are invariable
within the release cycle, with 42% of the metrics showing significant differences during
specific periods.

RQ2. Do cycle-aware models outperform the cycle-unaware models?
Based on the month of the bug reported date while disregarding the year, we aggregated
the data quarterly datasets from July (first month after main release). For each dataset,
we created release cycle-aware models (CYC) and compared them with cycle-unaware
models built using full data. The results show that the CYC outperforms the cycle-
unaware model for recall and the g-mean.

RQ3. What is the right granularity for cycle-aware models?

In addition to the 1-divided models and 4-divided models (Quarter models) in the RQ2, we
built 12-divided models (named monthly models) and compared them. The finer-grained
models exhibited better performance than the coarse-grained models.

The contributions of this study are the following: (1) demonstrated that developers’
activities vary during the release cycle; (2) showed that 42% of metrics are statistically
significant different for specific periods due to variations in the release cycle; (3) clarified
that the cycle-aware model exploits the characteristics of specific periods, and therefore,
outperform the cycle-unaware model; and (4) proved that finer-grained data yield more

accurate prediction models.

Chapter Organization: The remainder of this chapter is organized as follows:
Section 2 provides a background on priority setting and release engineering; Section 3
contains a description of the design of the case study; Section 4 involves presentation of
results from our four research questions; Section 5 contains a discussion of the application
of various insights for predictions and disclosure of threats to the validity of our study;

the chapter terminates with conclusions in Section 6.
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4.2 Release Engineering and Bug Management

4.2.1 Release Engineering

Although all software projects involve a release cycle, the time or nature of the release
(major, minor, or patch) differs among projects, since projects are based on different
policies (e.g., extent of quality assurance) in various environments (e.g., proportion of
market share retained). Since the release cycle differences affect the understanding of clues
or lower the performance of prediction models in software engineering studies, researchers
must be aware that the release cycle time or nature of the release affects developers’
activities or practice [81]. We describe how the release cycle time or the nature of release
affects the developers’ activity or practice as bellow.

Release cycle time: Most software projects involve time-based release schedules
(e.g., weekly or monthly releases) or feature-based schedules (e.g., immediately every
feature is implemented) for release of the product. For instance, popular software projects
such as Eclipse, Firefox, and Node.js adopt time-based release schedules. These involve
the release a new product approximately every 3-5 months for Eclipse, 6-8 weeks for
Firefox, and 6 months for Node.js.

Time-based projects optimize the periods before the next release (release cycle time)
for adapting to factors like the competition environment and their policy. For example,
Firefox conducts seven major releases, while Eclipse is characterized by one main release
and two service releases annually. Firefox is required to rapidly deliver new features,
upgraded security, stability, and other bug fixes to compete with Google Chrome [82].
Therefore, Firefox adopted a rapid release cycle from version 5.0, delivering a new product
every 6-8 weeks [83]. Conversely, Eclipse depends on a longer release cycle to ensure
backward compatibility, stability, and smooth transitions, spending more time for release
planning [84].

The difference in the release cycle time can affect software development. Consider
Project A with a release cycle of 2 months and Project B with a cycle of 4 months,
respectively involve 5 reports daily. Project A requires dealing with about 300 reports

before the next release, whereas Project B must handle 600 reports. Therefore, the project
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with the longer release cycle caters for more defects. The longer release cycle commonly
involves changes reflective of the additional source code that emerges before the next
release. Therefore, Adams and Mclntosh indicate that researchers should avoid simple
comparison of the number of reports, commits, and other overlapping characteristics

between projects with different release cycles [81].

Nature of releases: Most projects adopt the semantic versioning [85], defining a
guaranteed level of compatibility. In general, the semantic versioning represents the level
as three digits (e.g., X, Y, and Z). The first digit (X) represents a version of the major
release with incompatible API changes. The second digit (Y) and the last digit (Z)
denote a version of a minor release and patch release (bug fixes) changes with backward
compatibility, respectively.

In Eclipse, end users are provided a main release (either major release [e.g., Eclipse
3.0] or minor release [e.g., Eclipse 3.1]) in June each year. Also, end users are furnished
with two service releases (SR1 and SR2) in September and February each year, with new
features included in the main release. The patches for fixing bugs in the main release are
provided in the two service releases. Firefox releases major versions every 6-8 weeks for end
users in four phases. Before delivering a main release, three channels are prepared (i.e.,
Nightly, Developer Edition, and Beta), so that the product can be tested by developers or
corporate users [86]. New features are developed from the Nightly edition, tested on the
Developer edition and Beta before provision to end users in the main release as a final
product.

Therefore, every project involves a unique nature of release (major, minor, or patch
release) for improving the quality of the product. Depending on the nature of the release,
the developers’ activity would obviously vary. Before a major release, focus may be on
developing new features involving adding new code to repository. A minor or patch release
usually involves small changes in the existing code while retaining backward compatibility.
These differences in activities influence various predictions, especially priority predictions,
because priority labels are usually set for the next release. For example, if the release
(Eclipse: main release, Firefox: Nightly release) includes many new features, enhancement

reports may be prioritized. Contrarily, the bug-fixing task may be prioritized when a
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release (Eclipse: service releases, Firefox: alpha release) includes many patches for defects.
Although releases included in datasets require careful consideration, no study related to

this exist or consistent attention on this is lacking.

4.2.2 Bug Management and Release

In the mining software repository (MSR) field, many studies that devoted time on
bug prediction, bug fixing-time prediction, or bug priority prediction for improving the
bug fixing process exists. Most of studies assume that data in a period is always similar
those in other periods, using all available data to generate prediction models. Against
this assumption, several studies raise concern that data trends in a project change over
time according to the system’s age, growth, etc. [76, 77, 78]. Mclntosh and Kamei
built fine-grained prediction models for identifying fix-inducing code changes, showing
that data immediately before the prediction time, contributes the most to the prediction
performance [77]. Moreover, they also revealed accuracy fluctuations and variations in
important metrics of the prediction models across test periods.

These fluctuations are probably affected by the release cycle. Since developers focus
on new features during specific months and on bug fixing during other months, important
metrics required for prediction usually changed. Using all data in release cycles com-
bines the characteristics of each period among the release cycles, missing the subtle, and
thereby diminishing the accuracy of predictions. Thus, we believe that SE researchers
must carefully consider trend changes over time and the trend during the release cycle.

In this study, we investigate the impact of release cycles on the bug fixing process,
specifically for bug priority prediction. We also build cycle-aware models with data during
some or divided periods, evaluate these using the Eclipse Platform dataset to compare
the performance of CYC versus cycle-unaware models.

In Figure 4.1, we illustrate the concept of the release cycle-aware models with exam-
ples. The left side of Figure 4.1 shows that the project involves three teams with different
release cycles and is characterized by time-based releases. Team A and Team C iterate
two and three iterations per release, respectively but the second iteration of Team C is

longer than the others (similar to Eclipse 3.x projects). Conversely, Team C releases a
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Figure 4.1: Concept of the cycle-aware models. The cycle-aware models are trained with

data in specific periods of the release cycle (e.g., the periods after releases).

product once in three release dates and involves two iterations by the time release time
of a product.

The task conducted according to the period in the iterations are shown in the right
side of Figure 4.1, with each graph based on the Rational Unified process [87]. The blue
shades represent the extent of data used for building the prediction model, with three
extents prepared. Particularly, the graph for Team A in the right side of Figure 4.1
involves the use of all data for building the models. Evidently, the blue shade covers all
tasks, indicating that models are built irrespective of the tasks performed by developers,
reflective of the method involved in traditional studies.

The blue shades for Teams B and C in the left of Figure 4.1 reveal that a focus to
the left of the cycle. Moreover, looking at the right side of Figure 4.1, the covered tasks
essentially involve business modeling and requirements. Based on data highlighted by
the blue shade, the prediction models can be rendered specialized for business modeling
and requirements. Considering priority predictions currently, the prediction model learns

bugs that should be prioritized for business modeling and requirements, granted that some
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bugs reporting about others (e.g., design or architecture) would not be prioritized.
Thus, data must be acquired from an appropriate period for prediction of the target
task, and notably, the granularity of the dataset requires consideration. Suppose we apply
the release cycle-aware model of Team B to Team C, this will no longer work because it
contains data for various tasks as well as Team A. Excess splitting creates lack of data
for the prediction model, thereby reducing the prediction performance. In this study, we
endeavor to align data with releases by splitting data into 1/4/12 partitions, building

models capturing the characteristics of certain periods.
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Table 4.1: Eclipse 3.x release dates and target reports in our dataset showing major and

service releases from 2004-2011 for version 3.0-3.6.

Version ) Re?ease date . #Bug reports
major release  1st Service release  2nd Service release
3.0 June 25, 2004 September 16, 2004 March 11, 2005 3,177
3.1 June 17, 2005 September 28, 2005  January 25, 2006 2,699
3.2 June 29, 2006 September 28, 2006 March 1, 2007 2,548
3.3 June 28, 2007 September 28, 2007  February 21, 2008 1,990
3.4 June 25, 2008  September 24, 2008  February 25, 2009 1,813
3.5 June 24, 2009  September 25, 2009  February 26, 2010 1,490
3.6 June 23, 2010 September 24, 2010  February 25, 2011 994

4.3 Study Design

This section involves a presentation of the design of our case study intended to address

the three research questions.

4.3.1 Overview

The primary objective of our case study is to understand the impact of release cycles
on the bug fixing process for the specific case of bug priority prediction. In research
question 1, we investigate metrics on the fixing activities for each month, comparing
them to analyze the extent of variation in bug-fixing activities during the release cycle.
After analyzing the impact of the release cycle on the bug-fixing process, we evaluate the
impact of the release cycle on the priority prediction in research questions 2 and 3. For
these two research questions, we build four cycle-aware models (CYC) involving different
data sizes and approaches, considering the difference in characteristics of various periods
within the 1-year release cycle. We then compare these with the opaque model built with

the full data that neglects the release cycle.
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Table 4.2: The number of bugs by priority in our datasets.

Priority | # bug reports
P1 223
1145
P2 922
P3 13395 | 13395
P4 79
171
P5 92
sum 14711

4.3.2 Dataset

Summarized datasets for this study are presented in Tables 4.1 and 4.2. We selected
the Eclipse platform 3.x project because it involves development over a long duration,
providing enough data for investigating if the bug-fixing process is affected by the release
cycle. Also, the Eclipse 3.x products involve a simple and periodic release. The three
releases annually comprise a main release in June and two service releases in September
(SR1) and around February (SR2). Such a simple and periodic release cycle facilitates
understanding the results associated with our research questions. Although data from
Eclipse 4.x is applicable, these were avoided because these are at a turning point.

In this study, we include data from the release date of Eclipse 3.0 to that of Eclipse
3.7, meaning data for Eclipse 3.7 and 3.8 are excluded. This is because Eclipse 3.8 is for
bug-fixing and JAVA7 support 2, which is different from the other version. In this study,
we separate the Eclipse platform 3.x project data into year and month, aggregating them
on a monthly basis (i.e., separated 12 datasets corresponding to 12 months). Since the
datasets are partitioned by year (instead of release version), these datasets lack the version
information. Figure 4.2 illustrates the procedure for creating the monthly datasets.

Since projects frequently receive invalid reports or duplicated reports [88] that may
produce a bias during analysis, we employed only bug data tagged “FIXED” in the

resolution field of Bugzilla. Moreover, we use syntactic analysis [89] to specify commits for

?Eclipse3.8: https://www.eclipse.org/projects/project-plan.php?planurl=http: / /www.ecli
pse.org/eclipse/development/plans/eclipse_project_plan_4_2.xml, Last Accessed: January 2020
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Figure 4.2: Illustration of the procedure for creating our datasets. The data are separated

by version and merged by month into 12 datasets. The developers switched to a rapid

release cycle from Eclipse 4.6 after the first release (Eclipse 4.2).

each bug; otherwise, we removed the bugs fixed by unidentified commits. When handling
descriptions (free text data) in the bug reports for measuring metrics, we eliminated
source code and stack trace in the descriptions, as these might lower the performance of

the predictions [90].
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4.3.3 Metrics

Tables 4.3 and 4.4 show the list of metrics used in this study. We collected data from
a bug tracking system and code versioning system, and then measured metrics from the
data. The metrics are classified into two types (bug unit and daily unit). Metrics in
Bug Unit are measured for each score associated with the bug report (e.g., the number of
files changed for the bug) to capture bugs that are fixed. Metrics in the Daily Unit are
measured by counting the bug-fixing activities (e.g., the number of files committed per
day) per day to capture bugs that are fixed or how these were fixed.

In the Daily Unit metrics, we utilize # High/Mid/Low priority reports and # High/Mi
d/Low priority closes. We transform priorities (P1, P2, P3, P4, P5) into three grades
(High, Mid, Low) because there are no obvious thresholds existing between P1 and P2/P4
and P5. Therefore, we maintain the changes from the default priority (P3) and merge
higher (P1 or P2) and lower (P4 or P5) priorities. Similarly, for the # High/Mid/Low/Enh
severity reports and # High/Mid/Low/Enh severity closes, we replace the blocker, critical,
and major into High, normal into Mid, and minor or trivial into Low. Here, since a
report whose severity is enhancement is not a bug, we make it independent from the
High/Mid/Low and introduce another grade “Enh”.
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4.3.4 Prediction models

In the RQ2 and RQ3, the models are intended to predict whether a bug receives a
high priority (P1 or P2) or does not. We explain the procedure for creating the prediction
models and then evaluate them. To confirm the effect of the release cycle, we compare
models trained with data for different periods. We build cycle-aware models (CYC)
trained with data for a specific period and an opaque model (OPA) trained with the

entire data.

Model Construction. A summary of the procedure for building the models is
displayed in Figure 4.3. The procedure comprises the following five phases: preparation,

creating datasets, model building, inference, and prediction.

Preparation phase
We measure all metrics using Eclipse platform data for the entire period. To input

the daily activity metrics into the prediction models, we refer to the daily activity
metrics of the day prior to the reported date of each bug and use them as the metrics
of the bugs. Thereafter, we filter all Eclipse data to the Eclipse platform 3.x data,
and then split the complete data set into N-split data sets for the CYC, based on
the bugs reported month.

Making datasets phase
The N-split datasets are further split into training data (90%) and testing data
(10%). Then, we copy the training data of the CYCs and combine them as training
data for the OPA.

Model building phase
We build four models including Bayes, LDA, Impute and Prediction.

[. Bayes model
We use the Naive Bayes classifier to compute the “Bayesian score”, which is a
probability that will receive high priority in the metrics list (Table 4.3). The
probability of a bug report b belonging in class ¢ (high priority) is computed
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Figure 4.3: Summary of the procedure for completing unknown metrics when new bugs

are reported. The new bugs are provided through the inferred metrics by the LDA and

Impute models.

as below.

P(c|b) x P(c

H P(tg|c)

1<k<ng

(4.1)

where P(t;|c) represents the conditional probability of the term ¢, occurring

in a bug report of class ¢. P(c) shows the prior probability of a bug report

belonging class ¢, and ny is the number of terms in bug report b.

To calculate the probability, we consider each text of the bug reports and the

priority label, so that the classifier learns relevant information in the text of

high priority bugs. The texts are preprocessed via tokenization, lemmatization,

and stopword removal. Finally, the texts are vectorized and weighted using TF-
IDF. When a new bug is reported, the classifier takes an input of the description
in the reported bug and can compute the possibility that the bug will receive

high priority.
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Figure 4.4: The procedure of completing unknown metrics when new bugs are reported.

The new bugs are provided with the inferred metrics by LDA and Impute models.

11 / II1.

As for computing all metrics (not only the “Bayesian score”), the OPA and
CYC use each dataset, that is, the OPA uses a full dataset and CYCs utilize
the split datasets. However, the performance of the Bayes model is known to
significantly rely on the amount of data [36]. Hence, we create another type
of CYC, which is trained with full data to compute the “Bayesian score”. To
distinguish the new CYC and the simple CYC, we name the new CYC as
hybrid CYC (H-CYC), while the simple CYC is termed pure CYC (P-CYCs),
with the “Bayesian score” by using divided datasets. In other words, the H-
CYC shares the same “Bayesian score” computed using the divided datasets.
Alternatively, the H-CYC shares the same Bayesian score” as the OPA, but
shares the other metrics with the P-CYC.

LDA models and Impute models
When new bugs are reported and their priorities require prediction, metrics in

the Bug Unit (except for the report dimension) are unknown such as the “#
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IV.

status changes” and “# comments per bug”. This is because these metrics are
able to be measured after the bugs are fixed. Likewise, for the testing datasets
in this experiment, the original metrics in the bug reports were not utilized.
We infer the metrics from similar bugs using the LDA and Impute models. The
procedure for building the LDA and Impute models for inferring the unknown

values of the metrics are outlined in the left side of Figure 4.4.

First, we build the LDA models with the training datasets to classify the bugs
in the training datasets into clusters (topics). To classify the bugs, the LDA
model sets the number of topics in advance. Referring to previous studies
[91, 92], we set the number of topics by dividing the number of bugs by 2.5.
Then, for each topic, we calculate the median of each metric and store the

medians in a model (named the Impute model).

Furthermore, each bug in the testing datasets is fed into the LDA models
trained with the training datasets and the most relevant topic of each bug is
inferred. Finally, the missing metrics are determined by the Impute model,
referring to the median values of the metrics according to the inferred topic.

Here, the LDA and Impute models are trained for each training dataset.

Priority prediction models

Using the random forest algorithm, we build classifiers to enable the classifi-
cation of bugs as high priority and non-high priority. This is a classification
algorithm that applies multiple decision trees as weak learners. The algorithm
outperforms basic classification algorithms in terms of its potential to measure
the importance of prediction variables. To build decision trees, we employ the
Gini Impurity that is a measurement of the likelihood of an incorrect classifi-

cation of a new instance of a random variable. It has been calculated as

G = p(i)* (1—p(i)) (4.2)
1eC
where p(i) is the probability of picking an item assigned to class i.

When building the priority classification models with the measured metrics
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in the training datasets, to improve the performance of the classifications,
we remove the metrics with a variance inflation factor (VIF) above 5. The
VIF helps detect multicollinearity that lowers prediction accuracy and it is
formulated as 1/(1— R?), where R? is the coefficient of determination obtained

by regressing the target metrics on the remaining metrics.

Furthermore, we employ a feature selection via the information gain and ranker
search method to remove ineffective attributions. In this study, we set the
threshold of the information gain as 0.00 and remove the metrics with infor-

mation gains below or equal to the threshold.

Next, we discretize the metrics (except for 0-1 variables “is_enhancement’” and
“is_specified_version”) into 3-bins based on the frequency, involving high, mid-
dle, or low, to improve understanding of the data. We also execute under-
sampling on the training datasets to prevent over-fitting. Finally, after building
the classifiers, we input the testing datasets in the prediction model to classify

bugs with high priority.

Infer phase

We supplement the missing values in the test data for the metrics that were not
measured when the bug was reported (e.g., #commits per bug, # changed files per
bug). The procedure for inferring the unknown value of the metrics is outlined in

the right side of Figure 4.4.

Initially, for each LDA model created in the model building phase, each text of the
bug reported in the test data is provided as input to infer the topic. We introduce
the topic to the Impute model built in the previous procedure (I1/I11. LDA models
and Impute models). The Impute model provides the bug reports with the inferred
value, which is the median value for the metrics calculated in bug reports involving
the topic in the training dataset. Also, to obtain the “Bayesian score” for test data,
each text data of the reports is introduced to the Bayes model created in the model

building phase to infer the score.
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Prediction phase
Finally, we provide priority prediction models with the complemented test data.
The predict models compute the probability that the bug report b receives a high
priority and select the more likely class (high priority or not) as follows:
¢ = arg max p(b;) (4.3)
ceC

Evaluation. To evaluate the performance of the CYC and OPA, we employ the
recall, g-mean, and ROC-AUC as performance measures. The recall and g-mean are
represented by a confusion matrix of the actual and predicted labels in Table 4.5, while
the ROC-AUC is simply obtained from the area under the ROC curve. The ROC curve
is plotted with the false-positive rate (equals 1—specificity) as the x-axis and the true
positive rate (equals recall) as the y-axis for each classification thresholds in descending
order of positive probability. Although many studies employ precision and f-score in
addition to recall and the AUC-ROC, we use recall, g-mean, and ROC-AUC because the
ratio of the positive and negative in our dataset biases to negative labels (not high priority
bugs), and precision is known to be sensitive to the imbalance ratio of the test set [93]3.
Therefore, the precision and f-score (calculated with precision) are not appropriate in this
study. Instead, we employ the g-mean, capable of equally evaluating negative and positive
because it is calculated based on the ratio of the positive and negative labels.

Note that the ROC-AUC also focuses on negative labels and some studies suggest
using the PRC-AUC instead when the dataset is imbalanced [94, 95]. The PRC-AUC is
calculated like the ROC-AUC but utilizes the Precision-Recall curve instead of the ROC
curve. The Precision-Recall curve is plotted with the recall on the x-axis and the precision
on the y-axis for each classification thresholds in descending order of positive probability.
The PRC-AUC is less affected by numerous negative labels because the Precision-Recall
curve does not use False Negative for its calculation. However, the recall relatively focuses
on the positive label and employing the PRC-AUC can produce a biased evaluation for the
positive label. To prevent emphasizing one class over another, we still use the ROC-AUC

in addition to the recall and g-mean.

3We show precision in tables and figures but we do not compare
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Figure 4.5: An evaluation example for the 4-splitted models. The cycle-aware models
trained with quarterly training datasets predict priorities for testing datasets of the same

quarter. The opaque model predicts priorities for the four quarterly testing datasets.

To ensure the stability of our results, we use the holdout verification approach, in-
volving using 90% of data for training and 10% for testing, computing the median of the
recall, g-mean and ROC-AUC (abbr. AUC) for 100 times repetition of the verification.
However, if we apply the OPA to the testing data by simply dividing the whole dataset by
9:1, the performance is not equally evaluated, which is not a representative score for each
period. Because the number of reported bugs in each month is skewed (especially, from
March to June), which is close to the score for the period bugs are reported the most,
and far from the results of the others. To compare the CYCs with OPA, after dividing
the entire dataset into training and testing, we reuse the training data for each CYC and
combine them for building the OPA. For each period of the testing datasets, we predict
the priority labels with the OPA, and this is compared with the result predicted by the
CYC corresponding to the period. An example of the evaluation method for 4-divided
models is depicted in Figure 4.5.
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Table 4.5: Confusion matrix for a two-class problem and performance measures

Predicted
Positive Negative
Positive | True Positive (TP) | False Negative (FN)
Negative | False Positive (FP) | True Negative (TN)

Actual

TP

[STON = ————— 4.4
Precision TPLFP (4.4)
TP
ll = =—4——F+ 4.
hecall = 5 N (4:5)
TN
e n
Speci ficity TPLTN (4.6)
G-mean = +/ Recall x Speci ficity (4.7)

4.4 Study Results

We present the motivation, approach and results of the three research questions.

RQ1: Do defect management activities vary within the release cycles?

Motivation. Most projects involve release cycles, and even in the case of one cycle,
the aims of releases vary. According to the aims, developers switch what they focus
on, like either implementing new features or fixing defects. Furthermore, depend on the
focus, the characteristics of the produced data also vary. Disregarding the characteristics
for specific periods render the quality of data-driven tools lower.

However, most studies on defect management assume that the characteristics for all
periods are identical across the release cycle. To the best of our knowledge, no studies

investigating the impact of the release cycle on the characteristics of data exists. As RQ1,
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we therefore, investigate if defect management activities and their characteristics vary
across the release cycle, by measuring the activities or comparing various metrics during
specific periods.

Approach. For this research question, we initially visualize the bug-fixing activities
during the release cycle. We measure the number of bugs reported and fixed and the
reporting and fixing times. Then, we apply statistical tests to the metrics in Tables
4.3 and 4.4% % to clarify differences in each period. We use the Kruskal-Wallis test to
evaluate whether statistical differences exist between the metrics for each month. Since the
Kruskal-Wallis test can only detect if differences exist among the distributions, we apply
the Mann-Whitney U-test with a Bonferroni correction to all pairs of distributions, as a
post-hoc test for evaluating pairs of distributions with statistical differences. Finally, we
measure the effect-size (r = Z score/«/# of samples ) [96] to confirm larger or smaller
distributions, and then remove the results with effect-size below 0.1. Here, to make the
results understandable, we divided the data into four groups (aggregated quarterly from
July immediately after the main releases) before applying the statistical test. The data
from July to September will is referred as JUL_SEP, that from October to December as
OCT_DEC, whereas that from January to March is JAN_MAR, and that from April to
June as APR_JUN.

Finding 1-1. The number of reports growing towards the end of the cycle.
Figures 4.6 and 4.7 display the number of bug reports and bug fixes for each month,
respectively. From July to November, the medians of the bug reports (except for August)
and fixes steadily increase until the activities temporarily attain a low in December. In
the new year, the number of bug reports and the fixes rise again from January to April.
The numbers of reports and fixes are higher from January to May than at any other time
during the first half of the release cycle. These significantly decrease in June, the month

of the main release.

4We do not apply the test to 0-1 variables (is_enhancement, is_specified_version).
5If the bugs are unassigned, measuring the assigning-time and fizing-time is not possible. Therefore,

we regard the bugs as assigned at the time of reporting, setting the assigning-time and fixing-time as 0,

and the days from reported to fixed, respectively.
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Figure 4.6: Box plot showing the number of bugs reported in each month

)
=)

Nov Dec Jan Feb Mar Apr May Jun
reported month

w w B
o a o
S =] S

fixed bugs
N
3

200

1

34
=)

ELI

Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun

100

50

fixed month

Figure 4.7: Box plot showing the number of bugs fixed in each month
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The data demonstrates that the numbers of reports and fixes vary within the release
cycle, and increase towards month for the main releases. The numbers of bugs reported
and fixed during the peak period are almost twice and three times the number of the
least frequent period, respectively. This suggests that the prediction model involving the
entire data relies on the data at the end of the release cycle. This lowers the performance
for the other periods, if the bug-fixing activity varies across the release cycle.

Finding 1-2. The activity of fixing high priority bugs varies more dynam-
ically than the activity of reporting high priority bugs. Figures 4.8 and 4.9
respectively, illustrate the percentages of the reported and fixed high priority (P1 or P2)
bugs. For the percentage of reported high priority bugs, the maximum median is 7.5 in
May, followed by 7.1 in July (i.e., immediately before and after the main release), while
the minimum median is 3.3 in February. Conversely, for the percentage of fixed high
priority bugs, the maximum median is 9.9 in May and the minimum median is 2.2 in
November. The percentages of reported and fixed high priority bugs attain the maximum
in May.

The difference between the maximum and minimum of the fixed high priority bugs
are larger than that of reported (reported: 4.2, fixed: 7.7). Also, the variances of the
median percentages of fixed bugs is higher than that of bugs reported (reported: 2.2,
fixed: 4.0). Hence, fixing high priority bugs activity varies more dynamically than that
of the reported high priority bugs activity.

Finding 1-3. Stabilization of the backlog for the next release fixes of high
priority bugs. Using the same method as in Figure 4.10, a heat-map filtered by high
priority bugs (P1 or P2) is shown in Figure 4.11. For the fixed bugs, in April, vertical
alignment of the red shade cells is evident. This indicates that many of the bugs reported
between October (the month immediately after the first service release) and March and
are fixed in April. That is, in April, while aiming for the main release, developers focus

on fixing high priority bugs to stabilize the products.
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Figure 4.8: The percentage of reported high priority bugs in each month
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Figure 4.9: The percentage of fixed high priority bugs in each month
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Table 4.6: Effect-size between quarters (+ indicates the distribution is larger than the

other quarters, — indicates the distribution is smaller than others)

Quarter
Unit Dimension Metrics JUL OCT JAN APR
SEP DEC MAR JUN
# High priority reports - +
# Mid priority reports - - + +
Report
# High severity reports - +
# Mid severity reports - - + +
# High priority closes — +
# Mid priority closes - - + +
Close
# High severity closes - - + +
# Mid severity closes - - + +
Daily # priority changes to High - +
# severity changes to High - - +
Change # priority changes going up - +
# severity changes going up - - +
# severity changes going down - +
# commits per day - + +
# changed files per day - +
Commit # added rows per day — +
# deleted rows per day — +
Report Bayesian score - + + +
Bug Change # CCs + -
Comment # people commenting per bug + - +

Finding 1-4. Developers’ activities vary across quarters. The effect-sizes of at
least 0.1 for metrics with a statistically significant difference, as measured by the Kruskal-
Wallis and the Mann Whitney tests are presented in Table 4.6. The “+” indicates that
the effect-size is larger than those for the other quarters, while the “~” indicates that the
effect-size is smaller than those for the other quarters. We note that “+” refers to the
largest and “-” refers to the smallest. For example, consider the following form of a bug
report: Quarter A <Quarter B <Quarter C <Quarter D. In this case, Quarter B and
Quarter C are shown as blank.

In the Kruskal-Wallis and Mann Whitney tests, 45 out of 50 metrics exhibit statisti-
cally significant differences. Through the post-hoc and the effect-size filtering, 24 metrics

are eliminated, and 21 metrics are finally retained (See Table 4.6). First, comparing
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the first half of the year (JUL.SEP and OCT_DEC) and the second half of the year
(JAN_MAR and APR_JUN), bug are reported and closed more frequently in the second
half before the main release than the first half after the release. Subsequently, we describe
the characteristics of developers’ bug-fixing activities for each quarter.

JUL _SEP: Most of the metrics in Daily Unit are smaller than those for JAN_ MAR
or APR_JUN. However, in the Bug Unit, the # CCs and # people commenting per bug
in JUL_SEP are superior to those JAN_MAR. Therefore, developers likely pay atten-
tion to bugs reported after the main release. Interestingly, we examined the e-mail
addresses of the people commenting, and realized that outside developers (hostnames
without “ibm.com”) commented to the bug reports more frequently in July (immediately
after the release) than in other months (June: 82%, other months: [19%-68%]).

OCT_DEC: Similar to JUL_SEP, most of the metrics in Daily Unit for OCT_DEC in-
volve negative effect-sizes. The characteristic metrics in OCT_DEC, with a positive effect-
size is the “Bayesian_score”. Overall, we can see developers are less active in OCT _DEC.

JAN_MAR: As described earlier, significantly higher numbers of bugs are reported
and fixed in JAN_MAR and APR_JUN. Also, developers often commit to the repository
in JAN_.MAR and APR_JUN. However, only in JAN_MAR, the “# changed files per

)

day”, “# added rows per day,” and “# deleted rows per day” are highest. Therefore,
implementation activities are evidently most common in JAN_MAR.

APR_JUN: During this time, developers fix many bugs similarly to the JAN_MAR
period, but they focus on reporting and fixing high priority and severity bugs. Also,
they frequently change priority and severity. Moreover, similar to the JAN_MAR period,
developers frequently commit, but the “# changed files per day”, “added rows per day,”
and “deleted rows per day” are smaller. Thus, considering the main release, developers

triage bugs and fix high priority or high severity bugs without considerable changes.

RQ1: Developers’ activities vary during the release cycle. Specifically, develop-
ers actively discuss bug fixes in JUL_SEP, dynamically change the source code in
OCT_DEC, and improve the quality for the main release in APR_JUN.
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RQ2: Do cycle-aware models outperform the cycle-unaware models?

Motivation. Based on the results for RQ1, developers’ activities and the character-
istics of data vary during release recycle. This suggests that the model trained with all
available data during the release cycle might miss subtle differences.

Moreover, the number of bug reporting in the most frequent period is approximately
twice as many as those in the least frequent period. Using data derived from the entire re-
lease cycle might introduce a bias to the most frequent period. For this research question,
we compare the performance of cycle-aware models (CYC), exploiting the differences of
activities with the opaque model (OPA) utilizing the maximum available data.

Approach. For this research question, we evaluate if the priority prediction improves
by considering the release cycle. The CYCs are built with quarterly split data, starting
from July, based on the bug-reporting date. The data set length of three months (quarter)
is commonly used in companies, and in Eclipse, each period involves either main release,
service release, or December break. Note that, for RQ3, we make each CYC (monthly
level) more fine-grained and discuss the extent of splitting the data. The data for ev-
ery three months starts from July; like in RQ1, these are named JUL_SEP, OCT_DEC,
JAN_MAR, and APR_JUN Then, we compare the CYCs with the OPA built with the
combined training data from all CYCs. We also apply the Wilcoxon signed-rank test with
continuity correction and a Bonferroni correction to confirm the statistically significant
difference for each test data.

The values of some metrics are undetermined or cannot be measured at that time the
bug is reported. For example, prediction models cannot use the final value of “severity’
because “severity” (i.e., at that time the bug is fixed) often differs from that at the time
the bug is reported. Thus, in the prediction models, we input the value of “severity’
measured at the time that each bug is reported (i.e., we use the information as far as
possible when the bug is reported). Likewise, metrics such as “fizing-time” and “# of
comments per bug’, cannot be measured when the bugs are reported. As described in
section 4.3.4, the metrics are inferred from similar bugs by using the LDA models and

Impute models.
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Table 4.7: Performance of the cycle-aware models and the opaque model.

The bold

scores represent the highest score among the three models with statistical significance.

The scores underlined indicate the highest score among the three models but without

statistical significance.

Quarter Model recall G-mean precision AUC
OPA 0.38 0.58 0.21 0.70
JULSEP | P-CYC 0.36 0.55 0.16 0.68
H-CYC 0.48 0.62 0.17 0.71
OPA 0.35 0.55 0.17 0.69
OCT.DEC | P-CYC 0.35 0.53 0.12 0.65
H-CYC 0.43 0.59 0.14 0.67
OPA 0.40 0.57 0.19 0.70
JAN MAR | P-CYC 0.40 0.58 0.16 0.67
H-CYC 0.43 0.61 0.18 0.70
OPA 0.35 0.55 0.17 0.67
APR_JUN | P-CYC 0.39 0.55 0.14 0.64
H-CYC 0.43 0.57 0.16 0.68
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Finding 2-1. Pure cycle-aware models do not outperform the opaque model

The performance of the predictions by the P-CYC, H-CYC, and OPA (as a reference,
precision is also shown in the Table) are displayed in Table 4.7. The bold scores repre-
sent the highest scores among the three models with statistical significance. The scores
underlined indicate the highest score among the three models but without statistical sig-
nificance.

The P-CYCs exhibit similar recall scores to the OPA in JUL_SEP, OCT_DEC, JAN_M
AR but a slightly higher score in APR_JUN. The differences are —0.02 (-7.0%), 0.00
(0.0%), 0.00 (0.0%), and +0.04 (+10.3%) for JUL_SEP, OCT_DEC, JAN_MAR, and
APR_JUN | respectively. A statistically significant difference emerges only for APR_JUN.
For the g-mean, the P-CYCs do not outperform the OPA for all quarters. The differences
are 0.03 (-5.1%), -0.02 (-2.4%), 0.01 (+0.1%), and 0.00 (0.0%). The AUC of the P-CYC
is consistently lower than that of the OPA, with statistically significant differences for
all quarters. The differences are —0.02 (-2.9%), —0.04 (-6.2%), —0.03 (-4.5%), and —0.03
(—4.7%).

Finding 2-2. Hybrid cycle-aware models outperform the opaque model in
terms of recall and g-mean

The recall predicted by the H-CYC is consistently higher that by the OPA. The dif-
ferences are 4+0.10 (4+20.8%), +0.08 (18.6%), +0.03 (7.0%), and +0.08 (+18.6%) for
JUL_SEP, OCT_DEC, JAN_MAR, and APR_JUN, respectively, characterized by statis-
tically significant difference for all quarters. For the g-mean, similar to the recall, the
H-CYC outperforms the OPA, with statistically significant differences for all quarters.
The differences are +0.04 (+6.5%), +0.04 (+6.8%), +0.04 (+6.6%), and +0.02 (+3.5%).
The AUC of the H-CYC almost equals that of the OPA and the differences are +0.01
(+1.4%), —0.02 (-3.0%), 0.00 (0.0%), and +0.01 (4+1.5%). No statistically significant

difference exist for all quarters.

RQ2: The performance of the hybrid cycle-aware model is better than that of the

opaque model for the recall and g-mean.
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Figure 4.12: An evaluation method for the 1/4/12-splitted models. The monthly models
are trained with monthly training datasets, and predict priorities for testing datasets
of the same month. The quarterly models and the opaque model are trained with the

training datasets of every three months and all months.

RQ3: What is the right granularity for cycle-aware models?

Motivation. By calculating Bayesian score with as much data as possible and using
the split data to build the prediction models, the H-CYC models outperform the OPA
model. This suggests that the performance of the H-CYC models might be improved
through finer-grained data. However, we remain unsure of the fine-grained data extend
needed for the H-CYC models.

Approach. We build 12-splitted models (named Monthly models), 4-splitted models
(Quarter models), and 1-splitted models (Opaque model). Before comparing the hybrid
models, to confirm the validity of the hybrid models for Monthly models, we first compare
pure monthly models (P-MoCYC), with Bayesian score calculated using data for each
month with the hybrid monthly models (H-MoCYC). We then compare the H-MoCYC
with the OPA and hybrid quarter models (H-QuCYC).

Figure 4.12 illustrates the evaluation method for RQ3. To build the models, the OPA
is created by combining all training data of the 12-splitted models and H-QuCYC are
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made by combining the training data of each quarter for the 12-splitted models. All
models predict the priorities of the monthly test data.

Finding 3-1. Hybrid monthly models outperform Pure Monthly models in
most of the months

Figure 4.13 shows the performance of the P-MoCYC, H-MoCYC, and OPA. For the
recall, although the H-MoCYC exhibits the same score as the P-MoCYC in July, the
H-MoCYC frequently outperforms the P-MoCYC from August. The maximum difference
is 0.23 in November, with evident statistical significance in the monthly data except for
July. The g-mean and AUC of the H-MoCYC are higher than that of the P-MoCYC for
all months. For the g-mean, statistically significant data are present monthly, except for
July and May. For the AUC, statistical significance appears in the data monthly, except
for July and March. Similar to the Quarter models, calculation of the Bayesian score

requires more data.
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Figure 4.13: Prediction performance of the Pure and Hybrid monthly models highlighting

consistent superiority of the hybrid over the pure models.
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Finding 3-2. More fine-grained models tend to outperform less fine-grained
models

Figure 4.14 shows the median of the predicted performance for 100 iterations each by
OPA, H-QuCYC, and H-MoCYC. The average scores from these three methods contact
each other in some months for all the performance measures. We plotted the distributions
of the scores from these 100 iterations with boxplot and confirmed that the distributions
are different. The recall of H-MoCYC is higher than that of OPA in most months, except
for Jul and Apr, and it shows statistically significant differences except for Sep and Apr.
H-MoCYC outperforms H-QuCYC in the second three months (Oct, Nov, and Dec),
Feb, Mar, and May and there are statistically significant differences in Nov, Dec, Feb,
Mar, and Jun. The only month in which H-QuCYC outperforms statistically significantly
H-MoCYC is Jul.

In terms of the g-mean, the score of H-MoCYC is higher than the score of OPA in
Aug, Oct, Nov, Dec, Jan, Feb, Mar, May, and Jun, and statistically significant differences
occur in Aug, Oct, Nov, Dec, May, and Jun. Compared with H-QuCYC, the scores of
H-MoCYC are lower in the first three months (Jul, Aug, and Sep), and a statistically
significant difference occurs only in Jul. In the second three months (Oct, Nov, and Dec),
the scores of H-MoCYC are higher, but there are no statistically significant differences.
From Jan to Jun, the two models show similar scores with no statistically significant
differences.

As measured with AUC, OPA slightly outperforms H-MoCYC in most months, but
with statistically significant differences only in July and Sep. In Aug, Nov, and May,
H-MoCYC outperforms OPA, but with no statistically significant differences. H-MoCYC
outperforms H-QuCYC in Nov, Dec, and May. However, in other months, H-QuCYC
outperforms H-MoCYC, and statistically significant differences occur in Jul, Sep, Jan,

and Jun.

Overall, H-MoCYC is a better model throughout the year. In particular, for the first
three months (from July to September), H-QuCYC is the best model, and for the second
three months (from October to December), H-MoCYC is the best model. Note that OPA
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did not fit the first half of the year, so it is biased to the second half of the year. This
demonstrates that the developers’ activities are not uniform throughout the
year.

In contrast, from Jul to Sep, H-QuCYC provides a good compromise. This is because
H-MoCYC may not be trained adequately, due to the smaller number of data points used,
resulting in less good performance than for H-QuCYC. Thus, dividing a dataset into a

more fine-grained form does not always improve the performance.

RQ3: Hybrid monthly models have better performance than the others over the year.
In particular, for the first three months (from Jul to Sep), the hybrid quarterly model
is the best.
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Figure 4.14: The prediction performance of the opaque models, Hybrid quarter models
and Hybrid monthly models
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4.5 Discussion

4.5.1 Interpretation of Results

In this chapter, we found that each period has different characteristics and that this
affects the priority prediction models. However, it is unclear to what extent the difference
in the strengths of the CYC and Opaque models depend upon each metric, and how
these strength differences affect the performance differences. In this section, we consider
the importance of the variables in these prediction models and discuss how splitting the
data affects them. The importance of the variables in OPA and H-QuCYC are shown in
Table 4.8. Because there are so many variables, we have filtered out the variables with
importance less than 0.05 in all models. We determined the threshold 0.05 so that each

7

model accounts for at least 75% of the total importance. Note that, “—” indicates that
the metrics have been removed by VIF removal processing or by feature selection. The
names of the metrics written in boldface indicate that the size of the effect is larger in
RQ1 than in the other quarters (“+” in Table 4.6).

The Magnitude of importance: Bayesian scores are commonly utilized by all
models in making predictions, but the magnitudes differ in each model. Interestingly, the
OCT_DEC model relies on the Bayesian score the most heavily, which corresponds to
the findings in RQ1 (“The characteristic metrics in OCT_DEC, where the effect size is
positive, is only the Bayesian_score”). This suggests that the CYC (OCT-DEC) provides
greater accuracy than OPA by grasping the characteristics in the period. Similarly, #
High priority reports is one of the important metrics in JAN_MAR and APR_JUN. How-
ever, RQ1 shows that # priority changes to High is one of the characteristic metrics in
APR_JUN, but this metric is smaller than those in other periods. This might be because
# priority changes to High is relatively less important in APR_JUN for predicting pri-
ority. This suggests that even though the metric is characteristic of the specific period,
the release cycle affects the variables less when the metric is less important among all the

variables used in the prediction.
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Table 4.8: The importance of variables in cycle-aware models and the opaque model
(Importance >= 0.05). The bolded name of the metric indicates that the effect size is
larger in RQ1 than in the other quarters.

Metrics OPA JUL_SEP | OCT DEC | JAN.MAR | APR_JUN
bayesian score 0.31 0.30 0.42 0.31 0.43
# status changes 0.14 0.15 0.12 0.18 0.15
# comments per day 0.07 0.09 0.08 0.07 0.08
# High priority reports 0.07 — — 0.07 0.03
severity 0.06 0.04 0.04 0.04 0.05
# priority changes to High 0.05 0.04 0.03 0.03 0.02
# comments per bug 0.04 0.05 — 0.02 —
fixing time 0.02 0.05 0.02 0.03 0.02
# description words 0.01 0.04 0.05 0.04 —

The similarity of importance in each model: Figure 4.15 shows the similarity
in the variables’ importance in the Quarterly models by hierarchical clustering [97]. In
Figure 4.15, the most similar models are OPA and JAN_MAR, which might have resulted
in that their recalls in RQ2 are also nearly. Also, this shows that OPA is specialized to
JAN_MAR, suggesting that it is not always robust for all periods when building prediction
models with as much data as possible. One of the reasons why OPA is a similar model to
JAN_MAR is that the amount of the data in JAN_MAR accounts for about 33% of the
all data which is the largest percentage. For CYC, the most similar pairs are OCT_DEC
and APR_JUN, as compared to JUL.SEP and JAN_MAR. Surprisingly, these are not
continuous periods, suggesting that consideration of concept drift over time [77] is always
effective in the prediction models. One reason why these are not continuous periods is
that it might be involved by the stabilization indicated in RQ1. In JAN_MAR, developers
focus on fixing bugs to stabilize the quality of the product. Similarly, in JUL_SEP, they
may concentrate on fixing bugs found immediately after the main release. Also, both
OCT_DEC and APR_JUN are periods when developers tend to be less active. OCT_DEC
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is the period after the 1st service release and APR_JUN is the period after the stabilization.

We show the similarity of the variables” importance for the Monthly models in Figure
4.16. The clusters are roughly classified into four groups, with the months in each group
being close to each other. By exploiting these trends, developers might be able to build

prediction models to predict priorities even if the projects do not have sufficient data.
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4.5.2 Threats to Validity

Internal validity: One concern is that volunteers (especially one-time contributors [98])
may not care about the software release cycle in developing a product. Many volunteer
software developers contribute to Open Source Software projects. If a project is supported
by one-time contributors for the most part of the development, our findings may not be
valid, because such developers may not care about the release cycle in submitting a patch.
Thus, the datasets for cycle-aware models should be examined to determine whether each
bug is fixed by volunteer developers or by employed developers. Fortunately, in our
datasets, one-time contributors account for 0.4% of the work, while 82% of the fixes are
provided by developers who have contributed more than 100 times, which does not affect
our results much.

The second concern has to do with the division of a dataset into multiple (4/12)
datasets. Eclipse has three releases, which occur at the end of June, September, and
February, although strictly speaking, the release date is not necessarily the last day of the
month. In this study, although we divided the whole dataset into units that extend from
the beginning of the month or the quarter to the end of the month or quarter, pre-release
bugs and post-release bugs are included. That might affect our results, for example in
RQ1, because the fixing time in June are longer than in the other months and because
post-release bugs are left until the next release. We can measure this effect precisely by
including the post-release bugs into the following month or by making weekly datasets.

The third concern is that we did not take consideration of seasonal variation even
though we use time-series data. While seasonality is usually removed in other research
areas (e.g., economics), our study has not removed. For example, in December, many
developers would take day-off for Christmas and the number of fixes will be dropped at
the days. Such temporary drops would not be shown frequently in the year. Thus, we
believe that seasonality does not affect tremendously but still, the effect is unsure and
then we plan to investigate the seasonality of bug-fixing activity for future work.
External validity: Still another concern is with lack of the generality of our results.
Although we studied only the Eclipse Platform project, which employs a periodic and

simple release cycle, other projects each have their own release cycles, which are sometimes
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complicated. Therefore, the positive effects on the accuracy of the priority classification
by cycle-aware models cannot always be provided as promised, and it remains unclear to
what extent our results can be extended to other projects. On the other hand, we could
first check how many months the period of the test dataset is far from the next release
date, and gather data of the period according to the months, (i.g., a month before/after
the release). In the future, we plan to evaluate release-cycle-aware models for projects
with more complicated release cycles.

A further concern is with the negative effects on the results due to inappropriate man-
aging priority. Saha et al. warned that researchers should pay attention to mislabeling,
because most reports concern default severity, and in 65% of those reports the default val-
ues are mislabeled [26]. This finding should also apply to priority. Since the bug reports
in our dataset also have default priorities, and since they account for 80% of the reports,
most bug reports may be labeled with the default value unless labeling is assigned a high
priority. If this is correct, a true negative may become a false positive, and a false negative
may become a true positive. In that case, however, cycle-aware models are less negatively
affected than opaque models, because cycle-aware models make more high-priority recom-
mendations (in other words, more false positives and false negatives) than opaque models.
Therefore, we anticipate that cycle-aware models have the possibility of being improved,
but opaque models do not.

Construct validity: Finally, we are concerned that we may not have correctly reflected
the effects of the release cycle on our results. Bugs fixed before an immediate release are
not always included in the release. For example, bug fixes for a maintenance version or
for a future major release (e.g., for Eclipse 4.x) might be mixed in our dataset. Since bug
reports have a version information tag, if we can utilize them, the effects of the release

cycle might be shown more clearly in our results.
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4.6 Chapter Summary

Many studies demonstrate unawareness of the existence of releases, alternatively, these
inadvertently assume uniform activities within iterations (performing the same task every
day) and across iterations (performing the same task in each iteration), which is commonly
incorrect. For example, modern software development projects (e.g., agile software devel-
opment) add new features into products for short periods. Even if in this short period,
projects follow the software development process (planning, designing, implementing, and
testing). Therefore, the activities at any time during this period varies.

Recently, shortening of the release cycle is common, causing developers to switch
development phases to shorter than usual periods. This creates datasets including multiple
iterations of the planning, designing, implementing, and testing phases. Prediction models
built with such datasets are opaque because these are not aligned with the sequence of
events, thereby lowering performances.

We studied the impact of the release cycle alignment on defect management prediction,
in particular, bug priority prediction. In this chapter, we proposed release cycle-aware
models trained on data within a defined period, considering non-uniform activities within
the release cycle. Although the original dataset contained multiple releases, we split
the original dataset into several subsets by aligning with major releases and measured
the impact of the alignment. Moreover, we compared the prediction performance while
changing the datasets granularity to obtain finer-grained analysis/models.

We conducted a case study and showed that developers’ activities varies during the
release cycle. Based on these findings, we built cycle-aware models for priority prediction.
We found that hybrid cycle-aware models outperform the opaque models using full data.

Finally, we demonstrated that finer-grained models exhibit higher accuracies.
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Chapter 5

Release-Aware and Prioritized

Bug-fixing Task Assignments

5.1 Introduction

Most of the proposed task assignment methods have aimed to reduce reassignments by
recommending developers who can reliably and quickly fix individual newly-reported bugs,
based on previously-reported bugs and their bug-fixing history. However, they possibly
concentrate their assignments on a small number of particular developers because the
number of past bug fixes differs depending on the developer which makes the training
data for each developer imbalanced. Since software development is generally tied to
release dates, the number of bugs that can be fixed by even experienced developers before
each release is limited. Therefore, the concentration on the specific developers may reduce
the number of bugs that the developers can fix by the next release date.

In this research, we propose the Release-Aware and Prioritized Task-assignment Opti-
mization fRamework (RAPTOR) for the test phase, which considers the bug-fixing loads
placed on developers, to increase the number of bug-fixes by the next release date. We
regard the bug assignment problem as a combination problem between bugs and devel-
opers and we formulate it as a multiple knapsack problem to find the optimal combi-

nations. We optimize the assignment process by finding bug assignments that satisfy
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certain constraints, aiming to (1) mitigate the task concentration problem caused by ex-
isting methods, (2) assign the appropriate amount of bugs to fix more bugs by the next

release date.

Chapter Organization: The rest of this chapter is organized as follows. Section
2 describes problems with existing bug triage methods and our key idea for addressing
them. Our method is introduced in Section 3, and its implementation is described in
Section 4. Section 5 and 6 present our experiments and results, respectively. We discuss

the results in Section 7. Finally, Section 8 concludes this chapter.

83



5.2. MULTIPLE KNAPSACK PROBLEM

5.2 Multiple Knapsack Problem

The multiple knapsack problem [99, 100] is an optimization problem that involves
finding the best combinations of items (with certain weights and values) to put in a series
of knapsacks. Here, each knapsack has a maximum weight that it can carry. Fig. 5.1 gives
an overview of the multiple knapsack problem, which extends the well-known knapsack
problem to multiple knapsacks. In addition to deciding whether or not to put an item in
the knapsack, it requires us to decide what items to put into each knapsack, significantly
increasing the computation required. The multiple knapsack problem can be formulated

as follows.

Maximize : 27”: z”: VT4 (5.1)

i=1 j=1
Subject to : ijxij <¢ (1=1,2,....,m) (5.2)
j=1
D ay <1 (j=1,2,..,n) (5.3)
i=1
Tij € {0, 1} (j =1,2, ,n) (54)

Here, v; and w; represent the value and weight of the j-th item, respectively, whereas z;;
is the objective variable, representing whether (1) or not (0) to put the j-th item into
the i-th knapsack. Expression (5.1) is the objective function and is used to determine
whether one combination of objective variable values is better than the other and in this
case aims to maximize the total value of the selected items. In contrast, Expression (5.2)
is a constraint that denotes that the total weight placed in the i-th knapsack must be less
than the maximum weight it can carry(c;), and Expression (5.3) prevents any item being
placed in more than one knapsack. Expression (5.4) denotes the constraint that the z;;
should only take values of 0 (not selected) or 1 (selected), i.e., should represent whether

the i-th knapsack contains item j.
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Figure 5.1: Overview of the multiple knapsack problem. The best combination, where the
total value of items included in all the knapsacks is the largest, should be determined while

the total weight of each knapsack is less than or equal to the capacities in all knapsacks.

The purpose of the multiple knapsack problem is to find combinations of z;; values
that maximize the value of Expression (5.1) under the constraints Expressions (5.2), (5.3),

and (5.4), which can be reduced easily with a solver such as Ip_solve !.

!Lpsolve: http://Ipsolve.sourceforge.net/5.5/, Last Accessed: January 2020
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5.3. APPLICATION OF THE MULTIPLE KNAPSACK PROBLEM TO BUG
TRIAGE

5.3 Application of the Multiple Knapsack Problem

to Bug Triage

In this chapter, we formulate bug triage as a multiple knapsack problem and use
its solution to optimize task assignments. We obtain a combination of items (bugs)
and knapsacks (developers) that maximizes the objective (bug-fixing efficiency for the
whole project) under each knapsack’s weight constraint (maximum time available to each
developer or limit). The weights are the costs of fixing the bugs (cost), and the values are
the developers’ suitabilities for each bug (preference). The terms used in this chapter
are summarized in Table 5.1.

Notably, the developers’ suitability (preferences) and costs will differ depending on
which developers are assigned to which bugs. As a result, the variables in this problem
are different from those in the general multiple knapsack problem (we have switched from

vj to P;; and from w; to Cj;).

Preferences (developer suitabilities)

Here, the coefficients for the objective variables in the multiple knapsack problem’s
objective function are the preference P, indicating which developers should be preferred
for and can fix particular bug-fixing tasks. The preference of developer D; for fixing bug
Bj is defined as the probability F;; that developer D; is the most appropriate for the
task among all developers (i.e., the total of probability for each developer will be 1). The
reasons we adopt the probabilities are that, the ones are commonly used in bug assigning
methods [35, 2, 18, 21|, they can take into account the contents in the descriptions of bug
reports, and statistically measure the appropriateness of the task for developers.

To calculate the probabilities, we use a Support Vector Machine (SVM) [46] while there
are numerous machine learning algorithms such as Naive Bayes [45], C4.5 [101] and so
forth. SVM offers strong performance on unknown patterns (high generalization ability)
[46] and it would help RAPTOR assign bug reports including a wide variety of words. A
prior study [2] has indicated that SVMs are the most accurate for bug assignments.

SVM searches for a separating hyperplane that separates the positive and negative
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examples with the largest margin. The equation of the hyperplane is defined as w - x + b.
The margin is the shortest distance between the positive and negative examples that
are the closest to the hyperplane. Searching for the maximum margin is equivalent to
finding the minimum norm of w. The SVM training can be formulated as the following

optimization problem

1
min §|le|27 (5.5)

st yi(x,-w+b)—12>0, 1=1,2,...,n. (5.6)

This problem can be replaced by a dual problem when Lagrangian multipliers are used. By

solving the dual problem, we obtain the sets of a; that minimize the following formulation

max —% Z Z QO YY) - T+ Z o, (5.7)
i—1

i=1 j=1

s.t. Zaiyi =0, (5.8)
i=1

0<ai, i=12..n. (5.9)

Moreover, the inner product x; and x; in the above equation can be substituted by kernel

functions. In this study, we adopt a polynomial kernel in the following manner.
K(z;, ;) = (x; - iﬂj)d (5.10)

To obtain the output (the probability of appropriate developers), inputs are provided to
the SVM in the form of descriptions in the bug reports. The descriptions are preprocessed
via tokenization, lemmatization, and stopword removal. Finally, the texts are vectorized
by bag-of-words and weighted with TF-IDF. However, SVM training constructs a bi-
nary classifier. To decide who should be assigned, we require multi-class classification.
Therefore, we conduct pair-wise classification and subsequently calculate the probability
of each class (developer) with the pairwise coupling proposed by Hastie and Tibshirani
[102]. During the training phase, we employ sequential minimal optimization [103].

Fig. 5.2 shows the preference calculation procedure, and the steps are as follows.
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Figure 5.2: The calculation procedure for preference. Preference is calculated by a Support

Vector Machine trained with text data and the name of the fixer as a label.

Preparation phase
1. Collect data on fixed bugs from the BTS.
2. Retrieve the fixer and bug description (title and overview) from the data.
3. Train the SVM using fixer/description pairs.

Assignment phase

1. When a new bug B; is reported, input its description to the previously-generated
SVM to obtain the probability (preference P,;) that each developer D; suitable for
fixing it.
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Figure 5.3: The calculation procedure for the bug-fixing costs. The bugs are classified
into categories, which indicates the median amount of bug-fixing days and thus the cost

of fixing.

Bug-fixing cost

The time required to fix bugs depends on which developers are assigned to fix them.
Here, the time required for the developer D; to fix the bug-fixing task B; is defined as
the bug-fixing cost C;;. We use historical data to calculate how long it took for devel-
oper D; to fix similar bugs B; and use this as the cost Cj;. In our previous work [104],
in order to calculate the approximate bug fixing-time for the costs, we used priority and
component tags. Both tags are located in bug tracking systems, the priority tags show the
importance of the bug-fixing and component tags indicate which software parts including
the bug. We calculated the median time of bug-fixing as costs by the levels of priority in
each component. However, in addition to the calculation of the preference, the calculation
of the costs do not use the contents of the bugs, in other words, it ignores what bug it
is. Depended on the contents, the bug-fixing time will vary. For example, bugs related to

security are fixed faster than bugs about performance [65]. However, component tags do
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not include such information and only the description contains the information. Utilizing
the descriptions, we use latent Dirichlet allocation (LDA) [105], which is used in [18], to
assess whether a previous bug is of a type similar to the current bug B;. Since LDA is
useful for finding similar documents, it is widely used in the mining software repositories
field [106]. The latent semantic indexing (LSI) [107] and pLSI [108] methods are similar to
LDA, but LDA is different in that the words and topics are assumed to follow a Dirichlet
distribution. The fact that it can handle words that were not in the training set is also
very useful, and we chose it due to the high probability of new words appearing in the free
description part of the input defect forms. Fig. 5.3 shows the bug-fixing cost calculation

procedure, and the steps are as follows.

Preparation phase
1. Collect the bug-fixing data from the BTS.
2. Retrieve the fixer and bug description (title and overview) from the data.

3. Input the free description part of the extracted data to the LDA and categorize the
bug (as category k).

4. Calculate the average time taken for each developer to fix bugs in each category
(called the cost list).

Assignment phase

1. When a new bug B, is reported, input its description to the previously-generated

LDA and infer the bug’s category.

2. Find the average time taken by developer D; to fix bugs in category k from the cost
list and use that as the bug-fixing cost Cj;
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Figure 5.4: Calculation of available time slot. The available time slot 7; is calculated by

subtracting the total cost assigned to D; from the upper limit L (day)

Upper limit

Naturally, the number of tasks developers can address in any given period of time
is limited. Thus, when assigning bug-fixing tasks we consider the amount of time that
developer D; has available, i.e., the number of bugs they can fix. Fig. 5.4 shows how
the tasks are assigned. The number of tasks that can be assigned is obtained from the
available time slot 7}, which is calculated from an upper limit L (per day) set in
advance and the total cost Cj; already assigned to developer D;.

Ensuring that the total cost of the newly-assigned bug-fixing tasks does not exceed T;
should have the effect of preventing these tasks from concentrating on specific developers.
The upper limit L can be changed in size depending on the project. We set the same
upper limit for all developers in our experiments, but in practice, this upper limit is likely

to be different for each developer, in which case it can be set as L; for developer D;.
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5.3.1 Formulation

Here, we define the objective variables, objective function, and constraints.

Objective variable

The objective variables z;; represent whether our method has assigned bug B; to de-
veloper D;: if 2;; = 1, then bug B; has been assigned to developer D;, and if z;; = 0,
then it has not.

Objective function

The objective is to maximize the total sum of the product of 10 raised to the power
of the level of priority 2, the preferences, and objective variables for each bug and each
developer. This objective function is designed to find the best combination of tasks and
developers for the project as a whole and not for individual developers, and furthermore,

bugs with higher priority are prioritized to be assigned.

Mazimize : Y Y 10 P/ Py, (5.12)

i=1 j=1

2The highest priority should be assigned the largest value (e.g., P1 (the highest): 5, P5 (the lowest):1)
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Constraints

Our method imposes two constraints: one is to prevent tasks from concentrating on a
small number of experienced developers (Constraint 1), and the other is to avoid assigning

a bug to multiple developers (Constraint 2).

Constraint 1: The total cost of the tasks assigned to each developer must not exceed

their available time slots.

S Cuey <T (i=1,2,..m) (5.13)

j=1
Constraint 2: At most, one developer can be assigned to each bug.

» ay <l (j=1,2,..,n) (5.14)
=1
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Figure 5.5: Overview of the Release-Aware and Prioritized Task-assignment Optimiza-
tion fRamework (RAPTOR). RAPTOR formulates task-assignment problems with the

calculated preference, costs, and available time slots.

5.4 Implementation

5.4.1 Overview of the Proposed Implementation

In this section, we give an overview of the proposed implementation, as shown in Fig.

5.5. First, we extract data about fixed bugs from the repository and use them to train

an SVM and an LDA. Next, we obtain the cost list (the average time each developer has

taken to fix each category of bugs) using the LDA.

When a new bug B, is reported, we input its description to the SVM and LDA to

obtain the preferences P, for all developers and its category k. Then, we find the costs

Cin for all developers from the cost list using the category k. Finally, we obtain each
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developer’s available time slot 7; based on the (pre-determined) upper limit L and the
total cost of the bugs already assigned to them. We can then determine the developer to

be assigned based on the preferences P;;, the costs C;; and the available time slots 7T;.

5.4.2 Procedure for the Release-aware Bug Triaging Method
(RAPTOR)

We describe the procedure how to use our method for daily bug assignment as follows.

Step 1: Set the parameters

Set the upper limit L in advance and initialize the available time slots T; for each devel-
oper to L.

Step 2: Construct the SVM and LDA

Construct the SVM and LDA to compute the preferences P;; and costs C;; for each bug
Bj and developer D;.

Step 3: Compute the preferences and costs

Calculate the preferences and costs for each newly reported or unassigned bug.

Step 4: Increment 7; by n (days)

Add n (number of days from the last assignment date to this assignment date) to each
developer’s T; (up to a maximum of L). If it is the first assignment, this step will be
skipped.

Step 5: Apply 0-1 application of integer programming

Assign these bugs to developers using the method described in the previous section.
Step 6: Update T;

Reduce the number of available time slots 7; for each developer by the cost of the bugs
assigned in Step 4.

Step 7: Go to the next assignment day (to Step 2)

Once the next assignment day comes, proceed to Step 2.

Here, the value of n (> 0) depends on the task assignment process and needs of each
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project and is difficult to uniquely determine. In this chapter, we assume that n is a

natural number, arbitrarily decided by the method’s users, to keep the discussion general.

5.5 Experimental Design

5.5.1 Overview and Aims

We prepare four evaluations to investigate whether RAPTOR could improve bug-fixing
efficiency by assigning tasks to appropriate developers and considering the time they had
available for bug-fixing. In Evaluation I, we make sure whether RAPTOR can prevent
tasks being concentrated on certain developers, with comparing the existing methods. In
Evaluation II, comparing the existing methods, we confirm that RAPTOR can reduce the
numbers of overdue bugs (which are assigned but fixed after the release). In Evaluation
III, we compare manual assignment (actual bug-fixing time) with the existing methods
and RAPTOR to see whether they could reduce bug-fixing delays. In Evaluation IV, we
check whether the existing methods or RAPTOR can assign bugs to suitable developers
and prevent reassignment, which is the most significant cause of bug-fixing delays. Note
that we do not compare our previous work [104] with the proposed work in this study
and other existing works although this evaluation might show the difference between our
current work and our previous work. This is because our previous method use components
tag in the bug reports to assign bugs, which is far from typical bug-triage methods. Most
of the bug-triaging studies use the description of the bugs to assign bugs and use the
components to measure whether the assignment is appropriate. Basically, developers
assign the bugs after reading the description of bug reports rather than component tags,

therefore, using the description would be more realistic.
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Table 5.4: Statistics of fixing-time for each dataset

Project | Firefox | Platform | Gce
# of bugs 1,185 951 | 1,190
Percentage of bugs in which
19.2 49.2 | 51.2
the bug-fixing time is less than 2 days
average days to fix 12.5 6 4.4
median days to fix 7 2 1.9
minimum days to fix 1 1 1
maximal days to fix 59.9 385 | 27.5

5.5.2 Datasets

We conducted a case study on three large OSS projects (Mozilla Firefox ? | the Eclipse
Platform® , and GNU compiler collection (GCC) ®). Each of these is a long-established
project, allowing us to acquire sufficient data for the experiment. In addition, many
previous studies [2, 11, 13, 18, 21, 35, 37, 109, 110, 111] have analyzed data from these
projects, enabling us to validate the results obtained in this case study.

Table 5.2 outlines the datasets used, whereas Table 5.3 lists the filtering performed
to create them and the number of bugs in each. Table 5.4 shows their statistics of bug-
fixing days. Of all the bugs collected from each project (Filter A in Table 5.3), we only
considered fixed bugs (i.e., bugs whose status was FIXED) where the fixer and fixing time
could be identified (Filter B). Some of the bugs were only fixed after several years, so we
removed these outliers by confirming the fixing time distributions using boxplots (Filter
C).

In this study, we assigned bug-fixing tasks to developers using existing methods and
RAPTOR. However, assigning tasks to all of a project’s developers is not realistic because

OSS projects developers are often known to leave projects in a relatively short period

3Mozilla Firefox: https://www.mozilla.org/en-US /firefox/new/, Last Accessed: January 2020

4Eclipse Platform: https://projects.eclipse.org/projects/eclipse.platform, Last Accessed: January
2020

SGNU Gee: https://gee.gnu.org/, Last Accessed: January 2020

99



5.5. EXPERIMENTAL DESIGN

of time [112]. Moreover, since not all developers actively fix bugs [109], tasks should
necessarily only be assigned to developers who are likely to be in charge of bug-fixing
tasks. Hence, we only assigned defined tasks to developers who had fixed six or more
bugs within six months of their first assignment (i.e., fixed at least one bug per month),
thus considering these developers to be “active” (Table 5.5). To guarantee the accuracy of
the task assignment, all bug reports fixed by non-target developers were excluded (Filter
D).

In this study, we prepared both learning and evaluation datasets, using one year of
data (from the first assignment day) as training data for all projects, and 12 weeks of
data (Firefox) and three months of data (Eclipse and GCC) before release as evaluation
data. Only 12 weeks of Firefox evaluation data was used because the Firefox project has
adopted a rapid release method [113] with a test period of 12 weeks for each release. In
contrast, three months of evaluation data of Eclipse and GCC was used due to a large

number of bug reports filed in the three months before release.

5.5.3 Comparison Methods

We compared the bug-fixing time of RAPTOR with that of a manual assignment
method and two existing methods (CBR and CosTriage). Among the machine learning
algorithms used for CBR and CosTriage, we used the SVM-based method [2] that was

found to give the most accurate recommendations.

5.5.4 Evaluations

We evaluate RAPTOR in four different ways as described below.
Evaluation I: Prevention of task concentration
We confirm whether the number of tasks (bug-fixing time) assigned to each developer by
the existing methods and RAPTOR is higher for certain developers. Here, as an evalua-
tion criterion, the bug-fixing time should not exceed the evaluation data period for each

project.

100



5.5. EXPERIMENTAL DESIGN

Table 5.5: Active developers in each dataset

Projects | # of all developers | # of active developers
Firefox 215 19

Platform 61 20
Gece 97 23

Evaluation II: Reducing overdue bugs for the release

We confirm the numbers of bugs that assigned but fixed after the release (“# of over-
due bugs”). Note that “# of overdue bugs” is different from the task concentration in
Evaluation I, which shows the total time that developers devote fixing bugs in the period.
Therefore, even if the task concentration did not happen in Evaluation I, if the bugs were
assigned immediately before the release, “# of overdue bugs” might be more than zero.
Evaluation III: Reduction of overall bug-fixing time for the project

We confirm whether the existing methods or RAPTOR can improve bug-fixing efficiency
by comparing their estimated bug-fixing times with the actual recorded times.
Evaluation TV: Accuracy of assignments

We evaluate to what extent the accuracy of assignments by RAPTOR decreases compared
to CBR. CBR assigns each bug to the most suitable developer (with the largest prefer-
ence), whereas RAPTOR assigns bugs to developers so that the total preferences for the
project are the highest. Hence, we can assume that RAPTOR will lower the accuracy of
the assignment.

The accuracy of assignments measures a rate of the number of appropriate assign-
ments and the number of all assignments. The appropriate assignment is defined as an
assignment to the developer who has experienced fixing bugs with the same component as
the target bug report. The components are software parts constituting the product. The
bug tracking systems in Eclipse, Firefox, and Gee has the tag indicating which component
includes the bug.

Here, several works often evaluate their methods with top-X accuracy which is the

performance measure how many developers are selected when recommending multiple
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developers for a bug. We cannot use this because our bug assignments to developers
are executed at the same time and determined dynamically, that is, each assignment is

dependent on to whom each other’s bug is assigned.

5.5.5 Experimental Procedure

In this experiment, tasks were assigned using both the existing methods and RAPTOR,
and the bug-fixing times were calculated based on the resulting assignments. An overview
of the experiment is shown in Fig. 5.6.

We extracted the bug reports for each date in the evaluation data and used both
RAPTOR and the existing methods to assign the bugs day by day according to their
reported date. Also, the assigned bugs to each developer are considered to be fixed in the
order of the assignments. Once the methods finish assigning bugs each day, developers’
available time slots T; will be incremented by one (T; never surpass upper limit L).

Once assignments had been made for all days, the bug-fixing times were calculated
(Fig. 5.6, right). Since the assignment methods considered here do not always assign the
bugs to the developers who actually fixed them (i.e., the actual bug-fixing time cannot be
calculated), we used the median times taken by the individual developers to fix the bugs
in each category (that is, the costs Cj;) from the training data as the bug-fixing times for

the experiment.

Experimental environment and settings

Experimental environment: The open-source mathematical planning software pack-
age Ip_solve 5.5.2.0 is used to solve the task assignment problem using 0-1 integer pro-
gramming method, operating on a PC with an Intel Xeon 2.20 GHz CPU and 64 GB of
RAM and running CentOS 7.

Parameter settings: RAPTOR requires the upper limit L and the assignment in-
terval (Section 5.4.2, Step 6, n) to be set in advance. Here, the third quartile value of
the times required to fix the bugs in the dataset was calculated and rounded, to obtain
L values of 15 for Firefox, 6 for the Eclipse Platform, and 6 for GCC. In addition, the
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Figure 5.6: Overview of our experiment. The number of fixing days are calculated by

multiplying the cost with the assignment result.

interval n was set to 1 (day). While applying LDA, deciding how many bug categories to
use for classification was important, so we determined the optimal number of categories
for each project using Arun’s method [114]. This yielded 7 for Firefox, 12 for the Eclipse
Platform, and 11 for GCC.

Experimental settings: The procedure of RAPT includes the recalculation process
of preferences and costs (Step2). However, if we use this recalculation in the evaluation,
we cannot compare the three methods under the same condition because the preference
and cost gradually vary as the simulation progresses. In order to prevent from changing
the cost and preference during the experiment, we return to Step 3 rather than Step 2

after Step 6 in this experiment.
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As in a previous study [18], the bug-fixing times for prior bugs were obtained as follows.

fixing time = fix day — assignment day + 1 day (5.15)

*round down to the nearest decimal

The assignment date is the date when the bug was assigned to the developer who fixed it.
In other words, we do not include the time spent by previous developers in attempting to

fix the bug (the reassignment time) here.

5.6 Results

5.6.1 Preliminary Experiment: Evaluation of a Method to Cal-

culate Bug-fixing Time

To the best of our knowledge, no software provides us with a simulation of bug-fixing
activity. In this experiment, we can not time the bug-fixing time if tasks are assigned
to developers other than the developer who actually fixed the bug. This is the reason
why costs are substituted as bug-fixing time in this experiment. To use the cost as the
bug-fixing time, we confirm whether the cost can substitute as the bug-fixing time in a
preliminary experiment.

First, from the bug-fixing history, we prepare two kinds of information (“who fixed
which bugs” and “the fixing time”). Using the former information (who fixed which bugs)
and cost, we calculate the simulation bug-fixing time. Then, we compare the simulation
bug-fixing time and the actual bug-fixing time. As the difference between these two fixing
times is smaller, the calculation of the bug-fixing time in this simulation is reasonable.

The results of the experiment are shown in the Table 5.6. In Firefox 156 days (1.1
days per bug), Platform 44 days (0.2 days), and Gcee 156 days (0.6 days) errors were seen.
The error per bug is about one day in Firefox or is less than one day in Platform and

Gece, and can be said to be acceptable.
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Table 5.6: Evaluation of calculations for bug-fixing time

Actual Simulated

delta | delta per bug
fixing day fixing day

Firefox 1,799 1.643 156 1.1
Platform 822 778 44 0.2
Gee 1,148 992 156 0.6

5.6.2 Evaluation I: Mitigation of Task Concentration

Fig. 5.7 shows the amount of task (the number of days to fix) that each active
developer worked on ®. The number of developers assigned tasks that require more than
the evaluation data period (Firefox: 12 weeks, Platform and Gee: 3 months) by CBR, is
eight developers in Firefox, one developer in Platform, four developers in Gee. We can
see a lot of loads on some developers.

Even when using CosTriage, since the number of developers is seven developers in
Firefox, no developers in Platform, two developers in Gee. It shows Costriage mitigate
the task concentration compared with CBR, however, tasks are still concentrated on a few
developers. In the case of applying RAPTOR, the number of developers is two developers
in Firefox, no developers in Platform and Gcee. For all projects, the number of developers
is reduced compared with existing methods.

As for the bug-fixing times of the developers who concentrated tasks by RAPTOR and
the existing methods, it can be seen that the bug-fixing time of the developer assigned
by RAPTOR is significantly reduced (especially, the fixing-times of developers assigned
a lot of tasks by existing methods are reduced).

Table 5.7 summarizes the statistics of the fixing-time that each developer devotes to
fixing bugs. The variance of the fixing-time assigned by RAPTOR is smaller than the
others in all projects and also entropy is larger, which show RAPTOR can mitigate the

6Note that the numbers on the horizontal axis represent the order when the developer’s task amount
(bug-fixing days) is arranged in descending order for each method, therefore different developers even if

same axis numbers for each method.
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tasks more than the traditional methods do.

The existing methods tend to concentrate the task assignment on some developers.

Compared with the existing methods, RAPTOR can mitigate the task concentration.

5.6.3 Evaluation II: Reducing Overdue Bugs for the Release

Table 5.8 shows the numbers of bugs that assigned but fixed after the release (“# of
overdue bugs”) and the numbers of unfixed bugs by the release which is the sum of “#
of overdue bugs” and “# of un-assigned bugs”.

In Firefox, 9 by the manual assignment method, 77 bugs by CBR, 75 bugs by Cos-
Triage, and 31 bugs by RAPTOR are overdue. Next, in Platform, 5 by the manual as-
signment method, 20 bugs by CBR, 19 bugs by CosTriage, 5 bugs by RAPTOR. Finally,
in Gee, 22 by the manual assignment method, 48 bugs by CBRs, 38 bugs by CosTriages
and 15 bugs by RAPTOR. Overall, RAPTOR can assign a more appropriate amount of
bugs to each developer compared to the existing methods.

We looked into the assigned date of the overdue bugs and found that the overdue bugs
by RAPTOR were reported and assigned just before release. For the existing methods,

in addition to the reason, the task concentration made overdue bugs.

Compared with existing methods, the number of unfixed bugs by RAPTOR is fewer
than CBR and Costriage in Firefox and Gce but is more than CBR and Costriage in
Platform. The number by the manual assignment is the largest in Platform and Gce
while the number is the least in Firefox among the four methods.

Moreover, we show the details of unassigned, overdue, and unfixed bugs by the level
of priority in Table 5.9. Looking at the higher priority (P1 and P2) of unfixed bugs, the
total number by RAPTOR is the smallest in Firefox and Gee while one bug of P2 remains
in Platform only by RAPTOR. We discuss how to handle these unfixed bugs with high

priority in the discussion session.

RAPTOR can assign a more appropriate amount of bugs that each developer can fix

by the immediate release, compared with CBR and CosTriage.
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Figure 5.7: Fixing days by each developer.
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Table 5.7: The statistics of fixing-time assigned by each method

Projects Firefox
Methods CBR  CosTriage RAPTOR
mean 97.0 96.7 52.3
median 63.6 63.6 46.9
max | 407.9 407.9 92.1
min 0.0 0.0 0.0
variance | 9393.3 9117.8 952.1
stdev 96.9 95.5 30.9
entropy 3.6 3.7 4.0
Projects Platform
Methods | CBR  CosTriage RAPTOR
mean 46.8 44.8 26.2
median 48.9 43.3 25.8
max 98.6 87.9 49.1
min 0.0 0.0 0.0
variance | 828.3 716.7 210.6
stdev 28.8 26.8 14.5
entropy 4.0 4.0 4.1
Projects Gece
Methods COBR  CosTriage RAPTOR
mean 45.1 40.4 29.1
median 324 29.1 24.3
max | 136.5 119.6 72.2
min 0.0 0.0 0.0
variance | 1716.4  1167.7 536.4
stdev 414 34.2 23.2
entropy 3.9 4.0 4.0
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5.6.4 Evaluation III: Reduction of Bug-fixing Time

Table 5.8 shows the bug-fixing time of the project when using the manual assignment
method, CBR, CosTriage, and RAPTOR. Fixing-days for projects do not include the time
of un-assigned bugs’, therefore, we calculate the average fixing-days per bug.

In Firefox, the average bug-fixing days per bug is 11.8 days in the manual assignment
method, 13.0 days in CBR, 12.9 days in Costriage, 8.1 days in RAPTOR. CBR increased
about 10% (10% = (13.0 - 11.8) / 11.8) of the days compared with the manual assignment
method, Costriage also raised about 9% (9% = (12.9 - 11.8) / 11.8), RAPTOR could
reduce about 31% (-31% = (8.1 - 11.8) / 11.8) compared to the manual assignment
method. Moreover, RAPTOR could reduce about 38% (-38% = (8.1 - 13.0) / 13.0) of the
days compared to CBR, and about 37% (-37% = (8.1 - 12.9 /12.9) compared to CosTriage.

In Platform, the total number of bug-fixing days for the project is 4.6 days in the
manual assignment method, 4.8 days in CBR, 4.6 days in Costriage, 3.0 days in RAPTOR.
CBR increased about 4% (4% = (4.8 - 4.6) / 4.6) of the days compared with the manual
assignment method, Costriage does not reduce (0% = 4.6 - 4.6) / 4.6), RAPTOR could
reduce the bug-fixing time of about 35% (-35% = 3.0 - 4.6) / 4.6) compared with the
manual assignment method. In addition, RAPTOR could reduce the bug-fixing time of
about 38% (-38% = (3.0 - 4.8) / 4.8) compared to CBR, while RAPTOR increased about
35% (-35% = (3.0 - 4.6) / 4.6) of the days compared to CosTriage.

In Gee, the total number of bug-fixing days for the project is 4.6 days in the manual
assignment method, 4.1 days in CBR, 3.7 days in Costriage, and 2.8 days in RAPTOR.
CBR could reduce about 11% (-11% = (4.1 - 4.6) / 4.6), about 20% (-20% = (3.7 - 4.6)
/ 4.6), RAPTOR can reduce the bug-fixing time of about 39% (-39% = (2.8 - 4.6) /
4.6) compared to the manual assignment method. In addition, RAPTOR could reduce
the bug-fixing time of about 32% (-32% = (2.8 - 4.1) / 4.1) compared with CBR, while
increased about 24% (-24% = (2.8 - 3.7) / 3.7) compared to CosTriage.

Compared to the manual task assignment method, RAPTOR can reduce the bug-
fixing time from 31% to 39%.

"Because of this, the fixing days of the manual method in Table 5.8 is different from that in Table 5.6
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Table 5.8: Comparing the results of each method

Projects Firefox

Methods | Manual CBR  CosTriage RAPTOR

# of assigned bugs 113 142 142 123

# of un-assigned bugs 29 0 0 19

# of assigned developers 15 17 17 18

# of overdue bugs 9 7 75 31

# of un-fixed bugs 38 7 75 50

Fixing-days for project 1,338 1,843 1,838 994

Avg. Fixing-days per bug 11.8  13.0 12.9 8.1

Accuracy of assignments —  81.7 81.0 70.7
Projects Platform

Methods | Manual CBR  CosTriage RAPTOR

# of assigned bugs 146 194 194 177

# of un-assigned bugs 48 0 0 17

# of assigned developers 19 19 19 19

# of overdue bugs 5 20 19 5

# of un-fixed bugs 53 20 19 22

Fixing-days for project 669 936 897 525

Avg. Fixing-days per bug 4.6 4.8 4.6 3.0

Accuracy of assignments —  68.0 68.0 62.7
Projects Gcee

Methods | Manual CBR  CosTriage RAPTOR

# of assigned bugs 206 250 250 243

# of un-assigned bugs 44 0 0 7

# of assigned developers 19 21 20 21
# of overdue bugs 22 48 38 15

# of un-fixed bugs 66 52 40 22
Fixing-days for project 940 1,037 929 670
Avg. Fixing-days per bug 4.6 4.1 3.7 2.8
Accuracy of assignments — 744 71.6 67.9
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Table 5.9: The details of unfixed bugs

Project Firefox
Methods | Manual | CBR | CosTriage | RAPTOR
P1 3 0 0 3
P2 7 0 0 1
# of unassigned bugs P3 19 0 0 15
P4 0 0 0 0
P5 0 0 0 0
P1 2 4 4 1
P2 0 6 6 2
# of overdue bugs P3 7 65 63 17
P4 0 0 0 0
P5 0 0 0 0
P1 5 4 4 4
P2 7 6 6 3
# of unfixed bugs P3 26 65 63 32
P4 0 0 0 0
P5 0 0 0 0

Project Platform
Methods | Manual | CBR | CosTriage | RAPTOR
P1 0 0 0 0
P2 0 0 0 1
# of unassigned bugs P3 48 0 0 16
P4 0 0 0 0
P5 0 0 0 0
P1 0 0 0 0
P2 0 0 0 0
# of overdue bugs P3 5 20 19 5
P4 0 0 0 0
P5 0 0 0 0
P1 0 0 0 0
P2 0 0 0 1
# of unfixed bugs P3 53 20 19 21
P4 0 0 0 0
P5 0 0 0 0

Project Gcece

Methods | Manual | CBR | CosTriage | RAPTOR
P1 0 0 0 1
P2 3 0 0 0
# of unassigned bugs P3 40 0 0 6
P4 1 0 0 0
P5 0 0 0 0
P1 0 0 0 0
P2 4 4 4 1
# of overdue bugs P3 18 41 31 13
P4 0 3 3 1
P5 0 0 0 0
P1 0 0 0 1
P2 7 4 4 1
# of unfixed bugs P3 58 41 31 19
P4 1 3 3 1
P5 0 0 0 0
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5.6.5 Evaluation IV: Accuracy of Assignments

Table 5.8 also shows the accuracy of assignments by CBR, CosTriage and RAPTOR,
respectively. In Firefox, the accuracy of assignments was 81.7% by CBR, 81.0% by Cos-
Triage, 70.7% by RAPTOR. Next, in Platform, CBR was 68.0%, CosTriage was 68.0%,
and RAPTOR was 62.7%. Finally, in Gee, CBR was 74.4%, CosTriage was 71.6%, and
RAPTOR was 67.9%. Taking the average accuracy for each of the three methods, CBR
is 74.7%, the CosTriage is 73.5%, RAPTOR is 67.1%.In addition, the accuracy of Cos-
Triage was 2% lower than that of CBR, and the accuracy of RAPTOR, decreased by 11%
compared to CBR.

Although RAPTOR can reduce the bug-fixing time and mitigate the concentration of
tasks, it has been found that the assignment accuracy decreases by 11% on average,

compared to CBR.
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5.7 Discussions

5.7.1 The Cause of Lowering Accuracy

Throughout the evaluations, we showed RAPTOR outperforms the existing methods
in terms of mitigation of the task concentration, the number of bugs that developers
can fix by the next release, the total fixing-time for the project. However, in evaluation
IV, we found RAPTOR decreases 11% of the accuracy of assignments, comparing with
the existing methods. We concern the effect of lowering the accuracy which induces
the reassignments of the bugs. We have two conceivable reasons why the accuracy of
RAPTOR is lower. The first case is when we still have the other developers that have
fixed a bug in the same component (which would be a correct recommendation if methods
assign a bug to the developers). RAPTOR would assign bugs to the developers whose
preference is not the largest. Thus, in the case that the assignments are inaccurate even
though there are alternative developers, this suggests that the second or the third (or
so on) recommendations should be improved. Since the number of fixes is considerably
different depending on developers, the sizes of the training dataset for each developer
also differ. In this experiment, we used the dataset which contains one year of data.
This is because the dataset size becomes bigger, the more the existing methods would
concentrate bugs on specific developers, therefore we avoid using plenty of the data to
equally evaluate. If we use more data, the second or third recommendations would be
improved.

Another case is when there is only one developer (there are no alternative developers)
in the component. In this case, the preference of the developers that should be assigned by
RAPTOR should be 100 (which is the maximum value of preference). To realize the value,
we could train the model with the component tags in addition to text data. Although
the component tags were used to evaluate the appropriateness of the recommendations
in this chapter, we can exploit the tags when applying RAPTOR to the actual projects.

For both cases, improving the classifier would be an effective option.
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5.7.2 How to Handle Unfixed Bugs with High Priority?

Evaluation II shows that RAPTOR decreases the number of unfixed bugs in all
projects, compared with existing methods. However, even assigning with RAPTOR, the
unfixed bugs with high priority remain in all projects. We investigated the reason why
the bugs remain, looking into the preference and cost. We found that these bugs have
higher costs for all developers than the maximum Limit L, which did not allow RAPTOR
to assign.

In this case, we are able to easily detect the bugs with higher costs than L by moni-
toring the costs before assigning them. Taking into consideration of applying to practical
projects, we should implement a function to prompt managers to assign the bugs manu-

ally.

5.7.3 How to Set Appropriate Limit L?

In this experiment, we set the upper limit L = 6 for Platform and Gce, 15 for Firefox.
However, it is unclear what impact the size of the upper limit L has on the project. Hence,
we confirm how the accuracy of assignments and the number of overdue bugs vary with
the size of the upper limit L. Fig. 5.8 is the accuracy of assignments and the number
of overdue bugs for each upper limit L. The accuracies dynamically increase from 1 to
11 for Firefox, from 1 to 4 in GCC. After that, the accuracies gradually increase until L
is 31. In Platform, the accuracy does not dynamically change across L. In terms of the
number of unfixed bugs, in Firefox and Gcee, the number dynamically drop between 1 and
15 in Firefox, 1 and 4 in Platform and Gce.

We can see the best points of L should be of which the accuracy and the number
of unfixed bugs calm down. The points are between 15 and 19 in Firefox, 7 and 23
in Platform, 5 and 7 in GCC. Our way to set L, which is referring to the 3rd quartile
(Firefox:15, Platform:6, Gee:6), might be appropriate, considering the cost of deciding L.
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5.7.4 How to Deal With Irregular Situations

As RAPTOR is designed for automating usual bug assignments, developers would have
to help RAPTOR to assign bugs if unexpected problems happened. In the following, we
discuss about likely irregular situations.

Nobody can fix the bug in the project: This situation is likely to happen to any
other bug-assignment methods including manual bug-triage, but practically RAPTOR
should be more careful about this situation because it aims to automate bug assignments.
In the RAPTOR, the preference is relative scores, produced by Support Vector Machine.
That is the total of the possibility for each developer will be 1. Thus, even if there is no-
body who is appropriate, RAPTOR (but also CBR and CosTriage) can choose developers
who are relatively appropriate among all developers. Nevertheless, it is probable that the
developer cannot fix the bug. In the case that the assigned developer cannot fix the bug,
in advance, the project has to make the rule that the assigned developer should lead the
other members and discuss how to handle the bug. In accordance with the situation, the
project would need to call for other professionals from outside of the project.

Developers are faced with technical or private problems: In the procedure
of RAPTOR, on every assignment, available time slots (7;) is incremented by the days
from the last assignment day to the assignment day. However, if unexpected problems
happened, there is a probability that such simple incrementing might not correctly reflect
their workloads. For example, if a developer is taking more time than the estimated time
because of technical or private problems, RAPTOR will continue to assign new bugs. In
case of unexpected problems, RAPTOR needs a function to stop assigning them (and/or
reassign the bugs to the others) when RAPTOR is implemented for applying to practical
projects. As a better option instead of the simply increments function (Step 4) every
assignment for the available time slot, RAPTOR could replace a new update function
that removes the occupied cost after the bug is fixed in the available slot. However, even
with this step, since the case developers cannot fix the bug will happen, the reassignment

function should be required.
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5.7.5 Limitation
Fix Order of Bugs

In Experiment II, by comparing the number of bugs fixed by the release with RAPTOR
and the two existing methods, we confirmed that the existing methods remain many bugs
not fixed by the release. However, the number of bugs not fixed by the release depends on
the order in which the bugs are fixed In other words, if the bugs which are long bug-fixing
time was assigned in the early time of the experiment, the number of the bugs not fixed

by the release will increase.

Impact of Mitigating Task Concentration

In the experiment, we could confirm the effect of mitigating the task concentration
in RAPTOR. However, mitigating the task concentration of some developers is also that
other developers are assigned the tasks. Even though developers who are relatively not
in charge of tasks seem to have a scope at first glance, they may have other development
projects or volunteers, so the time of activities may be limited. Hence, developers who
do not have many tasks are not necessarily in a condition that can handle tasks. Since
RAPTOR has not ascertained how long it can participate in the bug-fixing activity in the

month, the developer might be forced an excessive load.
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5.8 Chapter Summary

In this chapter, we proposed a release-aware bug triaging method (RAPTOR) that
aims to increase the number of bugs that developers can fix by the next release date.
Existing methods tend to concentrate assignments of bug-fixing tasks to a small number
of developers because it does not consider the difficulty and costs of individual bug-fixing.
Since general software development has the releases, even an experienced developer can
finish the bug-fixing work that can be used until the next release. Hence, the existing
methods are not realistic.

RAPTOR is characterized by considering the upper limit of the number of tasks that
developers can work on during a certain period, in addition to the ability of developers.
In this method, we considered the bug assignment problem as a multi-knapsack problem,
finding a combination of bugs and developers that maximize developers’ ability under
constraints which the method can assign in the only time that developers can use for
bug-fixing work. As a result of a case study on Mozilla Firefox, Eclipse Platform, GNU

Gce project, the following three effects on the proposed method were confirmed.

(1) RAPTOR mitigates the situation where bug-fixing tasks are concentrated to a small
number of developers

(2) RAPTOR can assign a more appropriate amount of bugs that each developer can fix
by the next release date

(3) RAPTOR can reduce time developers devote to fixing bugs, compared with the man-
ual bug triaging method and the existing methods
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Chapter 6
Discussions

In Chapter 5, Evaluation II showed that RAPTOR assigns bugs so that it increases
the number of fixed high priority bugs. In the experiment, RAPTOR used the actual
priority to assign bugs because RAPTOR should be independently evaluated to measure
the extent to which the task concentration problem can be mitigated. However, the
performance when RAPTOR is combined with cycle-aware priority prediction is yet to
be explored. Therefore, in this chapter, we evaluate whether RAPTOR with priority
prediction helps projects fix more bugs with higher impact by the release date. We
first predict the priorities of bugs with cycle-aware models and then assign bugs using
RAPTOR.

Figure 6.1 shows an overview of the datasets used for this evaluation. We reuse the
training dataset and testing dataset from Chapter 5 to build RAPTOR and measure its
performance, respectively. Subsequently, we train the cycle-aware prediction models with
the datasets from Chapter 4. Note that we remove the bugs, which are in the testing
dataset, from the training dataset of Chapter 4 because these bugs will be targets to
predict and assign. Among various types of cycle-aware models, we build hybrid monthly-

cycle-aware models that outperform others.
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Figure 6.1: Datasets for RAPTOR and the cycle-aware prediction models. We use the
data of three months in Eclipse 3.6 for the testing dataset. We build RAPTOR with the

data for 1 year previous to the testing dataset and train the cycle-aware models with the

data from Eclipse 3.0 to Eclipse 3.5.
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Table 6.1: The number of unfixed bugs that the Eclipse project cannot fix by the release
date is shown. The table shows the results in the case that RAPTOR assign bugs with
two priority prediction models (Opaque model or Cycle-aware models) or without priority
predictions. The “Predicted priority” and “Actual priority” columns show the number of

bugs with predicted and actual priority, respectively.

Prediction model Opaque model Cycle-aware models | Chapter 5
Priority Predicted | Actual | Predicted | Actual Actual
Assizned b High priority 3 0 12 1 2
SSIBREE BUES | Not high priority 189 | 186 (3) 180 | 178 (2) 175
High priority 0 0 3 0 0
fixed b
Unfixed bugs Not high priority 12 12 10 13 22
U ned b High priority 0 0 1
nassignec bUBS | Not high priority P P 2 2 16
High priority 0 0 3 0
Overdue bugs |\t 1ioh priority 10 10 8 11

Table 6.1 shows the number of bugs unfixed by the release date, which is assigned
by RAPTOR with the different priority prediction models, opaque model, cycle-aware
prediction models, and without priority prediction (i.e., the result of Chapter 5). The
“Predicted” and “Actual” columns show the number of bugs with the priorities predicted
by models and the original priorities, respectively.

RAPTOR with the opaque model predicted 3 bugs as high priority bugs and 189 bugs
as the others. However, none of 3 bugs did have actually high priority and 3 of 189
had actually high priority. For RAPTOR with the cycle-aware models, 12 and 180 bugs
were predicted as high priority bugs and the others, respectively. As a result, 1 bug was
truely high priority bug and 2 bugs were missed even though they had high priority tags.
RAPTOR with cycle-aware models could detect 1 more bug than that with the opaque
model. Compared with the result of Chapter 5, the number of unfixed bugs was reduced
but this might be because of the order of bug assignments.

While all the high priority bugs were finally fixed with both priority prediction models,
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they wrongly predicted 2 or 3 bugs as normal bugs instead of high priority bugs. In order
to fix high priority bugs certainly, the priority prediction models should be improved
by proposing new effective metrics to predict. Specifically, to utilize RAPTOR, priority
prediction should return positive labels sensitively to prevent a situation in which high

priority bugs are missed.
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Chapter 7
Conclusion

This thesis constructed the Release-Aware and Prioritized Task-assignment Optimiza-
tion fRamework (RAPTOR) in order to increase the number of fixed bugs by the release
date. RAPTOR imposes restrictions on assigning the number of bugs to each developer.
The limitation would force us to select bugs that will be fixed by the next release. Thus,
RAPTOR needs to select which bugs should be fixed by the next release and which bugs
should be allowed to carry over to the later release, under the circumstance that numerous
bugs are reported. When new bugs are reported, RAPTOR first prioritizes the bugs and
then assigns them so that the number of bug-fix with higher priority is increased for the

project. The main findings of this thesis are reiterated as follows:

Chapter 3: We asked what kind of bugs developers think impactful and encounter
in practice, through a survey with 322 notable GitHub developers. We manually
inspected and classified actual bug reports included in the responses. As a result,
we showed there is a wide variety of high impact bugs. Particularly, developers
think security and breakage bugs are highly important for FLOSS developers. Fur-
thermore, we showed that 66% of the high impact bugs have a higher importance
in the projects (especially in the projects that strictly handle bugs). That suggests

helping us select bugs for the next release when the projects have a myriad of bugs.
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Chapter 4: We predicted the priority which represents the importance of bug-
fixing, used by developers. We first examine whether the works (the characteristics)
in each period are different and showed that developers’ activity varies during the
release cycle. Based on these findings, we built release cycle-aware models which
are the models of which data is derived from appropriate periods. We conducted
a case study on the Eclipse Platform project and found that cycle-aware models

outperform the traditional model which uses whole data during the development.

Chapter 5: We constructed RAPTOR and conducted a case study on Eclipse
Platform, GNU compiler collection, and Mozilla Firefox and showed that RAPTOR
(1) mitigates the situation where bug-fixing tasks are concentrated to a small number
of developers; (2) increases the number of high priority bugs by the next release date
(3) can reduce the time to fix bugs, compared with the manual bug triaging method

and the existing methods.
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