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Abstract

Programming has become central in the development of human activities while not
being immune to defaults, or bugs. Developers have developed specific methods and
sequences of tests that they implement to prevent these bugs from being deployed in
releases. Nonetheless, not all cases can be thought through beforehand, and automation
presents limits the community attempts to overcome. As a consequence, not all bugs
can be caught.

These defaults are causing particular concerns in case bugs can be exploited to
breach the program’s security policy. They are then called vulnerabilities and provide
specific actors with undesired access to the resources a program manages. It damages
the trust in the program and in its developers, and may eventually impact the adoption
of the program. Hence, to attribute a specific attention to vulnerabilities appears as a
natural outcome. In this regard, this PhD work targets the following three challenges:

(1) The research community references those vulnerabilities, categorises them, reports
and ranks their impact. As a result, analysts can learn from past vulnerabilities in
specific programs and figure out new ideas to counter them. Nonetheless, the resulting
quality of the lessons and the usefulness of ensuing solutions depend on the quality and
the consistency of the information provided in the reports.

(2) New methods to detect vulnerabilities can emerge among the teachings this
monitoring provides. With responsible reporting, these detection methods can provide
hardening of the programs we rely on. Additionally, in a context of computer perfor-
mance gain, machine learning algorithms are increasingly adopted, providing engaging
promises.

(3) If some of these promises can be fulfilled, not all are not reachable today.
Therefore a complementary strategy needs to be adopted while vulnerabilities evade
detection up to public releases. Instead of preventing their introduction, programs can
be hardened to scale down their exploitability. Increasing the complexity to exploit
or lowering the impact below specific thresholds makes the presence of vulnerabilities
an affordable risk for the feature provided. The history of programming development
encloses the experimentation and the adoption of so-called defence mechanisms. Their
goals and performances can be diverse, but their implementation in worldwide adopted
programs and systems (such as the Android Open Source Project) acknowledges their
pivotal position.

To face these challenges, we provide the following contributions:
• We provide a manual categorisation of the vulnerabilities of the worldwide adopted

Android Open Source Project up to June 2020. Clarifying to adopt a vulnera-
bility analysis provides consistency in the resulting data set. It facilitates the
explainability of the analyses and sets up for the updatability of the resulting
set of vulnerabilities. Based on this analysis, we study the evolution of AOSP’s
vulnerabilities. We explore the different temporal evolutions of the vulnerabilities
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affecting the system for their severity, the type of vulnerability, and we provide a
focus on memory corruption-related vulnerabilities.

• We undertake the replication of a machine-learning based detection algorithms
that, besides being part of the state-of-the-art and referenced to by ensuing works,
was not available. Named VCCFinder, this algorithm implements a Support-
Vector Machine and bases its training on Vulnerability-Contributing Commits
and related patches for C and C++ code. Not in capacity to achieve analogous
performances to the original article, we explore parameters and algorithms, and
attempt to overcome the challenge provided by the over-population of unlabeled
entries in the data set. We provide the community with our code and results as a
replicable baseline for further improvement.

• We eventually list the defence mechanisms that the Android Open Source Project
incrementally implements, and we discuss how it sometimes answers comments
the community addressed to the project’s developers. We further verify the extent
to which specific memory corruption defence mechanisms were implemented in the
binaries of different versions of Android (from API-level 10 to 28). We eventually
confront the evolution of memory corruption-related vulnerabilities with the
implementation timeline of related defence mechanisms.
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Appliquer son interêt et ses reflexions autant au travail lui même qu’à son produit.

Albert Camus, L’Homme Révolté
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1 Introduction

In this chapter we introduce the context of this PhD work. In particular, we will
discuss software vulnerabilities and their impact on human activities. We also present
the challenges these vulnerabilities bring to the community. Finally we describe our
contributions.
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Chapter 1. Introduction

1.1 Motivation
Our societies are living through succeeding digital revolutions. The developed

economies have shifted to services through the mean of digital solutions. An increasing
number of human activities rely on lines of code.

It is through the online version of articles that we get the news, when we are not only
relying on uploaded videos, streaming services or social networks. During the emergence
of the 2020 COVID-19 pandemic, this dependence was highlighted for countries in
which a lockdown was set: to communicate with our relatives and coworkers we almost
exclusively resorted to social networks, instant messaging and VideoTelephony services.
Either these services were known for not meeting security standards [2, 3, 4] or not so
private[5]. Our democracies thus heavily rely on the Confidentiality, the Availability
and the Integrity of these services.

The explosion of computer performance has revealed crucial to economics and
research. For instance, it enables the modelling of complex ecosystems[6], the under-
standing of the root causes of late tendencies1 and provides solutions to how humankind
may still evade the worst consequences, the model concludes, we are heading to[7].

It is notably used for what is among humankind’s most significant successes: space
exploration. We sent humans into space to land on the Moon with no more than 72kB
of Read-Only Memory and 4kB of Random-Access Memory. Sixty years later, we are
sending rovers to visit other planets[8] and flying a helicopter drone over Mars, given
the three to twenty minutes delay for either instructions to reach Mars from Earth or
for information to come back.

Human lives daily depend on such kind of decisive computation, and the lives of
billions will further depend on complex computations.

However, sometimes the system encounters a defect. A defect that could be more or
less expected, as it happened with the notorious Error 1202 that the Apollo XI mission
faced just seven minutes before landing on the Moon[9]. As the lander was getting
closer to the surface, radar computation to rendezvous with the orbital module was
allocated most of the computation cycles in case the mission shall abort. When the
crew attempted to add tasks so to check the situation, new computations overloaded the
Apollo Guidance Computer Resulting in several system reboots, as the Moon was getting
closer and the landing site overshot[10]. The root cause of the Error was unbeknownst
to the lander’s crew and the team on Earth. They had yet to understand the gravity
and weight the hazards: eventually making the call not to abort the landing. Neil
Armstrong then took the command in semi-automatic and landed the Lunar module.
The rest is History.

In computer science, to these defects preventing the execution of a program from
going as planned, we usually give the name bugs. The term is usually attributed to
Grace Hopper, for finding a moth between two relays of Harvard’s Mark II in 1947.
However, the use of the term bug to mean defect can be traced back further to the
second half of the 19th century [11]. Evidence was found related to Thomas Edison’s
communication and reports on the phonograph in 1889 and lighting in 1878. Implying
the use of the term was already well installed. For instance, the term is also present in
Funk & Wagnalls’s 1895 dictionary.

There is a specific category of bugs that will further be of interest in this thesis called
vulnerabilities. A vulnerability, as given by Robert Shirey’s 2000 Internet Security

1p4: "it is unequivocal that human influence has warmed the atmosphere, ocean and land."
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1.1. Motivation

Glossary[12], is:

A flaw or weakness in a system’s design, implementation, or operation and
management that could be exploited to violate the system’s security policy.

This definition involves in itself several other tenets that need an explanation; as it
stands: security policy and exploitation.

For security policy, Robert Shirey’s glossary provides:

A set of rules and practices that specify or regulate how a system or organization
provides security services to protect sensitive and critical system resources.

Hence, any system has to define the list of resources it provides or connects to; it
also has to define a list of actors (desired and undesired) that may interact with the
system. Finally, it has to define a set of statements ruling how each actor may or shall
not interact with the resources.

Another central principle in the definition of vulnerability is the notion of exploitation.
What will make the flaw a security issue, called a vulnerability, is that it is exploitable
to violate the rules established by the security policy. We can consider this defect a
vulnerability if it is detectable and exploitable to extend specific actors’ range of action
on the sensitive or critical resources.

These vulnerabilities can be introduced during different steps of software development.
For instance, the program can present flaws early in the design phase. For the Wired
Equivalent Privacy (known as WEP), an algorithm for secure wireless networking,
several core vulnerabilities produced the need for its complete substitution in 2003[13],
just four years after its introduction, by the Wi-Fi Protected Access (WPA) 2.

In other cases, vulnerabilities emerge in relation to how is the code written. For
instance, a vulnerability identified by the tag CVE-2018-5703 and found in the Linux
kernel, as described in [15], provides the possibility for a type confusion. In optimal, and
provoked circumstances, it enables to overwrite addresses and eventually redirects the
flow of execution. As some of these vulnerabilities can be regrouped under categories,
or weaknesses, it can appear that some implementation parameters, such as the code
language, can be specifically prone to several of these weaknesses. For instance, low-level
languages, such as C or C++, are more susceptible to memory-related vulnerabilities. In
comparison to C and C++, Java uses a garbage collector that manages the memory and
significantly reduces the possibilities for objects to interact with each other. Another
coding language, Rust, has been written with security in mind while still providing the
speed and performance predictability of C and C++.

Finally, operations might not be completely thought through as a variable may be
declared with a type that requires its value to stay within a range. Yet code operations
enabling the value to reach the maximum and collapse to a small or negative value are

2These vulnerabilities included a 24-bit space for vector initialisation. Given the construction of
both the key and the exchanged packets, only a few hours of eavesdropping were required to decipher
these packets [14]. The algorithm did not efffectively protected the integrity of sources and destinations,
nor was the standing integrity protection genuinely preventing packet changes. As a substitution,
first was implemented WPA, using TKIP, Temporal Key Integrity Protocol, in 2003. It used a 64-bit
key to generate 128-bit keys per packets, and better protected the integrity of both packets and
source/destination. A more withstanding answer was implemented as a standard in 2004 with WPA2.
WPA2 standardised the use of the Advanced Encrypted Standard (AES). Moreover, WPA2 needed to
be superseded only in 2018, by WPA3, while TKIP is obsolete since 2009.
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Chapter 1. Introduction

not checked. These operations are thus waiting to be found and exploited by those who
will find them.

Given how entangled with code our societies are, when there is the possibility for
exploitation, the outcome can be dramatic.

• Our democracies and the balance of power can be impacted by the exploitation
of vulnerabilities, as demonstrated since 2016 by the Canadian Citizen Lab multi-
disciplinary department. They revealed how the market of exploit programs
targeting yet-unknown-to-vendor (or 0-day) vulnerabilities ends up targeting
country leaders [16], opposition groups [17, 18] and minorities within a country [19].
The specificity, in comparison with the usual payload sent through emails, is that
these vulnerabilities may involve a zero-click exploitation: thus do not require
interaction from the receiver. Owning a device like a smartphone, being of interest
to the buyer of such exploitation programs and the buyer knowing how to send a
message to one’s device (as simply as the telephone number) is all it requires 3.

• Our economic system also revealed vulnerable in June 2017, when the NotPetya
ransomware, seemingly first aimed at Ukraine, spread to multinational companies.
With a backdoor set in a program helping to return tax specifically for Ukraine, the
believed-to-be-NSA-developed Eternal Blue exploit [20] can redirect the program
to execute the encryption of all partitions while the system refuses to boot 4.
Any company paying taxes in Ukraine was likely to be compromised, and it is
estimated that the attack directly cost over ten billion dollars[21]. It further leads
to years of court cases for companies trying to be compensated by insurance. Only
in 2022 did Merck get compensated up to 1.4 billion dollars[22].

While so much is at stake, their are several reasons explaining why these vulnerabil-
ities still appear.

• First, allocating too many resources to prevent any vulnerability might not be the
most rational answer. Scientific research in economics [23] argues that vendors
have little incentive to produce more secure programs. Resources spent on security
stand in the way of integrating features and gaining a market advantage. A quote
could summarise the general rule: "Ship it Tuesday, and get it right by version
3 " [23].

• A second element, not among the easiest to measure, concerns the complexity of
exploitation. Some exploits might be easy to develop, and thus their prevention
becomes necessary in order to protect customers and businesses. In contrast,
other vulnerabilities may be considered only exploitable by a restricted number
of highly skilled experts, not widespread, or not providing critical resources. In
this context, provided the actual risks to end-users and other external incentives

3A more precise explanation of how an external library rendering PDF on iOS can be targeted to trig-
ger an integer overflow is provided by Google’s Project Zero’s team at https://googleprojectzero.
blogspot.com/2021/12/a-deep-dive-into-nso-zero-click.html. It eventually results in a com-
plete and parallel logic computer architecture to be built and to operate freely on the device.

4NotPetya involves the setting of a backdoor, the exploit of a vulnerability and a payload. The
backdoor was set in an ukranian tax return software called M.E.Doc. Any server updating the software
on the eve of Ukraine’s Constitution day would install this back-door. It made possible for the further
installation and execution of believed-to-be NSA-developed exploit triggering Microsoft Server Message
Block, responsible for file sharing [20]. A crafted package overflows a structure and is both capable of
overwriting a bit set to prevent the data to be executed as instructions and to redirect the flow of
executions to attached code. The payload further targets Microsoft Master Boot Record (MBR):
bootloader enabling to list all partition available to a device and selecting the one to boot from. It
overwrites it while encrypting partitions: locking data out of reach of users unless a key is provided.
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1.2. Challenges

(e.g. the market), it might not be in the vendor’s interest to allocate too much or
any resources at all to tackle this specific issue.

• Last but not least, a consideration that makes it necessary for an economic actor
to stop the development of resources allocated to security is that vulnerable code
will always slip through. The first reason is that human knowledge cannot cover
all existing exploitation techniques, and new techniques might be discovered daily.
Hence what might be considered secure code one day, might not be secure anymore
the next day. Second reason is that safe practices and secure reviews of the code
are skills that need time to develop, need platforms for training purposes, and that
the range of possibilities of the code to be exploited is so widespread that it is not
possible to be an expert to cover them all. For instance, it would include physical
attacks (electro-magnetic or LASER perturbation), to develop a fuzzer searching
for vulnerabilities, through finding malware using Machine Learning in Android
application[24], or static analysis of the code to reveal atypical communication
[25] and so forth. The outcome is that it is complex for developers to assess
correctly when a bug is exploitable, needing much more attention and care to fix
the issue.

There is therefore a limit to what an actor can do facing the issue of vulnerabilities.

1.2 Challenges
However, if given these limits, there is no perfect solution; we are not doomed to

inaction . Researchers can aim to improve the situation by targeting the following
challenges:

• The first challenge is to prevent the introduction of vulnerabilities in the code.
It takes trained developers so that a vulnerability is either spotted early in the
process and corrected quickly, or even never written at all. Never replicating
the past implies studying know threats and constant diligence toward newest
ones. It further provides to update security policies accordingly. Understanding
the severity of a vulnerability is crucial to measure how much resources shall be
allocated to tackle the exposure.

• Detecting software vulnerabilities as early as possible becomes an essential endeav-
our for software engineering and security research communities [26, 27, 28, 29].
Typically, software vulnerabilities are tracked during code reviews, often with
the help of analysis tools that narrow the focus scope by flagging potentially
dangerous code. The best conditions are when vulnerable code is flagged before
release.

• Another dimension through which fighting exposure is possible does not necessarily
address the presence of vulnerable code. It instead focuses on preventing its
exploitability. For instance, the system might be capable of detecting an altered
run of its programs and halting them to prevent further harm. It could also be
made resilient to particular vulnerabilities and still provide the desired feature.

1.3 Contributions
We contribute, in this thesis, to address to the aforementioned challenges as follows:
• [Vulnerability Understanding] In light of the Android Open Source Project,

we provide a study of the vulnerabilities that affected the system until June
2020. This study heavily benefits from the transparent approach provided by
Google regarding Android, specifically since 2015. A clear methodology for

5



Chapter 1. Introduction

categorisation, based on the fixing patch and an updated set of weaknesses is
provided. It generates a more accurate data set, linking the vulnerable code to
the vulnerability type. Such a set can reveal handy to train developers, learn
to patch given a specific weakness, or help the testing and training of detection
algorithms.

• [Vulnerability Detection] To detect vulnerabilities in the early stages of the
development, we undertake the replication of the machine-learning-based VC-
CFinder [30].
While many static and dynamic approaches have focused on regularly analysing
the software in its entirety, a recent research direction has focused on the analysis
of changes that are applied to the code. VCCFinder is a seminal approach in
the literature that builds on machine learning to detect whether an incoming
commit will introduce some vulnerabilities automatically. Given the influence
of VCCFinder in the literature, we investigate into its performance as a state-
of-the-art system. The insights of our failure to replicate the results reported
in the original publication informed the design of a new approach to identify
vulnerability-contributing commits based on a semi-supervised learning technique
with an alternate feature set. We provide all artefacts and a clear description
of this approach as a new reproducible baseline for advancing research on
machine learning-based identification of vulnerability-introducing commits.

• [Vulnerability Exploitation Prevention] We finally provide an investigation
into the Android Open Source Project (AOSP) implementation of defence mecha-
nisms over 10 years. The system is an authentic opportunity for several reasons.
First of which regards how recent Android is. As a project for an Operating
System of the new millennium, it provides insights into a complex modern system.
Further, the code of AOSP is available online, providing the community with the
opportunity to study it properly. It is a worldwide adopted system, centralising
numerous sensitive features and resources into one embedded device. AOSP is
thus under pressure to provide this great deal of customers with an adequate level
of security. We provide a chronology of the implementation of defence mechanisms,
which we complete with the in-device binaries analysis. We further discuss how
these implementations have sometimes answered comments from the community.
Eventually, we confront the defence mechanism implementation with the number
of related vulnerabilities that the Android development team advertises to have
needed to patch.

6



2 State of the Art & Background

In this chapter, we aim at providing both an overview of the state-of-the-art works and
the relevant background related to this PhD thesis. We first define terms related to
vulnerabilities and introduce their life-cycle. We also describe studies providing insight
on the prevalence of vulnerabilities in programs. Second, we report related works focusing
on vulnerability detection. Third, we provide an historicity of the development of Defense
Mechanism. Eventually, we provide a background on the Android Operating System.
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Chapter 2. State of the Art & Background

2.1 Vulnerabilities
This section enables to remind what vulnerabilities are and provides with the

terminology that is further of use in this thesis. Among theses aspects, we precise
how are vulnerabilities referenced by the community and the challenges these listings
includes. We also precise the different steps in a lifetime of a vulnerability. This
description provides how the research community highlights crucial time frames the
community and developers needs to trigger. We eventually provide with a few analyses
stating the exposure of systems and programs through the use of vulnerabilities.

2.1.1 Definitions
In the introduction of this thesis, we introduced the following definition for a

vulnerability [12]:

A flaw or weakness in a system’s design, implementation, or operation and
management that could be exploited to violate the system’s security policy.

Each vulnerability, during the disclosure process, is attributed with a unique iden-
tifier: Common Vulnerabilities and Exposures (or CVE). These tags are in the form
CVE-XXXX-YYYY, with XXXX as the year, and YYYY a yearly incremental counter of regis-
tered CVEs. Alongside, several other information will be registered as a description of
the vulnerability, the affected software and version, how confidentiality, integrity and
availability can be impacted by this vulnerability, a categorisation (or CWE), potentially
a link to the patch and to external resources.

The impact of vulnerabilities on a system is usually measured on the base of
three properties: Confidentiality, Integrity and Availability, often referred as CIA. A
vulnerability is also usually characterised by its severity, which is ranked through the
Common Vulnerability Scoring System (or CVSS). Vulnerabilities can be attributed a
type, or weakness, through the Common Weakness Exposure (CWE) tagging system.

These characteristics can be defined as follows:
Confidentiality: [12]

The property that information is not made available or disclosed to unauthorized
individuals, entities, or processes [i.e., to any unauthorized system entity].

Integrity: [12]

The property that data has not been changed, destroyed, or lost in an unauthorized or
accidental manner.

Availability: [12]

The property of a system or a system resource being accessible and usable upon demand
by an authorized system entity, according to performance specifications for the system

Common Vulnerability Scoring System:
The CVSS is computed depending on several criteria [31]. Among others: the

complexity of the attack, its impact on Confidentiality, Integrity and Availability of
the vulnerable software, the proven existence (or not) of in-the-wild exploit(s) for this
vulnerability, ... Registered CVEs might be referenced with either one or two versions
for the severity computation. Since 2015, version 3.0 has superseeded. However, not all
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2.1. Vulnerabilities

vulnerabilities are given both scores and the conversion is not trivial [32]. This score
is especially relevant for teams using a vulnerable version of the software in order to
measure their exposure and prioritise adressing the issue with their usual tasks. A
mark, over 10, is attributed and thresholds help understand the severity of the exposure.
For version 3.0, a severity below to 4.0 is considered Low; below 7.0, it is considered
Medium; until 9.0, it is High; and Critical up to 10.

Common Weakness Exposure: There exists a taxonomy enabling to categorise
CVEs into 600 groups, or CWEs. Maintained by Mitre organisation1, CWEs are
hierarchically organised in trees and any CWE can be reached from three main domains
(or roots) at the base of their internal mapping2 (provided in Section 3.2.2.1).

In this trees, two types of links relate CWEs to each other: generalisation and
potential causality.

• The ParentOf field links a coarser vulnerability category to a finer one. For
example, CWE-121: Stack-based Overflow is a sub-type of CWE-787: Out-of-
bounds Write. Thus CWE-787 is ParentOf CWE-121, as a more general category
than CWE-121.

• The canFollow field relates vulnerabilities on the causality to consequence model
(i.e., one weakness may induces the other elsewhere in the code). For instance, an
Expired Pointer Dereference (CWE-825) may be followed by an Out-of-Bounds
Write (CWE-787).

These connections, or relationships, enable to provide finer classes for comparing two
differing analyses than only relying on exact matches (as conducted in Section 3.1).

2.1.2 Data sources & reliability
Software vulnerabilities databases have many applications in research fields such

as vulnerabilities prediction, and Automatic Program Repair. In those fields, doubts
have been cast as to whether the vulnerability prediction results obtained on academic
datasets could also be obtained in real-world settings [33]. A literature survey lists the
many issues that could affect Software Vulnerabilities databases [34], and that could
hinder the generalisability of experimental results obtained on such databases. Among
these challenges is mentionned the intensity of the effort required by manual labelling,
the expertise required by such a task. Are also addressed the causes and consequences
of erroneous labelling. For the causes: the subjectivity of the categorisation, and
inaccuracy of tools for automatic labelling. These heavily impacts analysis based on
futur exploitations of this data.

Data preparation is thus an essential step for Software Engineering experiments.
We present here prior works that discuss the quality and availability of relevant data
sources.

2.1.2.1 Mitre and NVD
The Mitre Corporation operates and maintains a reference of disclosed vulnera-

bilities3. All CVEs are also recorded by the NIST in the US National Vulnerability
Database (or NVD), where CVEs are associated with additional information.

The quality of registered CVE data on reference websites such as CVE Mitre, the
NIST’s NVD and several bug-trackers is already investigated [35]. The information

1https://cwe.mitre.org/
2https://cwe.mitre.org/data/index.html
3https://cve.mitre.org/
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provided is, overall, enough to reproduce the exploitation of the vulnerability in less
than one case out of two. For some bug-trackers, only 4% of the vulnerability reports
provide sufficient information.

Another study showed that the information available in NVD can be incoherent
and incomplete [32]. The authors of this study propose approaches to fix several of the
issues they identified. For instance, they devise a method to obtain a relevant CWE
tag from the CVE description when it is missing in the web page.

2.1.2.2 Dataset labelling

If Manual labelling is eventually the most reliable labelling approach [34] it is also
a non-trivial and labour-intensive task [36]. A central bias of manual analyses is the
specification of the risk model. In the absence of a clear risk model, results may be
not reproducible, and may be usable only in specific cases (as the NIST states4). Data
labelling is also affected by the issue of subjectivity [37].

It has been shown that errors—or even noise—in the data used to train AI approaches
can greatly impair vulnerability detection performance, in particular in real-world set-
tings [33]. The NIST advises analyses to clearly state the chosen risk model. Otherwise,
the very same vulnerability can be attributed a different category depending on whether
the analysis focuses on (a) the source threat, (b) the assets that are impacted in the
end of the exploit, or (c) the moment (the lines of code) at which the behaviour would
deviate from the expected one.

Manual labelling can be prohibitively expensive. Thus several works have presented
approaches to automatically label code with either a vulnerable flag or a non-vulnerable
flag. For instance, a deep learning classifier on Abstract Syntax Trees can enable the
comparison on how much effort can be saved in comparison with usual methods relying
on code metrics to appropriately label vulnerable functions [38]. Bi-directional Neural
Networks have also been used to attempt to transfer learning from unlabelled to labelled
projects (regarding vulnerabilities) [36].

2.1.3 Vulnerability Lifecycle
A vulnerability, from its introduction until the delivery of the patch to all instances,

goes through several phases that we further detail.
First, there is the (i) introduction of the vulnerability, its birth. Afar from what

the name may suggest, introduction of a vulnerability does not mean that it only
happens with the addition of new lines of code. Second stage is the (ii) discovery of a
vulnerability. This step can occur a long period of time after the actual birth of the
vulnerability and can happen by accident. After the discovery, a potential resource
intensive step is the (iii) writing of a Proof-of-Concept (or PoC) that would trigger the
defect in such condition so to gain advantage in regard with the resource the target
program holds. Once it works the next step depends on the incentive of the discoverer(s)
and the people with the knowledge of this vulnerability: either they use it for their own
benefit or (iv) disclose it to the developer of the vulnerable program. At the moment
the vulnerability is reported, it can be (v) fixed by the modification of the code. It is
the correction phase. Eventually, the vulnerability meet its death once the patch is (vi)
delivered to all instances using the originally vulnerable version of the code.

4See page 6-7 and 15 of https://nvlpubs.nist.gov/nistpubs/Legacy/SP/
nistspecialpublication800-30r1.pdf
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2.1.3.1 Vulnerability Introduction
As discussed in the introduction of this PhD work, there is a vast common ground

between bugs and vulnerabilities. Thus there are as many good reasons for a vulnerability
to be accidentally introduced as there are for a bug.

When it comes to determine the actual cause of the introduction of a vulnerability,
an example demonstrates the precocious approach taken regarding the labeling of such
commit. It is conservatively called Vulnerability Contributing-Commit (or VCC) [39].
This name underlines that it is not necessarily the changes made that introduces
themselves a vulnerability but potentially more how modified lines integrates in the
whole program architecture and behaviour.

For instance, the implementation phase of a feature is confronted to deadlines. These
deadlines might induce prioritisation and the writing of functional yet temporary code.
This code is a liability as it has not been properly tested and requires more time to be
spent to be properly rewritten [40].

This leads to another human related liability that is the skill to develop proper test
cases for ones’ program. Thus several fields of researchs dedicate to increase the number
of tests and the location in which these tests seek for corner cases [41].

There resides plenty of other reasons for a fault or a bug to appear. Plenty for each
step of software development (specification, design, coding skills, version control), either
they are human-related or related to a third party so far trusted.

The code-review process itself can let slip vulnerabilities through. It persists as
a sain and beneficial habit though. For instance, an investigation over Chromium
OS covers 516 defects discovered during the the code review process, and 374 that
slipped through it [42]. Among these vulnerabilities that slipped through, the type was
usually vulnerabilities that reveal during the execution such as input neutralisation,
datatype conversion, occurring in a complex software as access control, or resulting in
an information exposure. The favoured condition for such security defect to evade the
review where also related to the complexity of the program, measured in the depth of
sub-folder the file to review is located in. Other conditions were also human factors as
the number of prior reviews was decreasing the accuracy of the analysis of the reviewer,
altogether the number of commits this reviewer has been responsible for in the code. In
opposition, the more time was spent on the review, the more the detection rate was
increased. Two other elements are worthy to mention so to keep reviewer alerted to
risk and efficient in detecting security defects are the experience one reviewer might
have reviewing a specific file, and in the case the review concerns a bug fix.

As earlier mentioned, if there are such a thing as innocently introduced vulnerabilities,
we may be entitled to think about the contradiction to innocently introduced. However
this aspect brings us closer to what could be a malware than a vulnerability. In this case,
the product is purposely engineered so to offer vulnerable ground to actors aware such
vulnerability is available to trigger. Such a categorisation is nonetheless speculative as it,
first, requires to interpret why such a vulnerability in the code was never corrected, and,
secondly, requires to agree on the definition of what a malware is. Contraction between
malicious and software, Robert Shirey’s 2000 Internet Security Glossary [12] associates
this term with malicious logic. Hardware, software, or firmware that is intentionally
included or inserted in a system for a harmful purpose. The latter introduces another
controversial debate attempting to answer what is an harmful purpose. For instance,
citing examples of harmful purpose Android applications, it can go from "simple user
tracking and disclosure of personal information to advanced fraud and premium-rate
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SMS services subscription, or even unwarranted involvement in botnets" [43]. And the
attack surface can widen as much as the software gets more complex. For instance,
Android Applications use libraries that can themselves carry a payload and/or be
modified by the application using them so to appear as being the source of the harmful
behaviour [44]. However, Malicious Software or Malicious Logic is a contiguous subject
to the one of vulnerabilities but is not the principal subject of this thesis.

2.1.3.2 Vulnerability Discovery

The listing of techniques used and employed so to detect vulnerabilities in a program
are detailed further below in Section 2.2.

Regardless, we can detail that discovery intervenes when either an experienced look,
specific testing and/or programs developed with this specific purpose analyse the code
and recognise exploitable defects. It can however of course happen by accident when
attempting to use a program in specific conditions as for many scientific discoveries.

An unaccountable number vulnerabilities exist but never are discovered. We have
nonetheless the knowledge to detect them and patch them. In some cases, we may even
have the tools to, for instance, statically analyse the code. The issue resides in the fact
that documentation may be so emaciated and/or interaction with these tools not so
intuitive that these tools are never used in the end [45].

2.1.3.3 Scripting of the exploit

Before reporting and/or engaging in any kind of disclosure of the vulnerability,
an important step is to assess the range of consequences this defect may be the root
cause of. This involves developing an exploit that will trigger the defect in the target
program and then, depending on the specificity of this defect, attempt to gain privileges
regarding the resources this program manages.

In this exploit resides the proof of the damage one program may be subject of, and
thus a key element into convincing the team the program originates from to take action.
It requires skilled individuals into writing these exploits as they have to understand
the extent of resources newly available through the defect and know already the most
efficient methods so to capture them.

However several vulnerability exploits do not reach their full potential. For instance,
the exploit associated with CVE-2018-5703 did not see that, not only could the flow
of execution be redirected to a value hold by a variable, but also the attacker, in this
scenario, was in capacity to modify this variable through an type confusion. The cause
for such an understatement of the severity of a vulnerability may reside in the fact that
this step heavily relies on human skills. So to tackle this issue, several program, such as
Koobe [15], written for Linux kernel out-of-bounds writes, attempt to explore further
the capabilities of a vulnerability from an already existing exploit (sometimes called
Proof-of-Concept). For Koobe, this "exploration" is made using Google’s developed
fuzzing program Syzkaller [46] and symbolic execution tracing program S2E [47] (instru-
mentation involves angr [48]). Authors of Koobe aim alternatively for code coverage and
exploration of capabilities at some trigger point through inputs mutation. Slake [49] is
another program attempting to generate exploits in the Linux kernel. This evaluation
improvement of the severity of vulnerabilities results that more adequate resources can
be delegated to tackle the issue.
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2.1.3.4 Vulnerability Disclosure

We now address the common knowledge such as how are vulnerabilities disclosed
once they are discovered. We also address how to maximise the effects of such a
disclosure if, as an analyst, we want to provide the team responsible for maintaining the
code with the most valuable information. Then it is up to the developers to assess if the
vulnerability needs to be patched and how much resources to allocate to the resolution.

2.1.3.4.1 Types of disclosure Once a vulnerability is discovered, several option
are offered to discoverer and/or its hierarchical superiors.

• It can be decided to not report it. This behaviour is named Non-disclosure and
might originate from actors interested in taking a direct benefit in the exploitation
of the vulnerability. Either by exploiting it themselves or selling it. Both of these
behaviour are reprehensible by the Convention on Cybercrime (ETS No. 185) [50].
This document requires from all signing countries to implement laws repressing:
"illegal access", "illegal interception", "data interference" (among other
forgery and copyright protections) [...] " when committed intentionally, [...]
without right" and generating "[o]ffences against the confidentiality, integrity and
availability of computer data and systems".
It may however be the approach of intelligence services up to a defined point. In the
United States, for agencies to retain knowledge of discovered vulnerabilities, they
shall plea their case in front of a Vulnerability Equities Process(VEP) [51]. Decisive
elements regarding the eventual decision are the "assessment of the usefulness to
the communities" receiving information about the vulnerability, and knowledge
regarding if " the vulnerability is currently being exploited on USG[overnement]
or critical infrastructures..." If decision is made to spread information, agencies
publish advisory bulletins (as [52]) to stress attention on specific issues.

• In opposition to the first type, a complete transparent approach is sometimes
carried out. Claimed benefits of Full-Disclosure are to force the maintenance
team to take urgent action to tackle the issue and provide the discoverer(s) with
its due recognition. It can sometime be called in the literature instant disclosure
.

• Another approach, requires from the originators to contact the maintenance team
and provide, confidentially, all information they hold regarding the vulnerability.
The maintenance team can weight the severity of the exposure and allocate due
resources to the issue. Originators and maintenance team agree on a schedule
for a safe disclosure of the vulnerability greeting credit to the originators of the
vulnerability.

• In case the discussion is complicated between both parts, a variation to the
late Responsible Disclosure can be adopted. It requires the involvement of a
Coordinator that will weight the risks and due benefit for both the originators
and the maintenance team. This coordinator will be responsible of setting the
calendar. It is the Coordinated Disclosure.

2.1.3.4.2 Usefulness of Disclosure We have considered so far that vulnerabilities
are eventually disclosed, patched and with the patch delivered to all using instances.
However it might not always be in the interest of the publisher and/or the users for
vulnerabilities to be disclosed, as we will see in this section. We first discuss the
modelling of vulnerabilities disclosures in a target program’s lifecycle. Then we discuss
work advocating for disclosure of vulnerabilities, before other works doubting it is
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beneficial or even finding these disclosures to induce more cost. We finish with a section
presenting articles providing advice to reach, or get as close as possible to, optimal
disclosure conditions.

• Disclosure Evolution
Some studies have attempted to estimate the rate at which vulnerabilities will
be discovered over the lifetime of a program but it often results in the absence
of clear trends over the software they analysed [53] . Only RedHat Linux6.2
provides a unique and distinguishable trend. It nonetheless persists complicated
to extrapolate from these trends as the study covers a reduced period of time
of 4 years. Investigations over several vulnerability discovery processes lead to
discuss their applicability and their limitations [54]. It results that their model
(AML [55]) generally outperforms Anderson Thermodynamics’ one [56].

• Positive Influence of Disclosure
The trade-off relies heavily on the vendor’s reaction and internal policy when made
aware of a vulnerability. It results that the disclosure multiplies by two point
five times the probability of instant patch release by the vendor [57]. Another
increasing factor is if Computer Emergency Response Team (US-CERT) is involved
in a coordinated disclosure with, this time, the instantaneous probability of patch
disclosure rising to three point nine times. However, if these disclosure make
Open Source Software more responsive than average, authors could not measure
eagerness from large vendors relatively to smaller ones. Covering the patch
deployment process of 1593 vulnerabilities [58] , researchers note that for 77% of
the vulnerabilities, the patching happens in the seven days before or after the
vulnerability disclosure. 92% of these were patched within 30 days after disclosure.
It then depends on the capacity to dispatch the correction to instances, and to
users’ behaviour to seek updates and accept them. Security analysts make almost
three times less days to have 50% their devices patched than average user (13
days versus 36 days respectively).

• Negative or undecided influence of disclosure
Some studies conclude that there are no evidence to consider the system more
secure with time going [59] .
Other studies [53] go further by stating that disclosure is affordable for vendor
if the cost of Discovery by White Hats (WHD) is less than the probability of
rediscovery by Black Hats time the sum of the costs of Black Hat discovery and
White Hats discovery. In other words, the cost of malicious intrusion has to
outweigh the consequent cost of public disclosure. Before disclosure, the number
of actual attacks is increasing but remains low. Public disclosures induce the
multiplication of exploits available online by 5 [60], hence generating a cost to
users and therefore vendors. It is further confirmed that the most critical period
is after the disclosure and before all devices could be updated [61]. Another
publication [60] provides that the number of downloads of available exploits
multiplies by a hundred thousand after disclosure, while the number of variants,
potentially overcoming the patch, is multiplied by between one hundred eighty
three to eighty three thousand. Earlier mentioned article [53] concludes that in
situations where public disclosure costs less it has yet to compensate the required
defensive effort in all situations, which is even further less guaranteed.

• Conditions for optimal disclosure
Better than attempting to assess if the balance is negative or positive, assessing
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conditions under which the policy of disclosure is optimal could prove a better
use of resources [62]. Overall, full-disclosure (or instant disclosure) triggers a rise
of the cost to users of three hundred percent to four hundred percent and is thus
to be avoided if one cares about users. One factor maximising the users’ safety is
if a respected third party is involved in the disclosure and plans it (coordinated
disclosure). It forces the vendors to take action in adequate time. Authors also
find that giving too much time to the vendor does not guarantee an improvement
in the quality of the patch. Authors estimate that if the vulnerability is considered
to involve high customer loss then disclosure has for consequence to reduce the
time before patch release from 17 to 12 days. In less impacting vulnerabilities,
disclosure reduces the time before patch from 60 days to 48 days. However if
the vendors’ customers are considered mostly smart users, and only if mostly,
the vendor may rely on them to provide a solution and to share it among other
customers, without having to patch it themselves. The time before disclosure can
be drastically reduced in those cases.
There is a general agreement that the daily cost after public release is more
important than the cost when the vulnerability is only known by a few, no matter
the majority of these happy few have malicious intent [63] [62]. Authors argue that
time-driven release and time-driven updates is the unique equilibrium outcome of
the game. Synchronicity is then permitted when the Firm or end-users tolerance
is lower than twice the tolerance of the vendor. Vendor have to share the cost to
its end-users (i.e., consider their loss its loss) but it has to share also liability (i.e.,
cannot have all the blame). It is not, however, a solution the authority responsible
of disclosure will enforce if the market incentive is to minimise the cost of the
vendor.

2.1.3.5 Fixing

The correction phase of a vulnerability can be done by the maintenance team or
can be suggested by the originator itself. It then only takes from the maintenance team
to integrate the provided solution in the code, shall the team agree the fix is suitable.

Still crucial, this step benefits from a consistent characterisation of the vulnerability
and the complete exploration of its capabilities (i.e. its severity). A healthy and
beneficial approach is for the fixing to be test-driven. Confronted to the specific
triggering conditions, patch validation occurs when the test passes.

The same way it is done for more generic bugs, a field of research targets the
capability of automating the patching process [64]. Generally Automating Program
Repair (APR) will base on two versions of the code, one vulnerable and the other fixed.
Pattern [65], properties [66] or diff are extracted and applied in case one vulnerability
is recognised [67]. Nonetheless some techniques manage to augment the available set of
patching editions by clustering looking-alike patches to produce, for one code, several
variations of hopefully-fixed code. Then these new attempted patches are applied to
vulnerable versions until the vulnerability can be evaluated fixed [68].

It opens to more complex techniques as Generative Adversarial Networks (GAN) in
which two neural networks are competing, one attempting to produce a fixing patch,
the second judging if the first presents characteristic of an actual patch more than
generated code. This zero-sum game presents the advantage of not requiring paired data
(vulnerable-to-patched codes) while providing the same results in optimal conditions [69].

Another approach attempts to compensate the lack of security related data by
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using the proximity between bugs and vulnerabilities [70]. A Neural Network is pre-
trained on large data sets of bug fixing data and is eventually more precisely tuned
on vulnerability fixing data sets for C code. This transfer learning method enables an
improvment from 18.2% of the resulting patch to actually fix the vulnerability to 21.9%
for BigVul [71]dataset, and from 15.98% to 22.7% on CVEFixes [72] dataset.

2.1.3.6 Patch delivery

An extensive Systematic Literature Review(SLR) [73] provides that this step is
subdivised in 5 sequences: 1. Info retrevial, during which organisation are made aware
of the availability of a security patch, or keep their attention toward the publication of
such a patch, 2. Vulnerability Scanning, during which organisation assess their exposure
to the vulnerability the patch aims to correct, and prioritise the patch implementation,
3. Patch Testing, i.e. integration, 4. Patch deployment, 5. Patch Verification, e.g.
supervision of the patch.

Main challenges concerns the lack of centralised resource for patch advisory publica-
tion, and the lack of details and/or reliability regarding the provided data, as also seen
in Section 2.1.2. A consequence is that concerned actors struggle to get the information
that they are exposed when they are. The deployment of security related patchs is con-
fronted to requirements regarding the availability of features to end-users. Additionally,
policies usually delay the update process. A mitigation is to hire skills and expertise,
that is yet another challenge affecting the whole chain of events. Authors observe
that most of the effort focus on the patch deployment, mainly through automating
the deployment to using entities, and to develop the features of updating the software
without needing to interrupt the availability of the software’s features.

2.1.4 Existing study about the evolution of vulnerabilities in Pro-
grams and Operating Systems

The number of vulnerabilities affecting a system, and/or their evolution can indicate
the exposure propensity of this system. Several studies have attempted to do so for
several or for one system. Retracing these evolution, and specificity can provide lessons,
signal specific exposure, and prevent the introduction of newest vulnerabilities.

2.1.4.1 Cross-Platform

In an empirical analysis from 2012 [74], focusing on web injection vulnerabilities,
authors did not observe a significant increase in the complexity of attacks. They
conclude it suggests developers are not learning from known errors. Another cross
platform analysis [75] considers 4000 bug fixes for 3000 vulnerabilities over 682 Open
Source Software from the NVD and over 11 years. Authors are able to compute that
50% of vulnerabilities have a lifespan that exceeds 14 months. Only 6.5% of studied
vulnerabilities have a lifetime that is less than 10 days, with an average of 5 years. They
cannot find either a correlation between the severity of a vulnerability and its lifespan.

2.1.4.2 Singular System

A similar conclusion is reached specifically concerning OpenBSD vulnerabilities [59].
It considers version 2.3 as the foundation version and computes that 62% of vulnerabil-
ities reported between the release of the foundation version and the end of the study
affect fundational lines of code. This shall be put in perspective with the fact that 61%
of the lines of code of OpenBSD by the end of the study are from this foundational

16



2.1. Vulnerabilities

release. No significant trend can be observed for, independantly, Windows NT, Solaris
2.5, FreeBSD 4.0 and RedHat Linux6.2 [53] .

The analysis of the Wheezy version of Debian denotes no maturity over time
regarding security. The number of CVEs do not reduce and nor do any CWE disappear
from the pool of newly disclosed vulnerabilities. The rate of vulnerability discovery do
not compete with the increasing number of feature and their complexity: "only chopping
the tip of the iceberg" [76].
2.1.4.3 Android

The first work to analyse Android related vulnerabilities is Jimenez et al [77].
Authors analyse, in 2015, 43 vulnerabilities disclosed from 2008 to 2014. The relatively
small number self explains as Google hadn’t yet the same transparency policy regarding
their communication on security. Still, Jimenez et al, concluded that most of the
vulnerabilities, by then where due to the code implementation (70%) rather than design
or testing. That the most touched components were related to web browsing and
cryptography.

Regarding the vulnerabilities of the AOSP project, the last version of the work of
Mazuera et al. [78] gathers 472 vulnerabilities from 2008 until august 2017. They highly
benefited from the monthly released Android security bulletin5 since august 2015. Their
data is available at https://ml-papers.gitlab.io/android.vulnerabilities-2017/
appendix/index.html. If, we mention only 472 from the 1235 advertised vulnera-
bilities it is because we only focused on the vulnerabilities of the Android Open
Source Project, for which the code is available at, and patches redirect to, https:
//android.googlesource.com/. The advertised one thousand thirty five include vul-
nerabilities from Qualcomm, NVIDIA graphic cards, Pixel devices or regarding the
upstream Linux kernel. Elements for which vulnerability patches are not necessarily
available.

They led a manual analysis regarding the vulnerabilities causality that made them
change in 81,4% of the CWEs from the one provided by the website CVEDetails.
We specify in Section 3.1 motivation to reproduce such a task further. Most of the
vulnerabilities, to them, were related with permission CWE-284: Improper Access
Control or CWE-275: Permission Issues.

[79] conducts an temporal extension that however considers CVEs’ CWE to be the
one provided by the NVD database up to 2019. If using this CWE is presented as not
optimal by [78] at a 81.4% level, they further use fixing patches to find vulnerability
patterns. They are nonetheless capable of assessing the complexity of vulnerable code.
Also considering the Linux kernel, they conclude that it is the most affected area,
but then comes Native Libraries and the application network. They find that 80%
of vulnerabilities are related to less than two files to be changed. From 940 code
fragments, they do a pair-wise comparison. Eventually they are capable of finding
sixteen vulnerability pattern clusters, from address leakage to use-after-free, passing
by missing Android Permission/UID checks. They claim six are yet uncovered in
litterature: namely kernel address leakage, misretrieving android service, inconsistent
android parcelable serialisation, incomplete C++ destruction, missing parameter and
forgetting to set certain variables.

[80] also study the patchs but also keeps the NVD’s CWE categorisation. Working
on vulnerabilities up to January 2019 (indifferently AOSP and others elements such

5https://source.android.com/security/bulletin/
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as Qualcomm), they observe general inconsistencies between available data sources
regarding android vulnerabilities. They observed, on their specific pool of data, no
reduction of severity of vulnerabilities. They characterise that a spike of vulnerabilities
has been seen over API-level 24 (oct 2015). Also that there is usually an average
one month window during which the patch is available but no device from considered
vendors is patched when it comes to CVEs affecting the Linux Kernel and Qualcomm.

2.2 Vulnerability Detection
In this section, we list different approaches enabling to detect vulnerabilities in the

code from lower to higher levels. We start from static analyses to symbolic and dynamic
ones; before explaining several machine learning approaches. We eventually focus on
machine learning algorithms tackling the detection of vulnerabilities at the commit
level.

2.2.1 Static Analysis for Vulnerability Detection
The first approach we will discuss is Static Analysis which takes advantage of the

source code of a program and unravels different possibilities and techniques to detect
patterns leading to vulnerable faults, adding constraints to be verified and producing
taint analysis. Beyond the availability of the source code, a second characteristic of
static analysis is, as the name suggests, that the code is not run. The following listing
heavily benefits from a literature review of 2017 that compares several open-source,
security-oriented, Static Analysers for C and C++ [81].

A first group of static analysers evaluate constraints on statements to verify they
do not breach code-security rules. First released in May 2001, Flawfinder performs
static analysis of C and C++ programs and detects calls to a manually curated list of
sensitive APIs [82]. Examples of such APIs widely recognised as sensitive are strcpy,
random or syslog. Splint-C [29] is another static security testing tool, which performs
lightweight analyses of ANSI C code and augments the code with annotations that set
constraints on each C statement. It notably reveals the risks of buffer overflows, and
alteration of the flow of instructions around loops and ifs. Splint does not pretend to be
complete nor sound but a good first pass at a very small cost. It was evaluated on BIND
and wu-ftpd and uncovered a few buffer overflows, both known and by-then-unknown.
Frama-C [83]’s static analysis (the tool can also produce concolic and dynamic analyses)
will verify the values of the bounds of variables, pointers, among others, and verify if
they stay inside safe bounds deducted from the code. Cppcheck6, which specialises
in finding undefined behaviours, and that strives to produce very few False Positives.
Uno [84], that offers an approach aiming at detecting a limited number of errors, but
with high precision. Sparse, that was developed by [85] specifically for the Linux kernel
and thus can detect low-level errors in (among other things) bitfields operations or
endianness.

Some other static analysers will rely on abstracting the code to detect known
vulnerable patterns for the chosen level of abstraction. Find-Sec-Bugs7 targets Web
applications written in Java, and searches for potential vulnerabilities by matching high-
level patterns that model problematic code pieces. Find-Sec-Bugs was made available
to developers through a convenient IDE plugin. Oclint8, performs analyses of Abstract

6http://cppcheck.sourceforge.net
7https://find-sec-bugs.github.io
8http://oclint.org
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Syntax Trees. These code representations are then confronted to a library of patterns for
dangerous code constructs. Flint++9, can detect and warn developers about dangerous
coding practices it detects. Flint adapts better Facebook’s Flint program for C++.
Flint, itself named after the Unix static analyser lint. git-vuln-finder10 is another
solution basing its analysis searching for patterns only in the commit message. Finally,
another approach introduces a Query Language PQL( Program Query Language)
of their own to search enable analysts to query for patterns of dangerous use in the
code [86]. For instance, PQL has proven capable of detecting non-encrypted password
hard-disk writing or possibilities left for a SQL injection among the 206 errors from 6
large open-source Java applications. The pattern research has also been successfully
exploited by Matching Vulnerabity Patterns (MVP) tool [87]. The approach leverages
ASTs and Program Dependence Graphs to increase the granularity to the function level
of programs as extensive as the Linux kernel. Each function is normalised eliminate
the influence of variable names, comments and other tabulations. They are then stored
into a set of syntactic hashes (for each statement) and semantic (interaction between
statements). In parallel, a library of twenty-five thousands vulnerability-related patches
also follows the same abstraction process and computation in sets of hashes. Eventually,
a set of rules, so as analysed functions have to look like the vulnerable version of the
patch, without being too close to the patched version, determine the detection of a
clone of a known vulnerability. Yet slower than relative tools, like VUDDY [88] and
ReDebug [89], MVP reveals several new vulnerabilities in the same code. Out of the
97 vulnerabilities reported, 23 were already confirmed and attributed a CVE by the
time of the publication.

Data-flow analyses also reveal beneficial when it comes to unravel vulnerabilities.
Facebook’s Infer11, catches memory safety errors by building formal proofs of programs,
and then interpreting failures of proof as bugs. Taint analysis allows to follow the
path data travels inside a program to the sinks and deduce to whom are resources
available. This process allows to uncover vulnerabilities that would not be detectable
by analysing one function, one class, or one package at a time. Such approaches
were proposed by FlowDroid [90] for Android applications in order to locate insecure
use of data caused by the interactions of several software components. Yamaguchi
et al. [91] demonstrated an approach that combines Abstract Syntax Trees (AST),
Program Dependence Graphs (PDG), and Control Flow Graph (CFG). They were able
to discover 18 new vulnerabilities in the Linux kernel. It inherits from Deckard [92]
which vectorises ASTs and computes a hash for this vector. If the distance with a
vulnerable code’s vector is beneath a certain threshold, then both hash will have the
same value. This method is called Locally-Sensitive Hashing. BUGRAM is a recent
implementation that generates n-gram sequences and considers the least likely ones
as a bug [93] . BUGRAM was run on 16 Java projects and found 14 confirmed bugs
that other state-of-the-art tools were not able to find. [28] presented a framework
available as an Eclipse plug-in to perform various static analyses (as points-to and
taint-analyses). Their approach managed to find 29 security errors, two of which in
widely used Java software: hibernate and the J2EE implementation. Clang’s analyser12

produces Inter-Procedural Data-Flow Graphs that enable to find bugs such as memory

9https://github.com/JossWhittle/FlintPlusPlus
10https://github.com/cve-search/git-vuln-finder
11https://fbinfer.com
12https://clang-analyzer.llvm.org/
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leaks, ’use after free’ errors, and dangerous (though valid) type casting in C and C++
code. CHUCKY[94] identifies anomalous or missing checks on C programs. ANTLR
based instrumentation enables a taint analysis that computes, in one target program,
usual conditions applied to one function. When a similar call does not implement usual
checks for this call (computed as a distance to usual behaviour), a flag can be raised.
As the program is based on similar functions, the precision increases up to 96% when
the set of neighbours reaches 20 functions, while 50% for 5 neighbours.

Overall, the literature review from 2017 [81] compares several of these approaches13

both quantitatively and qualitatively: Frama-C appears as the most precise approach,
Oclint as the tool uncovering most dangerous behaviours, and Cppcheck as presenting
a very low false-positive rate.

A general study of static analyser has concluded that the porting to application of
vulnerability detection heavily suffers from the lack of documentation of published and
available analysers and an ergonomy not thoughts to be user-friendly [45]. It results
that several vulnerabilities for which we have the knowledge on how to detect them,
and we even have the tools to detect them, are not discovered because the time cost of
learning to use the tool is too high.

2.2.2 Vulnerability Detection with Symbolic execution
Symbolic execution is a specific way to execute the code to determine the conditions

on input variables that enable exploration paths in the code. Variables are initialised
capable of being anything, and constraints are iteratively added to cover the code
until a contradiction or an error condition is met. It can stand in opposition to using
hard-coded-like asserting tests or being a preliminary step before getting a set of
issue-provoking test-suit. Symbolic execution methods were notably experimented in
2008 by the tool KLEE which achieves around 90% coverage in its evaluation and
found 56 new bugs, including ten in 89 COREUTILS utilities [27]. A good review of
the use of Symbolic execution for software security was published in 2013 [95]. Are
explained, for instance, different evolutions into Concolic testing, which executes the
program alongside the path analysis and computes the next inputs to test to increase
coverage based on stored conditions. Concolic stands as the mix of concrete and
symbolic execution. With Execution generated Testing, these evolutions enable a gain
in precision in the generation of tests while potentially impacting the completeness of
the generated test suit.

A reference regarding concolic execution is DART [96] (for Directed Automated
Random Testing) which in 2005 describes the techniques with randomly initialised
inputs.

MACE [97] uses model-inference to direct concolic execution. This approach
improves the exploration of the state-space of programs, thus allowing to find more
vulnerabilities than tools with less coverage.

More recently, the CIL—a C intermediate language—library has been leveraged
to statically analyze the source code, allowing backward tracing of the sensitive vari-
ables [98] . Then, the instrumented program is passed to a concolic testing engine to
verify and report the existence of vulnerabilities. Their approach focuses on buffer
overflows and was reportedly unable to deal with nested structures in C code, function
pointers and pointer’s pointer.

13Frama-C, Clang Analyzer, Oclint, CppCheck, Infer, Uno, Sparse, Flint++
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2.2.3 Vulnerability Detection with Dynamic analysis
Another essential technique for software security is Dynamic Analysis, where pro-

grams under test are effectively run and monitored.
First, Frama-C, an earlier mentioned tool, is capable of checking specified annotations

in C code at runtime [99]. These annotations are of the type that Frama-C’s static
analyser’s program is capable of generating.

Fuzzing, which automatically generates inputs and tests a program on them, has
rapidly come to play a major role in software vulnerability detection. Fundamentally, a
fuzzer is an infinite loop which mutates input seeds and launches the target program on
the mutated seed. If the target crashes, a bug is detected. Manual analysis will tell if
the bugs are vulnerabilities or not. AFL is a popular fuzzer for C/C++ programs [100].
Recent works [26, 101] use it as a reference. AFL instruments the target program to
keep track of the coverage. If a mutated seed increases the coverage, the seed is mutated
further. FuzzIL is a fuzzer for Javascript VM [102]. Like AFL, it uses coverage to rank
seeds. JQF [103] or Kelinci [104] are coverage-guided fuzzers to test Java programs.
AFL can be also found online to be implemented to fuzz on Android [105].

Google also implements their own fuzzer OSS-Fuzz [106]. Specifically dedicated
to the detection of bugs in Open Source projects, OSS-Fuzz has discovered over five
hundred thousands bugs as of June 2021. Developers of such projects can apply to the
service, but to be accepted they must "have a significant user base and/or be critical to
the global IT infrastructure."14.

Some of these fuzzers do not leverage coverage intel while still heavily benefit from
target analysis. It is the case, for instance, when fuzzing an extensive target for which
all the entrance points might not be documented and/or could be exploited in violation
of the security policy. It is what FANS [107]15 does for the Android Open Source
Project native services. Before fuzzing, the tool detects and extracts all the Interfaces
enabling access to a service available from Android Interface Description Language
(AIDL) files. The restrictions over variables are deducted on these calls so that the call
is successful and the service runs. Then only will the fuzzer engine produce inputs given
the set of restrictions and dependencies. Eventually, at the time of the publication,
FANS flagged thirty vulnerabilities, twenty of which are confirmed by Google. Over the
thirty, five concern libraries and three the Linux kernel. FANS, however, has yet several
challenges to overcome as it does not use coverage information inside the services (hence
no knowledge about untested parts of the services), runs as root, and only explores
the normal domain of permissions of Android (thus does not cover risky behaviours
Elevating the Privileges of the originating process).

As mentioned in Section 2.1.3.3 with Koobe [15], symbolic analysis and fuzzing can
be combined to reveal not only a vulnerability but the actual severity of the vulnerability.
In the case of CVE-2018-5703, the exploit was redirecting out of the mapping of the
memory layout while the redirection was possible anywhere the attacker desires. It also
matters as a wrongly assumed severity will impact the prioritising decision the team
with an exposed program will take regarding the approach to follow to tackle the issue.

Another dynamic analysis method takes is collecting the different actions an ex-
ploitation undertakes and the resources this exploitation has to leverage to succeed.
So-called Attack-Trees [108] are created, presenting, hierarchically, these goals, sub-

14https://google.github.io/oss-fuzz/getting-started/accepting-new-projects/
15https://github.com/iromise/fans
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goals, and actions as nodes. They represent actions that have to be taken or sub-goals
to be achieved in parallel and/or on independent paths until the root node is reached.
This root node is the eventual goal of an attacker, implying successful exploitation.
A system aware that certain sub-goals are achieved by an actor or a process, in a
suspicious sequence, may, unknowingly to how precisely done, consider itself under
threat and take planned actions. To diminish the level of false positives such a detection
system might generate while not restricting the execution of harmless features, several
metrics are suggested to produce Enhanced Attack Trees [109]. These metrics can
be the probability of an attack given a sub-goal is achieved, or for actions to be only
remembered for a specific duration, or to keep track of the attack levels already achieved
once yet another sub-goal is accomplished. Alongside the challenge raised by the quality
and quantity of attack-trees libraries, these techniques also require the implementation
of an entrusted system-specific automaton capable of tracking the actions taken and
sub-goals reached for each process. This automaton then reports the attacks with a
certain confidence level (e.g. a probability). Eventually, an adequate countermeasure is
triggered.

2.2.4 Machine Learning for Vulnerability Detection
The following subsection heavily benefits from the thorough Literature Review from

Ghaffarian et al. [110].
By 2005, a first work proposed to extract features from code and metadata as

premises of software vulnerability detection. In this work, Sliwerski et al. [111] famously
stated that changes made on Fridays to the Mozilla and Eclipse projects were more
likely to introduce problems than the changes made on other days.

Since then, a large body of work has been proposed relying on different learning
techniques, targeting diverse programming languages and software systems:

In 2007, Vulture [112] gathers frequent patterns of imports and function calls. The
data set includes a ground truth of vulnerable code with a training set twice as large
as the test set. The application of a Support Vector Machine is reiterated forty times.
The tool nonetheless ensures that the proportion of vulnerable code in both sets is the
same. Eventually, Vulture managed to obtain a 70% precision on the Mozilla project,
detecting vulnerabilities and pinpointing their location.

Another idea explored was to discover neglected conditions [113]. This approach
begins with static analysis of the code to produce Enhanced Procedure Dependence
Graphs. Heuristic Maximal Frequent Subgraph Mining algorithm (HMSM) identifies
recurring patterns in relation with their frequency and provides them for manual review
to the user. The evaluation finds 3800 violations of well-known patterns over four
globally used programs.

Code complexity is among the most scrutinised feature for vulnerability prediction.
In 2014, a measure of code complexity dating from 1976 [114] was implemented in order
to detect the presence of vulnerabilities in Windows Vista [115]. The process applies a
binary logistic regression to the system by considering, for features, the evolution of the
considered binary, static code complexity, dependencies and metadata related to the
developers involved in the binary modifications. With a threshold of 0.5, authors reach a
precision of 0.64 for, nonetheless, a low recall on a ten-fold cross-validation. Other papers
focused on the code complexity. Shin et al. [116] tried to focus on the correlation between
code complexity features and the presence of vulnerabilities. The overall performance
was only relatively conclusive as results demonstrated a correlation only in the case of
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Firefox but not for the Wireshark project. Though, another paper [117] replicated this
study with much more success using the same Bayesian Networks but only focusing
on Firefox. Authors were also provided with more complete information through the
allocated Common Weakness Enumeration of vulnerabilities (i.e., the vulnerability
type). They even reached greater success changing either for IBK algorithm or Random
Tree by Random Committee, reaching a Recall of 92% and a Precision of 98% for the
latter case; yet still only on Mozilla.

As bugs may reveal actually to be vulnerabilities only years after their discovery, a
branch of exploration for vulnerability discovery offered to mine bug databases [118].
The process starts through text mining and static analysis of bugs into binary vectors.
These vectors can be later reduced by removing 10% of the features(i.e. dimensions)
the less present in data set entries.

The idea is implemented only in another work, applied to the Linux Kernel for
data between 2006 and 2011 [119]. A comparison between Naive Bayes, Naive Bayes
Multinomial and Decision Trees for ten-fold cross-validation with 73 (so-called) hidden
impact bugs and 6000 bugs produces a high recall for the two first algorithms but the
best precision of Decision Tree.

In 2014, another approach [120] followed a vectorisation process based on frequency
per file of words used in the source code [121]. The resulting evaluation of twenty
Android Applications with both Naive Bayes and Random Forest was split into three
steps. First, a ten-fold cross-validation for which both algorithms are neck to neck.
Then a prediction by training on early data and testing on the oldest shows Random
Forest having an advantage. However, the third evaluation, cross-project, by applying a
model train on one application to others, presents Naive Bayes as the best performing
algorithm.

DEKANT was proposed in 2016 to generate a model out of sliced pieces of
PHP applications and WordPress plugins [122]. Standing for hidDEn marKov model
diAgNosing vulnerabiliTies, the tool translates slices into Intermediate Slice Language
for in-the-wild plugins and web-apps. It overall found sixteen zero-days vulnerabilities
by the time of the publication.

Researchers have explored various code representations for learning vulnerability
properties. [123] used machine learning on Control Flow Graphs. VALD (for Vector
of Locally Aggregated Descriptors) [124] tokenises these CFGs. A Locally Sensitive
Hashing [125] algorithm provides proximity on the hypothesis that close results are
likely categorised the same. Their tool, Genius, identified 38 potentially vulnerable
firmware, 23 manually confirmed. Similarly, Abstract Syntax Trees (AST) have been
used as a feature and tokenised [126]. The resulting vectors are inputs of a deep learning
classifier (Bi-LSTM for Long Short-Term Memory) to obtain a model of vulnerabilities.
Evaluated on 457 vulnerabilities and over 30.000 non vulnerable portion of code, the
result is that 80% of the top-10 ASTs flags are in fact vulnerabilities. A proportion
dropping to 45% for the top-20 and to 30% for the top-50. However, for the authors’
test-set, results using ASTs performs better than code metrics. Using bi-LSTM on
ASTs has been re-experimented by another paper[127] but on different or enhanced
data sets. This leads to better results specifically for data sets focused on buffer errors
and, independently, on management error types. For both, the F1-score (combination
of precision and recall) overtakes 0.8. However, the solution still performs poorly on
other data sets included in the experiments.

An article [128] attempts to compare supervised algorithm to unsupervised. In
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order to do so, authors investigate what features to consider for vulnerability detection.
They conclude that the features do not affect the classification performance significantly.
The supervised algorithms were only significantly performing better than unsupervised
relatively in conditions where the quality of the labels in the data set was superior.
Still, generally speaking about the field of Machine Learning detection, one of the key
findings reported by the authors of the above-mentioned 2017 literature review is that
the field of vulnerability prediction models was not yet mature [110].

2.2.5 Vulnerability Detection at Commit Level
A few articles try to address the issue of automated detection of vulnerabilities at

the specific granularity of the commit level.
A first article [129] considers the relevance of detecting the commit that introduced

a bug on the basis of the extracted change log message, terms used in the source code
and both directory and file names. After tokenisation through a bag-of-words technique,
a Support Vector Machine is applied to 12 well-known software projects (including
Apache HTTP, Bugzilla, Eclipse, PostgreSQL, ...). Changes introducing a bug are
manually confirmed, and the precision goes from 0.4 (for PostgreSQL) to 0.86 (for
Bugzilla), while the recall goes from 0.43 (PostgreSQL) to 0.86 (for Bugzilla).

A study reveals why this scale of the commit level is relevant by analysing 68
vulnerabilities from the Apache HTTPD project [130]. Authors manually git bisect
up to 124 Vulnerability Contributing Commits of these 68 vulnerabilities. The analysis
reveals that these VCCs are usually larger than harmless commits. Also, new committers
are more likely to introduce vulnerabilities and developers that have introduced a
vulnerability already are more likely to introduce another one. Finally, their analysis
reveals that 25% of vulnerabilities stay less than one year, and 6% may stay present for
more than a decade.

A 2015 tool, named VCCFinder [30] applies the same principle on a self-made
data set. If the tool is unavailable, several inviting details are provided, as they name
their tokenisation tool or provide the SVM’s tunning parameters. Another attractive
characteristic is the discussion over the threshold of the resulting model. A team of
analysts could tune this threshold to a rate of false positives they can afford. Another
particularity regards the evaluation as they split their data-set from train-set to test-set
temporally. It prevents training on more advanced coding and mimics conditions of
in-the-wild detection.

Other works have directly mentioned and inherited from VCCFinder. A 5 pages
technical report [131] aims at decreasing the number of false-positive results yielded by
VCCFinder. To that end, the author proposes to separate additions from deletions in
the commits to extract code-related features. The results presented in this technical
paper may yet, but also only, slightly improve VCCFinder’s performances.

VulPecker [132], might not properly use machine learning to detect vulnerabilities.
However, it uses, per vulnerability type, machine learning to associate the most efficient
code similarity algorithm to detect this specific vulnerability signature, and deduce
the most significant features in this signature. VulPecker can choose between eighteen
algorithms, including CP-Miner and variants [133]. A code is considered vulnerable if
its signature is computed closer to the unpatched version of a vulnerability than it is
close to the fixed version. This strategy provides the best of all eighteen worlds and
brings, overall, the best results for both precision and recall in synchronicity. Eventually,
Vulpecker detected forty 0-day vulnerabilities, eighteen of which were yet unpatched.
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Still on the base of the work reported by VCCFinder, other algorithms and algorithm
combinations have been experimented in the following years [134]. Albeit mentioning
that VCCFinder uses LinearSVM, they only consider information from the commit
message, gathered using regular expressions, and from bug reports. Contrary to
VCCFinder, no information is taken from the patch code itself. Another difference with
VCCFinder is that not only one algorithm is applied but six different algorithms(linear
SVM, Adaboost, Gradient boosting, Random Forrest, Gaussian Naive Bayes, k-nearest
neighbours). These algorithms are assessed on a k-fold detection during which the data
set is split into k parts. Each slice is consecutively used as the test set, while the k-1
resting parts serve as training set. For each slice, the result for each commit of each
of the six classifiers is fed to a logistic regression that concludes whether the commit
is classified as contributing to the introduction of a vulnerability. For their specific
data set, their stacking approach demonstrated an improvement of the precision of
0.12 (from 0.22 to 0.34) for a recall fixed at 0.76 compared to a method analogous to
VCCFinder.

In contrast to these works, an approach [135] balances text and structural features
tested the PhP code of phpAdmin and Moodle. Authors consider the issue as a
change classification problem and develop a semi-supervised detection algorithm using
both contextual features and structural (through the ASTs of the code). While the
authors do not provide further details regarding the algorithm than mentioning their
inspiration [136], one can retrieve from this reference that it is a mix of Expectation-
Maximization (EM) and a naive Bayes classifier. EM is supposed to apply the naive
Bayes classifier to unlabeled data and to steadily complement the training set with
unlabeled data. This process continues until the parameters (or weights) of the naive
Bayes classifier are not altered anymore by the the training set modification. Another
difference with VCCFinder is the use of a specific data set, derived from a hand-
crafted security-oriented data set [120] for PhP web applications. Authors conclude
their approach, with their set of features improves performances from the Bag-of-
Words technique, and that unsupervised classification has the potential to surpass the
performances of a fully supervised classification regarding the problem of vulnerability
detection.

VulDigger [137] focuses on the Mozilla Firefox project for automatically detecting
vulnerability-contributing changes. Heavily comparing its approach to VCCFinder, the
article, however, selects Random Forrest for classifier and also focuses on detecting
vulnerabilities in the code of Mozilla Firefox. Another particularity is the capacity to
whitelist significant code changes to detect vulnerabilities. This selection uses a Random
Forrest regression to select (in the context of the authors) only 20% of the effort the
analysis of all commits would require, and yet reaches a recall of 0.31. Nonetheless,
author compare their results with the static analyser Flawfinder [82], as VCCFinder [30]
does, but not with VCCFinder itself.

Given the split of features between patch related and related to the versioning,
Sabetta et al. [138] trained two classifiers for the same data set of commits: each for
a different type of feature already mentioned. The authors selected Support Vector
Machine as it performs best according to the authors. The authors provide a list but
they do not precise in detail the combination that could have been made for both
classifiers. Both classifiers are tuned for high precision. To compensate for a low recall,
a voting system enables that when any of the classifiers flags a commit, the commit is
selected for review. The evaluation implements a ten-fold cross-validation on a data
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set internal to the SAP company. The combination of classifiers, in comparison with
both classifiers taken independently, increases both the precision at a fixed recall, and
the recall for a fixed precision. Among both, the classifier tokenising the code through
a Bag-of-Word technique performs slightly better than the classifier extracting from
the log message. Another teaching of their approach is that their model outperforms
another above-mentioned work [134].

Another approach regarding commits, given the heavy imbalance between VCCs
and regular commits, is to impose prior filtering using per-language-list-of-terms as
qualification [139]. In a 2019-master thesis [139] presenting this approach, up to 92%
of commits can be discarded for the Linux kernel, and between 79% to 84% for other
C-projects. Hence, it overall vastly reduces the effort to analyse the resulting commits.
The authors also conduct a result comparison between a K-fold stacking [134] detection
of vulnerabilities based on the commit message, with a Long Short-Term Memory
classifier, and their own Neural Network classifier. On projects like FFmpeg, Qemu
and Wireshark (among others), the choice of Neural Network on word2vec tokenisation
performs the best. Neural Networks are actually a recommendation from Sabetta et
al. [138].

Finally, even if they do not propose an ML-based approach to detect vulnerability at
the commit level, [39] address the issue of reliability in labelled data taking VCCFinder
as an example. They simplified the version of the project scrapper available online for
VCCFinder, re-adapted the code to make it work regarding their focus and manually
analysed the commits considered as VCCs. They conclude that only 58% of the commits
that would be considered as ground truth, if they relied on VCCFinder’s technique, are
actually contributing to a vulnerability. This is an issue we did not have to address, in
our later-explained attempt to replicate VCCFinder, since we attempted to replicate
the performances presented in VCCFinder original paper using data provided by the
authors. We did not have to check the validity of the ground truth construction method.
The issue raised by [39] underlines an important problem for the field that had already
been mentioned by [128] and mentioned in Section 2.1.2.

2.3 Defence Mechanisms

2.3.1 A little history of Defence Mechanisms development

One of the contributions of this PhD thesis is an investigation into the Android
Open Source Project (AOSP) implementation of Defence Mechanisms over 10 years.
Before detailing this contribution in Chapter 5, we introduce and define here the main
defence mechanisms that can be found in AOSP. In particular, we will detail these
defence mechanisms based on the following categories:

• a corruption of the memory,
• what to encrypt and how to encrypt it,
• authentification,
• access control,
• other categories of improvement.
We will present several of the main mechanisms that are implemented. We also

define what behaviour they try to prevent, present a short historicity and present how
they coarsely work.
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2.3.1.1 Memory Corruption Prevention
Vulnerabilities related to Memory Corruption are among the most numerous and

more impacting vulnerabilities. According to Google16, memory safety-related vulnera-
bilities represent 86% of all vulnerabilities Android ever faced.

We will here shortly describe the history of Address-Space Layout Randomisation,
Control-Flow Integrity and Fortify_Source.
ASLR: Address-Space Layout Randomisation is a technique that “uses randomness
to conceal regions of virtual memory address space of processes" [140].

Instead of always allocating the same elements (such as the stack, the heap or
libraries) to the same location in memory, ASLR distributes at a random address. Thus,
exploits depending on the knowledge of the memory layout with hard-coded addresses,
are unlikely to be successful.

The idea of randomising address layouts was introduced in 1997 [141], all main
Operating Systems since adopted ASLR: OpenBSD in 2001, first as a feature and
then as a default [142], Linux in 2005, Windows in 2006 [143]. ASLR—and attacks
against ASLR—has a complex history [144]. It is ever since a cat and mouse game,
still ongoing nowadays: each new attack calling for a new protection strategy. Indeed,
ASLR can, in some cases, be bypassed, for example, by guessing the memory layout
by repetitive attempts[145, 146]. Furthermore, a lack of entropy may lead to poor
randomisation, and several specific methods can uncover parts of the randomised
layout [147]. One main weakness is that if an attacker is in capacity of leaking the
mapping between randomisation rounds, this very same attacker is capable of rewriting
its attack accordingly to the new mapping and/or bypassing it [146]. A corollary to
ASLR is Position Independent Executable, which refers to the executable file’s ability
to be executed in a context (e.g. Operating System) enforcing ASLR.
CFI: Control Flow Integrity was introduced in 2005 [148]. Put simply, CFI aims to
ensure at run time that a branching instruction can only jump (or call forward, [149])
or return (backwards, [150]) to a small set of addresses, that is known at compilation
time. Indeed, in memory corruption attacks, it is common for the attacker to inject
code to be executed into the target program. If the injected bytes are located in
not executable sections of the memory, the attacker can instead input addresses of
code interesting to the attacker in executable sections of the memory(called gadgets).
However, for any code to be executed, the attacker has to trick the program to jump
into the injected code or to gadgets. Consequently, CFI prevents attempts to hijack
the flow of execution. However, CFI cannot always be 100% complete, i.e., the list of
addresses that can legitimately be called may be an over-approximation of the actual
list, due to imprecision in static analysis [151]. The CFI implementation presented in
[151] has an overhead of 16% on average for the SPEC2000 benchmark, because of the
necessary bookkeeping necessary to check whether code jumps are known and thus
should be allowed to proceed.

Some mechanics such as Shadow Call-Stack can further harden CFI. This technique
involves the creation of a copy of call-site addresses (i.e., addresses the Instruction
Pointer headed to when hitting a jump). This copy is specifically not writable by the
attacker (hence shadow). When a program hits a return instruction: if the addresses in
the stack and in the copy do not match, the system is made aware of unusual behaviour.
The program can then adopt a scheduled countermeasure to prevent the program from

16https://source.android.com/devices/tech/debug/cfi
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further corrupting the system, usually terminating[152]. Shadow Call-Stack increases
the overhead of CFI, unless it is backed by the architecture as Control-flow Enforcement
Technology [153] now does.

FORTIFY_SOURCE: Implemented in GCC (GNU Compiler Collection) in 200417,
"FORTIFY_SOURCE works by computing the number of bytes that are going to be
copied from a source to the destination. In case an attacker tries to copy more bytes
to overflow a buffer, the execution of the program’s execution is stopped" [154]. It
provides customisable levels of protection that may detect buffer overflows in some
cases at compile-time, in others at runtime. Such behaviour is provided by changing
several instructions such as memcpy, memset or strcpy, to specific substitutes capable
of comparing size between input and output buffers. The capacity to detect overflows
depends on the code syntax, and the level of checks asked at compilation time. It is
not, however, foolproof but it can significantly prevent avoidable vulnerabilities from
being released unnoticed. For instance, objects for which size is dynamically allocated
at runtime are not covered by certain protections18.

The Android development moved from GCC to LLVM’s clang as default C compiler
in March 2016 with the Android NDK r11. Consequently, the team also developed
FORTIFY_SOURCE’s features for clang in the following year 19 for full support since
OREO (API 26). The original GCC macro still improves with oncoming update of
the third level of hardening. This level improves the support of GCC’s checks around
objects with non-constant bounds20.

2.3.1.2 Cryptography

The improvements regarding encryption are of two kinds: what to encrypt and how
to encrypt it. The what is either related to data stored or transferred. The how either
regards the protocol resorted to encrypt this same data, but also to what extent (e.g.,
encrypted as a block, by folder, by file,... )

TLS: Transport Layer Security is the cryptographic protocol that most of nowadays
peer exchange employ. It enables a client and a server to determine what algorithm
they can use to safely exchange first encryption keys, then their data, away from
eavesdroppers. It is not itself the original secure protocol the internet was based on, as
it inherits from SSL’s 1996 v3. Due to the unravelling of major weaknesses, SSL has
been widely abandoned since 2014. Only 256 requests were enough to decrypt one byte
of a cipher. Ever since TLS 1.2 and now 1.3 (defined in 2018) are considered standard
protocol for communication.

Certificate pinning Authentication of trustable servers, to start a secure channel
and transfer sensitive data with, relies on the involvement of Third Party Authorities.
The role of this authority is, as a intermediary of trust, to exchange keys and to provide
certificate of servers’ authenticity. A Man-In-The-Middle attack can however happen if
a fourth party manages to install on the system as a TPA and signs its own certificates.
Certificate pinning prevents this altered behaviour by pinning its Certificate Authority
and asking verification of the issued certificate.

17https://gcc.gnu.org/legacy-ml/gcc-patches/2004-09/msg02055.html
18Example at: https://p0lycarp.github.io/2019/fortify/
19https://android-developers.googleblog.com/2017/04/fortify-in-android.html
20http://patchwork.sourceware.org/project/glibc/patch/20211217040753.

4176265-1-siddhesh@sourceware.org/
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2.3.1.3 Authentification

Authenticating mobile device users mostly rely on passwords, and still will in the
foreseeable future [155]. This legacy method is weakened by the tendency of users
to reuse passwords or to use passphrases from which the hash is easily guessable for
[156][157].

Another drawback of passwords is that they are secrets that can be shared or
eavesdropped [158]: they cannot guarantee that it is the owner who tries to log in the
mobile device.

Unlocking patterns have also proved not to be foolproof with some study being
capable of guessing 95% in less than the five attempts before the device locks [159].

Biometry: Access restriction to an exclusive list of users has since been made techni-
cally possible and more affordable by relying on user’s physical attributes. For example,
user’s fingerprints can be used for authentication. Current techniques are not perfect and
are under improvement to prevent spoofing [160] and for a more affordable price [161].
Other methods are also used as face and voice recognition.

SmartLock: However, authentication frequency happens to be sometimes considered
more of a burden. Security enhancing efforts relying on users "are not for free" (i.e., it
costs time which costs money) [162]. Consequently, certain people become reluctant to
set any unlocking method for the sake of convenience. One solution consists in relying
on an "automatic unlock" which unlocks the device only in situations of trust. These
situations of trust can be based on the current location of the device or its proximity to
a paired-with object. If at first glance, this might be a measure reducing the security
standard, it globally increases the minimum security level. The only cases it reduces it
are scenarii the user itself sets as safe.

2.3.1.4 Access Control

AOSP enforces 3 levels of resource access-control. A first mechanism enforces Unix
permissions for processes following Discretionary Access Control(DAC). It differs from
usual User-ID attribution as each process is provided with a different UID, rather than
being granted the user’s UID and permissions. Since API-level 18 Security Enhanced
Linux further protects components with a Mandatory Access Control [163, 164].

Last but not least, Applications follow another DAC process where permissions they
hold are written in a Manifest.xml file. This means that, upon request, the system checks
that the supplicant (e.g., API call, Content Provider or Intent) holds the appropriate
permissions. Early versions of this permission system had a scarce, incomplete and
sometimes inaccurate documentation [165]. As a result, it was troublesome for developers
to know what permission they exactly require, and troublesome for users: a majority
of users seemed not to understand the implications of the access they grant which
reduces the attention granted to permissions warnings[166]. As described further in
section 5.3.2, the Android Permission System has been thoroughly reviewed over years
and versions. Improvements include the addition of different levels of granularity (read
or write, at runtime only), better documentation, and improved display permission
information to users.

2.3.1.5 Other

Updates deployment The developing team also provided a profound shuffling of
the AOSP architecture to deliver corrective patches faster.
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The scientific community accepts that the most costly period of a vulnerability’s
lifetime for both the vendor and users is between the public disclosure of a vulnerability
and the on-device patch [61]. Called Project Treble, and unravelled with API-level
26, the vendor’s low-level software core and AOSP’s higher-level code are now better
compartmentalised21. As a result, AOSP updates do not require the vendor’s imple-
mentation and AOSP’s to be recompiled as a whole. Updates can only be addressed
to AOSP’s framework as soon as these AOSP updates are released. These changes
precisely match with security-related patches based on monthly Android Bulletins.

Rollback protection In our context, a version rollback attack is a technique where
the attacker installs an older version of a system containing known vulnerabilities
enabling to gain leverage over the data. Consequently, the attacker could exploit the
vulnerabilities to elevate his privileges or gain control of the resources [167][168]. To
prevent such attacks, tamper-resistant storage are installed in the file-system metadata
and checked. These tamper-resistant storage hold the latest-most-advanced version tag
and will prevent the device from booting if the version attempting to boot is older than
the tag of the stored version. 22

2.3.2 Security Enforcement
2.3.2.1 Low adoption

In an economical analysis of security in software market [23], the authors argue that
vendors could produce more secure systems but have little incentive to do so as security
could stand in the way of integrating features. To quote the original paper, the rule
is rather: Ship it Tuesday, and get it right by version 3. Also, measuring security is a
relevant and open question regarding one’s software, but authors argue, there is little
ground for buyers to trust vendors’ claims straight as they are made. The authors then
explores possibility of designing a vulnerability market or relying on insurers to assess
these security markets. They have to abandon the latter has the cost of such insurance
would be unaffordable for most if not all companies taking Microsoft as an example,
given how widespread it is.

2.3.2.2 Patch delivery

Patch mechanisms shall be consolidated and automated with centralised software
delivery to reduce the costliest phase between disclosure and on-device patching [58].
This suggestion is supported by the fact that relying on users has a cost (i.e., negative
impact) that depends both on users’ awareness and on the weight of the update
procedure to these users. [162] clarifies this cost over the years in comparison to the
real-world harm caused to users not following a secure practice. Hence, the difference
explains why users reject or adopt some practices. Authors advise vendors to know
their users’ profile. This would enable these vendors to target their at-risk population
and prioritise the security advice they communicate.

2.3.2.3 Android

Android Security Model

21https://android-developers.googleblog.com/2017/05/here-comes-treble-modular-base-for.
html

22https://android.googlesource.com/platform/external/avb/+/master/README.md#
Rollback-Protection
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A review of the Android’s Security was published in 2021 [164]. Their descriptions
of the threat model and android security ecosystem cover up to Android API-level
28 (9.x). Nonetheless, explanation focuses on describing the different access control
systems and their timeline. They also mention Treble’s impact change for updates and
briefly name memory corruption defence mechanism.

Vendors related security FUM security metrics (FUM for Free Update Mean)
for affecting a security score to devices and to vendors were proposed in 2015 [169]. It
combines the proportion of devices Free of vulnerabilities over time, the proportion of
devices running the latest Update of Android shipped by that device manufacturer,
and the Mean number of not-fixed critical vulnerabilities that any device shipped by
the manufacturer is affected by, from a list of 11 critical vulnerabilities. Intermediate
relevance results are that 87.7% of devices are affected by at least one of these 11
critical vulnerabilities. Their study covers from July 2011 to July 2015 and concludes
that the average security score is 2.83 over 10. Google’s Nexus is the best performing
device with 5.17/10, while LG is the best overall manufacturer with 3.97/10. Authors
emphasise that the main issue is the update bottleneck: a patch may be released, but
there are consequent delays before they are integrated by vendors in the next update
and then downloaded by users. [169] serves as an accurate motivation for Google to
change Android’s architecture so as not to rely on vendors to update AOSP as it used
to be before Treble.

[80] also noted that after Android adopted their Bulletins, some vendors such as
Samsung and LG did the same in order to adopt the same benefit.

2.4 Android
In the following section we provide background information about the Android

Operating System. We aim to provide all resources for the reader to accordingly
understand following chapters of the thesis.

2.4.1 Context
Android is a recent Operating System based on the Linux kernel. In early 2007, the

first smartphones emerged in an ideal technical and economic context. The update of the
Third Generation of wireless mobile telecommunications technology by the International
Telecommunication Union enabled, by 2006, the rate of data transfer to increase from
384 kbit/s (UMTS, 1999 Release) to 14 Mbit/s. This range of change enables access to
many resources accessible through the internet, specifically data-hungry features such
as online video feeds (e.g., video calls but now further with streaming). By now, and
with 5G, specifications aim to overtake the Gigabit range per second.

In addition, the price drop of high-density, rechargeable batteries made possible
a world of general-public embedded systems. Li-ion batteries were developed in the
1980’s to start being sold in the 1990’s [170]. Their development granted its inventors
the 2019 Nobel Prize in Chemistry. Their price dropped significantly from over 6.000
euro/kWh in 1992 to around 600euro/kWh in 2006 [171]. The price kept dropping
to 200euro/kWh in 2016 while the usage have expanded. The broad development of
Electric Vehicles (EVs) has made the yearly produced storage capacity evolve from
20GWh produced in 2010, to 767 GWh in 2020 and growing[172].

A third main technological advance that boosted smartphones is capacitive touch-
screen. In 1998, Wayne Westerman [173] published its doctoral dissertation based the
contour of its gesture-recognition company Fingerworks. Concurrently, Zytronic, a
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UK-based company, shifts its production to interactive touch sensor products, including
projected-capacitive touchscreen (or p-cap) [174]. Touchscreen they will develop up
to 2002, and their first commercialisation [175]. These capacitive touchscreens present
the feature of being interacted with a finger, in comparison with resistive touchscreens
requiring specific stylus. In 2005, Apple Inc would buy Fingerworks and use the patents
to present, in January 2007, their smartphone with multi-touch capacitive touchscreen:
the iPhone [176].

In this context, other vendors and usual leaders in the market of cell phones decided
to unite around Google to form the Open Handset Alliance in November 2007. "Mobile
operators, handset manufacturers, semiconductor companies, software companies, and
commercialization companies" aim to develop open standards and make Android (a
company acquired by Google in 2005) an open and free platform [177] with a first
release in September 2008 [178]. This means anyone can access and download the source
code23. It can be modified, compiled and flashed into one’s device.

Adaptable to most handsets, open-source, fully operational out-of-the-box yet
customisable by vendors, Android is the most installed handset OS globally. One
characteristic is, however, that companies in the Open Handset Alliance cannot install
on their device a fork of the original Android and aim to sell it if they want Google’s
specific features (Google APIs) to keep being provided to one of these companies’
customers [179]. Only in specific countries does Apple’s iOS compete, with the difference
that iOS comes with the sale of the handset. Thus sales are balanced in the United
States, in Japan and in the UK [180]. In Luxembourg, iOS is losing its advantage
gradually. Yet, overall it is globally yet 87% of the handsets that are powered by
Google’s dedicated OS.

Smartphones were developed to interact with always more sensors and provide
further more features. More accurate than cell towers triangulation, Global Positioning
System (GPS) (or concurrent systems) enables, for the least, live navigation. Cameras
make smartphones compete with dedicated hardware, and the OS shall adapt to specific
device capacities such as slow-motion or timelapse; accelerometers enable tracking the
carrier’s activity and monitoring its health. Hence, each hardware Android is installed
on provides a different configuration. Consequently, the OS needs to be flexible to
provide all the features given the hardware it is provided with.

However, the requirements on the Android OS apply not only to the hardware it
is installed on but also the hardware and network it is required to operate with. For
instance, the connectivity through Bluetooth shall provide support to headphones,
connected watches and other health trackers. The system is also required to interact
with the cellular network, often different versions as a fallback, the WiFi and more
recently Near Field Contact operations. The latter shall be provided a specific attention
as the feature is specifically used for contactless payment [181, 182].

Hence, as many sensors and connection capabilities handsets are to be provided
with, as many interfaces needs to be developed by the OS either for the use of the
OS itself or applications the user intents to use. As such, we provide below how the
Android Open Source Project provides such features and interfaces.

2.4.2 Android Architecture
Presentation The Android Open Source-Project is hierarchically organised so to

deliver these functionalities, from third party-applications to hardware through the
23https://android.googlesource.com/
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Figure 2.1: Android Open Source Project Platform Architecture

libraries and a specific implementation of a Java Virtual Machine, as presented in
Figure 2.1.

• Applications Layer This layer holds all the applications, either from the system
or from third-parties. System applications are related to standard activities
expected from the OS and the device, such as calling, texting, emails access and
web browsing. The user can, nonetheless, decide to install other applications
for specific features and different experiences as, for instance, accessing social
networks, banking services, video-streaming or playing games. Users can install
these applications through several Applications Markets. Google provides the
Play Store, that references all applications from third parties and manages their
updates. To be referenced on the Play Store, applications must respect certain

33



Chapter 2. State of the Art & Background

rules and behaviours [183]. For instance, applications must be signed with a
specific key attributed to its author(s). This signature protects the integrity of
the code uploaded to the store and also makes the developer(s) accountable for
the behaviour of it/their application. The signature schemes have evolved over
time [184] but the process is now fully integrated into Application development
through Android Studio [185]. It does not, however, prevent users from installing
applications from other application markets, either these are proprietary [186],
or referencing only free and open source applications [187]. The user can even
download applications from the browser. In these cases, the user has to state that
he/she authorises these sources to install an application on the device. Research
attempting to treating with Android Applications in the wild can benefit from
applications data sets, crawling several of these application stores and retrieving
as many applications and as many versions of these applications they can through
the AndroZoo repository [188].
These applications can be written in Java, kotlin and include compiled native code
for acceleration. They can also include libraries developed and made available
by third parties. Before upload, applications are compressed into a .apk format
that includes all the code, libraries, and specification files as the Manifest. The
Manifest will declare the API-level of the Android OS this application is built
for. As Android evolves, features appear, new sensors might become standard;
therefore, older handsets, not up to date, might not be capable of providing the
features to either the OS or the application. The Manifest will also declare the
list of permission it requires, either for the whole application or part of it. The
granularity with which the user can grant these permissions is a point we will see
later in this thesis.
In AOSP’s source code 24, applications can be found under the path:
/platform/packages/apps/.

• Application Framework This layer provides all the Application Programming
Interfaces (APIs) that the Android OS provides to applications. This layer is
sometimes referred to as the Java API Framework, as the code is written in
Java. As clearly exploited by Guan et al. [189] and Chizpurfle [190], a service
boots as, on the one side, a server to which, on the other side, applications will
register. Applications and other components claim, to the Service Manager, for
an interface that enables them to further request the service to perform specific
work. At a lower level, these transactions are performed by the Binder Inter
Process Communication (IPC). At this level, services provided are in the range
of providing content such as media, from the device storage to the components,
managing the activities lifecycle (which are the name of applications ’pages’), or
providing an in-app web browser (called WebView). One specificity of the work
of Liu et al. [107] is that they automatically fuzz the android service so as to infer
also the dependencies and the conditions for a services interface to be provided to
an application component.
In source code of AOSP 25, APIs can be found under the paths:
/platform/frameworks/base, /platform/packages/providers/, and
/platform/packages/services.

• Android Runtime (ART) Android Runtime’s layer deals with the implemen-

24https://android.googlesource.com/
25https://android.googlesource.com/
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tation of the applications in a specific, sandboxed runtimes environment. ART
executes the .dex file present in the .apk compressed file. Dex stands for Dalvik
EXecutable, with Dalvik the name of the former Just-In-Time virtual machine
fulfilling the execution of applications for Android. ART has been implemented
since Android 5.0 - Lollipop. ART provides with Ahead-Of-Time (AOT) compila-
tion, and .dex files are converted into Executable and Linkable Format files while
providing retro-compatible with older formats. A specificity in the creation of
Java process is that they are forked from the same process called Zygote and are
provided with the resources any specific application mightneed or request further.
Android runs with OpenJDK’s Java 8 language APIs26.
In the source code, the art related code can be found under the paths:
/platform/dalvik, /platform/art, /platform/libcore.

• Native Libraries This layer holds many libraries written in C and C++ that the
system exposes to applications through specific services and interfaces. During
the development of their application, developers require to use the Android
Native Development Kit27 (NDK). These libraries can be related to support
Bluetooth, User Interface, produce or use 2D and 3D modelling in-app. These
are, more precisely, Native Services for which FANS [107] extracts interfaces and
dependencies. Also provided to applications since Android 8.1 (API-level 27) are
Neural Network API support28.
In the source code, external native libraries can be found under the paths:
platform/external/.

• Hybrid Abstraction Layer (HAL) This layer provides applications and APIs
with interfaces to the vendor’s hardware implementation. This layer is split into
modules depending on the resource from which the system of applications might
request a service. For instance, there is access to the hardware responsible for
NFC connection, or access to storage such as an SD card. There is also the
possibility to feed the hardware information for sounds (voice and/or music) to
be displayed. These interfaces were described in HIDL format until Android 10
and are now supported in AIDL format (Android Interface Definition Language).
In the source code, these modules are located at /platform/hardware/

• Kernel The Android kernel is based on Long-Time Support versions from the
Linux kernel [191]. On top are installed a "patches of interest to the Android
Community" [192]. The addition produces the Android Common Kernel (ACK).
These patches of interest contain specific features required from android but not
available or still under development upstream. As we will detail later: this layer
has been reshuffled for versions above 5.4 ( available since Nov. 25 2019 29) under
the name General Kernel Image (GKI) [193]. One part of the kernel is common
for all devices using the same kernel branch. Device-specific elements are better
isolated into vendor modules. These kernel accesses these modules through the
Kernel Module Interface(KMI).
Elements of the kernel part of AOSP are available in the /kernel/common/ folder.

26https://developer.android.com/studio/write/java8-support
27https://developer.android.com/ndk
28https://developer.android.com/ndk/guides/neuralnetworks
29See: https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/
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2.4.3 Android Specificities
Android presents other specificities worth mentioning to understand the following

thesis and that we will further describe below.
• Different versions

Since the first version, in October 2008 [178], android has known different, almost
always yearly, updates. We provide in Figure 2.2 the different, sometimes confusing,
namings of Android and their corresponding dates as a reference.

.

Release Date

API level

Version Name

Version #

Oct. 2008

1

.

Apr. 2009

3

Cupcake

1.5

.

Sept. 2009

5

Eclair

2.0

.

May 2010

8

Froyo

2.2

.

Dec. 2010

9

Gingerbread

2.3

.

Feb. 2011

11

HoneyComb

3.0

.

Oct. 2011

14

Ice Cream Sandwich

4.0

.

July 2012

16

Jelly Bean

4.1

.

Oct 2013

19

Kit Kat

4.4

.

Nov 2014

21

Lollypop

5.0

.

Oct 2015

23

Marshmallow

6.0

.

Aug 2016

24

Nougat

7.0

.

Aug 2017

26

Oreo

8.0

.

Aug 2018

28

Pie

9.0

.

Sept 2019

29

Q

10

.

Sept 2020

30

11

Figure 2.2: Android different versions

We can also contextualise a few features with their introduction
– Bluetooth is one of the first features available. If present in Android 1.0

for file sharing, notably, stéréo support will be available in Android 1.5, six
months later [194].

– The capacity to provide a web browser inside applications is also among the
first features available [194].

– The capability of the device to automatically rotate given the orientation of
the screen dates from the same time.

– Near Field Communication (NFC) started to be supported with Android 2.3
in Decmber 2010.

– Support for Multi-core processor was implemented by Android 3.0 (API-level
11)

– Face unlocking started to be possible by Octobre 2011 and Android 4.0
(API-level 14)

– The Dalvik virtual Machine was substituted by Android Runtime Component
in Android 4.4 (API-level 19)

– Android implemented a service to mirror the on-device GPS and routing
information on compatible cars starting March 2015.

– Google Assistant has been introduced in Pixel phones in 2016 has an evolution
from Google Now. It was made available to all devices in February 2017.

– The display of several application in split-screen mode was implemented in
Android 7.0 (API-level 24)

– The Picture-in-Picture feature to display a video over other activities ,so to
enable to complete 2 tasks at once, is available since Android 8.0 (API-level
26).

• Applications An application is downloaded from the playstore as an apk com-
pressed file. Once expanded, the classes.dex file, folders with the resources
(pictures, icons), build-properties file and the Manifest file can be accessed. This
file shall declare the following elements [195]:

– Application package name
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– App components as the activities (usually the windows the user can
interact with), the services ("[used for] longer-running operation while not
interacting with the user or to supply functionality for other applications
to use." [196]), the broadcast receivers ("Android apps can send or receive
broadcast messages from the Android system and other Android apps" [197]),
and the content providers (providing content to applications).

– Permissions Either from the whole app, or for its components one applica-
tion shall define the permissions it requests, either always or at runtime (in
newest versions). One application can also define the permissions any other
application shall hold so to use content, and features this application may
provide.

– Features, either software or hardware, that the app requires to be properly
installed and not crash.

• Permission System Android develops a permission-based security model im-
plying that any process, to be authorised to access a specific resource or execute
a protected feature, shall be namely granted the right to do so [198]. As above
mentioned, these permissions have to be listed in the Android Manifest.xml file,
at the root of the apk file. Researchers deployed systematic tools to gather the
complete list of permissions [199].

2.4.4 A few specific threats to Android
In the following subsection, we will briefly list a few proven threats to the Android

OS. Not necessarily core to the following thesis, these threats enable to highlight the
sources of threats to the system and entrance points to be monitored and to which
specific attention must be paid to prevent abusing the system.

• Google’s Play Store proposes several verifications on the code of applications [200].
For half a million apps daily, it includes undisclosed static, dynamic analysis, and
machine learning [201]. Android developers have evoked to use logistic regression
to reverse engineer malware and then train "best models" (as deep learning) with
improved features engineering process [202]. Certain anomalies may still evade
the detectors, resulting in either Malware, or other PHA (Potentially Harmful
Applications), to be installed on the device. Thus a whole pan of research has
developed so to find these applications, either properly malicious or other dissat-
isfactory behaviour (such as leaking data [203] or displaying advertisement [204]).
New techniques developed can involve:

– static analysis [205]: detecting logic bombs [206], finding leaking compo-
nents [207], analysing the bytecode [208]

– dynamic analysis:
– or using machine learning [209]: among the most famous is DREBIN [210],

that has since been investigated to explain the most significant features
leading to the decision [24],

– among other attempts to understand labelisation as malware and character-
ising [211]

• Specific applications may be copied and republished on application markets with
an altered, and potentially malicious, payload. As applications include libraries,
sometimes left aside for investigation, these libraries are particularly interesting
for hiding payloads. Generally speaking, this practice is called piggybacking [212].

• Android can to use reflection and make native calls. This, conjugated with the
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ability to access other applications systeme and services, make it possible to access
resources and native code of other applications [213].

• The permission-based-security-model implemented may results in so-called per-
mission gaps [199]. These occur when applications ask, in their Manifest, for
more permissions than they need given the feature they aim to provide. This is
further worrying given the possibility for applications to use other applications’
code mentioned above.

• For Android 4.4 and below, MADAM [214] gets triggered by seven different
types of malware given fourteen features. These features include application
metadata, user actions, API calls, SMS sending, and system calls. On Application
installation, seven malicious behavioural patterns have been set. Moreover during
the use, the on-device system is trained on two K-nearest neighbours algorithms.
These are trained genuine, in-the-wild application activity and confronted with
artificially generated malicious behaviours. One classifier gets triggered by short-
term suspicious behaviour, and the other by long-term suspicious behaviour.
MADAM provides an accuracy measure of 96.9% based on three data sets,
including malware: Genome, Contagio-Mobile and VirusShare. Authors argue
False-Positives impact rather than usability than security and provide to integrate
User Validated False Positives in the training set for improvement. The ground
truth is established on a majority vote of VirusTotal classification.
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3 Analysis of AOSP’s Disclosed Vulner-
abilities

In this chapter, we analyse over ten years of Android Open Source Project vulnerabilities.
We first provide our methodology to gather the data using Data7. We then present our
analysis approach, aiming to make the analysis explainable and the resulting data set
updatable. In a second section, we discuss our analysis results from the analysis of
about one thousand patched vulnerabilities we analysed on different aspects. We provide
temporal descriptions of the evolution, as a discretisation per components of AOSP and
per weakness type. We further provide a focus on the evolution of Memory Corruption
vulnerabilities.
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3.1 Motivation
Android is a leading operating system for mobile. Its particularity in the market is

that its source code is made available via the Android Open Source Project (AOSP), an
open-source initiative led by Google. Regarding AOSP security, valuable information can
be found on the MITRE website about patched vulnerabilities. In addition, since 2015,
Google regularly releases security bulletins documenting the recently fixed vulnerabilities.
The scale and the open-source nature of AOSP, combined with this security information,
offer the research community a rare opportunity to study the evolution of the security
posture of a large and evolving software system spanning across its lifetime, i.e., in the
case of AOSP, over more than 10 years.

The literature already includes several longitudinal studies on the security of software
systems. For example, researchers applied security scanners on open-source systems
to investigate the evolution of vulnerabilities over time (Debian [76], OpenBSD [59]).
While findings of such studies offer relevant insights, they bear some threats to validity
due to the inescapable false positives in static analysis. To overcome this limitation,
other research works consider vulnerabilities reported and acknowledged in public
vulnerability databases such as MITRE 1 or NVD 2. In such databases, a vulnerability
is generally defined as a software defect that may impact the security of the software,
e.g., that can be exploited by an attacker [215].

Each known vulnerability is attributed a Common Vulnerabilities and Exposures
(CVE) identifier. Additionally, CVEs are associated with a vulnerability type known as
Common Weakness Enumeration (CWE). In a recent study [32], reported vulnerabilities
metadata was proven significantly erroneous: among 10 000 CVE that were analysed,
they had to correct information of the CWE field for up to 31% of the dataset. The
heterogeneity of the data, specifically regarding Android vulnerabilities [80].

In prior studies related to Android vulnerabilities [216, 78] manual update of the
information collected from CVE datasets have been undertaken. Due to multiple
recurrences throughout our manuscript of these two related work, we will refer to them
in the rest of the chapter as LV17 and MAZ19 respectively

LV17 and MAZ19 provide a substantial manual categorisation of Android vulnera-
bilities. Their dataset includes samples until June 2017. For each CVE, they manually
associate a CWE. Nevertheless, the authors provide no information regarding the chosen
risk model, i.e., the perspective/mindset under which they analyse vulnerabilities. Yet,
information about this perspective is necessary to ensure a consistent analysis approach
as recognised by the NIST3. To illustrate potential inconsistencies depending on the
perspective/mindset, let us consider two examples of CVEs.

Example 1: CVE-2015-6599 is a vulnerability released in the October 2015
android bulletin4. The patch that provides a fix for this vulnerability is available5

with the following commit message: "libstagefright: check overflow before memory
allocation in OMXCodec.cpp". On the NVD website, this CVE is registered with the
type "CWE-119: Improper Restriction of Operations within the Bounds of a Memory

1https://cve.mitre.org/ or https://www.cve.org/
2https://nvd.nist.gov/
3page 15: https://nvlpubs.nist.gov/nistpubs/Legacy/SP/

nistspecialpublication800-30r1.pdf
4https://source.android.com/security/bulletin/2015-10-01
5https://aofndroid.googlesource.com/platform/frameworks/av/+/

af7e33f6043c0be1c0310d675884e3b263ca2438
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Buffer"6

CODEC_LOGV("allocating %lu buffers of size %lu on %s port",
def.nBufferCountActual, def.nBufferSize,
portIndex == kPortIndexInput ? "input" : "output");

+ if (def.nBufferSize != 0 && def.nBufferCountActual > SIZE_MAX / def.nBufferSize) {
+ return BAD_VALUE;
+ }

size_t totalSize = def.nBufferCountActual * def.nBufferSize;
mDealer[portIndex] = new MemoryDealer(totalSize, "OMXCodec");

Listing 1: CVE-2015-6599 Patch Code

In LV17/MAZ19, the authors do not consider the original CWE-119 and instead
manually associate two CWEs to this vulnerability: (1) A generic CWE-264: Permis-
sions, privileges, and access control7 which is a category unused since 20168; and (2)
a more specific CWE-265: Privilege/Sandbox Issues, a category that has since been
renamed as Privileges Issues.

With this example, we first notice that LV17/MAZ19 refers to a CWE that is now
obsolete, a situation that calls for an update of previous studies. Moreover, and more
importantly, their CWE manual categorisation is focused on the consequence rather
than the cause of the vulnerability. Indeed, “Privilege issues” refers to the impact of
the exploitation of this vulnerability. In some cases, however, the analysts who must fix
the vulnerability are looking to understand the root cause of the vulnerability. Hence,
the patch code presented in Listing 1, would lead to a different categorisation related to
the integer overflow that is fixed. The assigned CWE would then be CWE-120: Buffer
Copy Without Checking Size of the Input.

Example 2: CVE-2016-2448 has been disclosed in the May 2016 Android
Bulletin9, and associated with CWE-264: Permissions, Privileges, and Access Controls
on the NVD database10. The patch is publicly available11 and the commit message is:
"NuPlayerStreamListener: NULL and bounds check before memcpy".

In LV17/MAZ19, the authors decided on CWE-120: Buffer Copy Without Checking
Size of the Input, which can only be attributed when considering the cause of the
vulnerability and by analysing the fixing patch (Listing 2).

As is visible from these two examples, a given group of authors may very well,
in the same study, attribute CWE sometimes based on the cause, and sometimes
on the consequence of a vulnerability. Such inconsistent labelling will necessarily
lead to issues with the systematisation of knowledge, and to a lesser extent with
reproducibility. Furthermore, the security community has concluded that using different
perspectives/mindsets to analyse a vulnerability can lead to diverging conclusions [217].

Unfortunately, the authors of LV17/MAZ19 do not precise their analysis approach,
and we have found evidence for alternative uses of different approaches. In order to
overcome these limitations and shortcomings, we propose to come up with our own

6https://nvd.nist.gov/vuln/detail/CVE-2015-6599
7As reported in the Top Level Type field at https://ml-papers.gitlab.io/android.

vulnerabilities-2017/appendix/EMSE2018/vulnerabilitiesList.html
8https://cwe.mitre.org/data/definitions/264.html
9https://source.android.com/security/bulletin/2016-05-01

10https://nvd.nist.gov/vuln/detail/CVE-2016-2448
11https://android.googlesource.com/platform/frameworks/av/+/

a2d1d85726aa2a3126e9c331a8e00a8c319c9e2b
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@@ -144,8 +144,17 @@
copy = size;

}

+ if (entry->mIndex >= mBuffers.size()) {
+ return ERROR_MALFORMED;
+ }
+
+ sp<IMemory> mem = mBuffers.editItemAt(entry->mIndex);
+ if (mem == NULL || mem->size() < copy || mem->size() - copy < entry->mOffset) {
+ return ERROR_MALFORMED;
+ }
+

memcpy(data,
- (const uint8_t *)mBuffers.editItemAt(entry->mIndex)->pointer()
+ (const uint8_t *)mem->pointer()

+ entry->mOffset,
copy);

Listing 2: CVE-2016-2448 Patch Code

Table 3.1: Disagreement Table
Exact Match Close Match Following Nodes Deprecated 7-PK CWE-391 Clear Dissociate TxUnclear In Common

# 241 89 1 17 5 30 78 9 470
% 51.27 18.93 0.21 3.62 6.32 1.06 16.60 1.91 100

systematic and fully disclosed methodology to attribute CWEs to vulnerabilities. We
applied this methodology to all the vulnerabilities in our dataset, even for the 483
vulnerabilities that were also attributed CWEs in LV16/MAZ19.

Our methodology for mapping AOSP’s CVEs to CWE is presented in Section 3.2.2.1.
We map 987 CVEs, 487 in common with MAZ19’s study. The rest is an AOSP-focused
temporal update. Eventually, we found that our categorisation is matching that in
LV17/MAZ19 for about 70% of the 487 shared CVEs (see Table.3.1). In 52% of CVE
cases, the categorisations perfectly match. For the rest, the agreement is partial due,
for example, to mapping to CWE types that are no longer supported. We disagree
over 16.6% of vulnerabilities in common, which differences in analysis approaches can
partially explain.

In this chapter:
We investigate the evolution of the publicly disclosed vulnerabilities that affected the

Android Open Source Project. We manually analysed the 987 vulnerabilities that were
publicly released until June 2020. Such an investigation has been started by peers until
June 2017, that we reactualise up to June 2020 with most recent data and up-to-date
CWE list.

We aim to improve reproducibility and enable potential future exploitation of our
analysis of AOSP vulnerabilities by differentiating from the existing related work by
providing a precise analysis approach. We also express clearly the set of categories we use
for our categorisation, following the NIST’s Guide for Conducting Risk Assessments [217]
vulnerability oriented.

We evaluate the trend of these disclosed vulnerabilities and confront them with the
effort produced by developers to harden the host system.

The main contributions of our work are as follows:
• We provide a precise methodology for a manual analysis of 987 AOSP vulnerabili-

ties based on their related patch fixes.
• We provide several analyses for the evolution of these vulnerabilities over time
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Table 3.2: Number of Vulnerabilities (i.e., CVEs) considered in our study

NIST only NIST + Android Bulletins Final Set
37 950 987

and across AOSP. These analyses also cover the evolution of the type of these
vulnerabilities.

The link to CVE-to-fix could be useful to recent promising approaches [87] that
leverages fixing patches to find known vulnerabilities in the code. Their tool MVP
improves from previous state-of-the-art ReDeBug [89] and VUDDY [88]. The precision
in the categorisation could fulfill the teaching from Goseva et al. [128] that supervised
detection of vulnerabilities only outstands unsupervised methods with the quality of
the training data labelling.

3.2 Vulnerability Analysis Methodology
In this section we first explain how we gathered data for our study. Then we detail

the systematic approach we followed to manually categorise vulnerabilities.

3.2.1 Data Retrieval of Android Disclosed Vulnerabilities
To collect data related to Android vulnerabilities, we consider the Common Vul-

nerabilities and Exposures (CVEs). As defined by the MITRE Corporation, a CVE is
identified by a string CVE-Y-X where Y is the year when the vulnerability has been
discovered and reported to MITRE. X is an incrementing id number over the year. All
the CVEs are present in a list maintained by MITRE, which is used to populate a
database named NVD maintained by NIST12. In the remainder of this work, we will
refer only publicly disclosed vulnerabilities and thus have a CVE number. Therefore, in
practice, we will use vulnerability and CVE interchangeably.

In practice, we collected data related to Android vulnerabilities from the NIST NVD
database, the primary resource we rely on for vulnerabilities disclosed from 2007 to 2015.
Starting from 2015, we complement the information provided by NIST thanks to the
Android Bulletins. These bulletins are Google’s monthly reports providing information
about the last patched vulnerabilities in AOSP. A significant strength of the Android
bulletins is that they provide key information regarding a vulnerability: the link to the
patch that fixes it. This patch is central for our study since we use it to categorise its
associated vulnerability (cf. Section 3.2.2). In particular, the changes that have been
applied to transform a vulnerable piece of code into a non-vulnerable one are helpful to
categorise the vulnerability. Note that the patch fixing a vulnerability is sometimes
also available (directly or indirectly) from the NVD database information. However,
this information is often not directly available and requires extra effort by navigating
related web pages and blog entries.

Table 3.2 reports the total number of vulnerabilities that we consider in our study.
Overall, we collected 1007 vulnerabilities related to the Android framework.

3.2.1.1 Data7
To gather all the vulnerability information regarding the Android Open Source

Project (AOSP), we relied on a customised version of Data7 [218]. This tool has been

12https://cve.mitre.org/about/cve_and_nvd_relationship.html
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designed to collect and combine several sources of information related to vulnerabilities.
In particular, given vulnerability reports such as NIST’s data feeds, Data7 automatically
outputs a structured dataset that connects vulnerabilities to the patches that fix these
vulnerabilities. Note that collecting these patches is not trivial. Indeed, dedicated
scrappers need to be developed to follow the url links provided in the vulnerability
reports.

For each vulnerability of a given software project, the output dataset contains the
following information:

• CVE number
• description
• CWE number (if applicable)
• time of creation
• time of last modification
• CVSS severity score
• bug ids (if existing)
• list of impacted versions of the software project
• list of commits that fixed the vulnerability which contains:

– hash
– timestamp
– message
– fixes (files in their states before and after fix)

In order to apply Data7 on our target sources of information (i.e., NIST and the
Android bulletins), we extended Data7 on two fronts. First, we updated the input
parser of Data7 to not only consider xml files as input but also json files, json being
the updated format of the data provided by NIST13. Second, we implemented a new
module specific to the Android bulletins in order to scrap and gather the patches fixing
vulnerabilities.

3.2.1.2 Android Bulletins and NIST: Vulnerabilities disclosed from 2015

Since the disclosure of CVE-2015-1538 in August 201514, Google releases monthly
security bulletins called Android Bulletins. A bulletin released in a month n provides
the list of CVEs affecting Android that were patched during month n − 1. The
next update provides the users with these fixes. Not all vulnerabilities present in
the Android bulletins are of interest for our study because they are not all directly
related to AOSP. Indeed, vulnerabilities affecting, for instance, the upstream Linux
kernel, hardware exploitation modules (Qualcomm, Mediatek, lgmtk) or specific Google
devices (Nexus and Pixels) are included. To only keep AOSP-related vulnerabilities, we
rely on the "location" of where the patch correcting a vulnerability has been applied.
Concretely, we considered in our study all available vulnerabilities that have been
patched in the Android repository https://android.googlesource.com/. Patches
that, for instance, affect the upstream Kernel, i.e., redirecting to the Linux kernel
repository git.kernel.org have been discarded.

As shown in Table 3.2, overall we collected 950 CVEs from the Android Bulletins
for which we could also obtain the matching correcting patch.

13https://nvd.nist.gov/General/News/XML-Vulnerability-Feed-Retirement
14https://source.android.com/security/bulletin/2015-08-01
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3.2.1.3 Completion for vulnerabilities disclosed from 2007 to 2015
Before the introduction of the Android bulletins, i.e., from 2007 to 2015, the

NIST NVD database and the associated feeds were the main sources of information
regarding vulnerabilities related to AOSP. We downloaded and processed the json file
associated with each year from 2007 to 2015 present on this NIST web page15. To only
retrieve vulnerabilities related to Android, we first check for each vulnerability if the
field16 providing the list of affected systems contains the string android. Overall, this
methodology enables us to gather 57 vulnerabilities.

This list of 57 vulnerabilities required additional manual filtering. Indeed, among
those 57 vulnerabilities, 5 are either related to a third-party application (e.g., Symantec
application) or to specific smartphone suppliers (HTC, Motorola and LG).

Eventually, we were capable of retrieving the fixing commit for 37 vulnerabilities
out of these 57 CVEs.

3.2.2 Categorisation of Vulnerabilities
In the case of software vulnerabilities, one critical piece of information is the

categorisation into Common Weakness Enumeration (or CWE). CWEs constitute a
catalogue of over 600 categories of issues maintained by MITRE, that can be related to
security, allowing a high-level tree-structured categorisation of vulnerabilities. MITRE
advertises that three roots at the base of their internal hierarchical representation
permits to reach all CWEs.

As highlighted in [37], categorisations of CVEs by CWEs can be seen as subjective.
It has been shown that errors—or even noise—in the data used to train AI approaches
can greatly impair vulnerability detection performance, particularly in real-world
settings [33]. The NIST advises analyses to clearly state the chosen risk model (see
Section 3.2.2.1). Otherwise, the very same vulnerability can be attributed to a different
category depending on whether the analysis focuses on (a) the source threat, (b) the
assets that are impacted at the end of the exploit, or (c) the moment (the lines of code)
at which the behaviour would deviate from the expected one.

We thus have to retrieve those CWE with the entangled relationships, before stating
a clear reproducible risk model.
3.2.2.1 Categorisation Process

As explained in Section 3.2.1, we collected over 987 AOSP CVEs. The Mitre CVE
webpage also provides a description of the vulnerability and links to external resources.
Sometimes, these resources (e.g., Proofs-of-Concept, exploits, issue trackers entries,
academic presentations or forum discussions) may be unstructured and of varying
quality and depth, and thus may not always allow us to understand the vulnerability
appropriately nor to bring enough confidence regarding our analysis [80].

Hence, we focus our analysis on the patches the Android Bulletin provide.

1. We first need to describe our analysis approach. Such a categorisation depends
on the exact question an analyst tries to answer when attempting to analyse a
vulnerability. The analysis approach is an essential point, as stated by the NIST17:

15https://nvd.nist.gov/vuln/data-feeds#JSON_FEED
16This field is cpe23Uri, where cpe stands for Common Platform Enumeration
17See page 6-7 and 15 of https://nvlpubs.nist.gov/nistpubs/Legacy/SP/

nistspecialpublication800-30r1.pdf
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"By making explicit the risk model, the assessment approach, and
the analysis approach employed, [. . . ] organizations can increase the
reproducibility and repeatability of risk assessment".

In the same document, the NIST lists three approaches:

(a) threat oriented, focused on the development of threat scenarios and the
impact identified based on adversary intents

(b) impact oriented, focused on the impacts on critical assets and identifying
threat events that could seek those impacts or consequences

(c) vulnerability oriented, that starts with a set of predisposing conditions or
exploitable weaknesses. It identifies threat events that could exercise those
vulnerabilities.

To achieve the goals of repeatability and reproducibility, we state that our analysis
follows the vulnerability oriented approach.

Furthermore, from a predisposing condition in the code to its exploitation, there
can be a chain of events, or threat events. Each of these events, when taken
individually, may lead to a different categorisation. We must then also state
that we consider the code before the patch, at the location of the patch, as the
predisposing condition toward the exploitation of a weakness.

We formulate the question summarising our analysis approach as follows:
How does this patch prevent the unwanted behaviour from
happening again?

An concrete example of how this matters is provided further below, in Sec-
tion 3.2.2.2.

2. To choose the right CWE, we use Mitre’s website dedicated to CWEs18. We
expand the three CWE domains that are:

CWE-699: Software Development

CWE-1000: Research Concepts

CWE-1194: Hardware Design

This hierarchy (we might refer to as CWE trees) goes from the top to the bottom
as from the broader to the more specific weaknesses. For each CWE tree, we
select the more general categories that could match the kind of vulnerability the
patch aims to prevent. We confirm with the description. For each of the selected
CWEs, we try to find more specific CWE branches in the hierarchy.

3. We do this manually for each branch of exploration until we cannot go any deeper,
i.e., until available sub-types do not match anymore with the vulnerability we
are analysing. We keep all these general CWEs, before more specific ones can be
found no more, as potential candidates.

18https://cwe.mitre.org/
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4. We have then a list of potential weaknesses that we confront. CWEs’s descriptions
are necessary as they provide a stricter frame than the title of the CWE sometimes
does. Focusing on the behaviour the patch prevents, one CWE is selected and
attributed to the considered CVE.

For each CVE, we provided a CWE before looking at the attributed category by
MAZ19. It prevents our analysis from being biased, at the cost of a potential increase
in the number of differences. Afterwards, and in case of a mismatch, we made sure to
re-analyse concerned vulnerabilities to decide if we stand with our conclusion or if we
are eventually more convinced by the related work’s analysis.

Eventually, we were able to provide a CWE category following our categorisation
process to all but four vulnerabilities.
3.2.2.2 Example of categorisation

We provide in Listing 3 the patch that fixes the vulnerability CVE-2017-0382.

diff –git a/libs/binder/Parcel.cpp b/libs/binder/Parcel.cpp
index e88ae29..19ce3eb 100644
@@ -548,7 +548,7 @@

// grow objects
if (mObjectsCapacity < mObjectsSize + numObjects) {

size_t newSize = ((mObjectsSize + numObjects)*3)/2;
- if (newSize < mObjectsSize) return NO_MEMORY; // overflow
+ if (newSize*sizeof(binder_size_t) < mObjectsSize) return NO_MEMORY; // overflow

binder_size_t *objects =
(binder_size_t*)realloc(mObjects, newSize*sizeof(binder_size_t));

if (objects == (binder_size_t*)0) {

Listing 3: CVE-2017-0382 Patch Code

Analysing the code before the patch, we deduce that an Integer Overflow may happen
in lines 552-553 with the expression newSize*sizeof(binder_size_t). Then the new
buffer would have a size smaller than the required space. When the elements are copied,
they overflow the too-small space allocated in memory. However, the patch focuses on
another line. On line 551, the original code attempts already to check if the calculated
newSize suffers an integer overflow by comparing with mObjectSize. This verification
forgets that the computation on line 553 (newSize*sizeof(binder_size_t)) is another
threat for the value to overflow. The patch corrects by calculating the appropriate size
of the buffer.

To summarise, the miscomputation of the size of the buffer (CWE-131) paves the
way to an integer overflow (CWE-190). The latter enables a buffer overflow (CWE-680:
Integer Overflow to Buffer Overflow). As the patch focuses on correcting actual
buffer size calculation, relatively closer to the design level of the code, we conclude to
CWE-131: Incorrect Calculation of Buffer Size.

Note that if we were focusing on the impact on the assets, we would conclude to a
CWE-680: Integer Overflow to Buffer Overflow, or just to a CWE-787: Out-of-bounds
Write (which are both sub-types of CWE-119: Improper Restriction of Operations
within the Bounds of a Memory Buffer). Also, if the pre-patch version was not so
obviously verifying an integer overflow on a value that is not the eventual size of the
buffer, and if we focused on the adversary intents (see Section 3.2.2.1), we would
conclude to Integer Overflow alone or Integer Overflow to Buffer Overflow.
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3.3 Analysis of 10 years of AOSP Vulnerabilities
In this section, we discuss AOSP vulnerabilities over ten years. We pursue several

objectives, the first of which is to present the results of our manual categorisation and
the profile of the resulting dataset.

These observations may lead to insights regarding the security profile of AOSP.
A similar study was carried out regarding the Long Term-Support (LTS) Debian
Wheezy [76]. They specifically focus on whether the version achieved maturity. They
hope the duration of the support might enable system hardening.

We present a temporal evolution of the AOSP vulnerabilities in Section 3.3.1. In
Section 3.3.2, we use Mitre’s data to discuss the evolution of the number of AOSP
versions impacted by each vulnerability. Then, we identify how vulnerabilities are
distributed among AOSP’s software packages/modules in Section 3.3.3. We also observe
the temporal evolution of vulnerabilities’ severity affecting AOSP in Section 3.3.4. In
Section 3.3.5, we classify the vulnerabilities by type to understand which affects the
AOSP system the most and what conclusion we can draw from the temporal evolution
of those vulnerability types. Eventually, in Section 3.3.6, we focus on vulnerabilities
affecting the memory, i.e., that rely on corrupting allocated memory blocks. The
results of our manual categorisation are accessible at https://github.com/TimUniLu/
TimUniLu-Android_Vulnerability_Analysis.

3.3.1 General Evolution of Vulnerabilities
In the following section, we discuss the temporal evolution of android vulnerabilities

to investigate the following research question:
RQ: How has evolved the disclosure of AOSP vulnerabilities ?

3.3.1.1 Description

Figure 3.1 presents the temporal evolution of publicly disclosed vulnerabilities we
analyse. The date of public disclosure considered for each vulnerability is the earliest
we could find between the date of the bulletin or the registration date of the CVE on
the CVE Mitre website, as other works assumed [32]. The graduations of the X-axis
represent a three-month period each. This 90-day19 period is generally accepted as
the standard for a responsible disclosure. Google Project Zero itself applies this 90-day
period regarding the vulnerabilities they might find20.

In Figure 3.1, we observe that there are two clear time-spans. The first time-span,
until 2015’s first quarter included, shows a very low number of vulnerabilities related to
AOSP being released: 43 over seven years.

In the second quarter of 2015, an impressive peak appears: Almost ten times more
vulnerabilities are disclosed this quarter than in all previous quarters. This peak is
not a random fluctuation. Indeed, at the end of this quarter, Google published the
first instalment of its "Android Security Bulletin", that described the recently patched
vulnerabilities. As discussed further below, it also corresponds with the disclosure
of several CVEs affecting the media stack of Android, through what is known under
the name libstagefright. Then the number of vulnerabilities disclosed keeps, overall,
increasing until the second part of 2017. It peaks at 70 vulnerabilities for the second

19https://www.google.com/about/appsecurity/
20https://googleprojectzero.blogspot.com/p/vulnerability-disclosure-faq.html
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Figure 3.1: Evolution of Android Vulnerabilities by quarter over the last 10 years
(date of release is the earliest we could find between the date of the bulletin and the registration date
of the CVE on the CVE Mitre website)

quarter of 2017 and from then gradually decreases to 40 CVEs per quarter. Eventually,
the number of AOSP vulnerabilities released stabilises around 20 per quarter by 2020.

Two trends were added to Figure 3.1: one over the whole period (since 2008),
and another one since the apparition of Android Bulletin. They are both Mayer
approximations, meaning the data is split into two equal sets over the study period.
An average value is computed for each period of these sets.

One may arguably wonder if the last slow descent and, at least, stabilisation is not
an illusion. Vulnerabilities could have already been discovered but not have a reserved
CVE yet.

3.3.1.2 Analysis
As mentioned above, before 2015, and thus before the first Android bulletin, in-

formation about AOSP vulnerabilities is scarce. Neither was clearly defined what a
vulnerability affecting Android was. For example, CVE-2011-3975 and CVE-2012-3979
are both registered as Android-specific while they respectively affect only a few HTC
devices, in the first case, and affect the Mozilla Firefox application, in the second case.
Thus it might be hard to infer any trend or specificity further than Jimenez et al. [77]
(see Section 2.1.4.3).

We may at first dismiss any significance about the first peak of 2015. It could only
represent the vulnerabilities that have been pilling up before the first released bulletin
rather than an actual trend. If so, it may only enlighten that action was required
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regarding the number of discovered vulnerabilities.
The increasing number of vulnerabilities may come from an increase of focus on

vulnerabilities of the Android OS as Google advertises about it through the monthly
bulletin. Also, the libstagefright dread may have put Android under the spotlight.
Google may then have had no choice but to go public and seek the help of analysts.

The decrease in absolute number that we can see in Figure 3.1 is a behaviour we
can observe for AOSP only. Indeed, other studies such as [76] focusing on the analysis
of vulnerabilities in LTS Debian Wheezy do not observe a similar trend. In their case,
the semester per semester trend kept augmenting either generally or per package per
semester. The authors conclude that Debian Wheezy had not achieved the point of
maturity by the time it stopped being supported. The same analysis goes for Windows
NT 4.0, Solaris 2.5.1 or FreeBSD 4.0 with data over four to seven years [53]. Only Red
Hat 6.2 presents a kind of a clear decrease that, however, is based on a too short time
span to be conclusive.
3.3.1.3 Conclusion

Since at least 2017 up to June 2020, the trend is to a reduction of the number of
CVEs that needs to be patched in AOSP. So in contrast with Debian Wheezy [76], it
is an encouraging sign. It is however difficult to be categorical as there is still a high
number of vulnerabilities overall.

Also, Android evolved over the years: both with new features and certainly also
with developers learning techniques to prevent the exploitation of vulnerabilities that
occurred in AOSP. We can hope they were then implemented. It results that later
vulnerabilities might be very different from the earliest ones, potentially more complex.

This temporal study may not be enough to characterise the maturity of the Android
OS in regards to security. It may however be enough to later wonder about the roots of
that late evolution. Do the team of developers has used the accumulated knowledge to
better tackle or better prevent vulnerabilities and their exploitation?

Yet, an encouraging sign regarding the efficiency to tackle vulnerabilities would be
if their life duration shortens.

3.3.2 CVE Lifespan

RQ: For how long vulnerabilities tend to last in Android-OSP ver-
sions ?

3.3.2.1 Description
To answer this question, we use the data given by the NVD database regarding our

set of CVEs.
We count, for each CVE, how many months separates two affected versions: from

when it appears to when it is patched. We count as version any version appearing in
the NVD JSON file and order them.

The results are provided in Figure 3.2a and Figure 3.2b.
Regarding the figures, we count the months separating the earliest version provided

in the NVD database until the last provided. We assume all those in-between to be
affected. The second (i.e., right) Y-axis of Figure 3.2b indicates the official API-level of
major Android versions (in X.0).

Figure 3.2a presents that the median lifespan of a CVE is 25 months, with a first
quartile at 12 months and the third quartile at 32 months.
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Figure 3.2: Lifespan of AOSP related vulnerabilities

Also visible on this figure are several outliers above the higher whisker. CVEs
present for more than five years gather vulnerabilities that were introduced very early
in AOSP (API level 1 to 8, between 2008 and 2010, or Android version 1.0 or 2.2 for the
latest) but were only corrected in API level 19 (in 2014, i.e., version 4.4). In Figure 3.2b,
they are on the far left of the representation.

Another set of vulnerabilities present for five years or more was introduced as early
as October 2011, but only corrected in late 2016. A few vulnerabilities even survived
until as late as August 2017. They are relatively easy to identify in Figure 3.2b as
among the last vulnerabilities that starting to affect API-level 14.

We can observe, from Figure 3.2b, that the life-span of CVEs shortens starting
API level 21. API-level 27 and 28 were the last versions to be affected by several
vulnerabilities.

3.3.2.2 Analysis
These figures highlight that the outliers from Figure 3.2a are mainly introduced

around the first versions of Android. From API-level 21 on, three years is usually the
maximum length for the lifespan of a vulnerability affecting AOSP.

To provide a point of comparison, in another study [75], the authors conclude that
for 50% of the 80k CVEs, over the NVD global data feeds up to 2016, have a lifespan
that exceeds 14.4 months. They also find the average lifespan of CVEs to be of 5 years.
AOSP appears more responsive with an average of 25 months.

If Android Bulletins started to be published at the same period of time, it may not
entirely explain this characteristic as vulnerabilities would only appear fixed, maximum,
in the next version. Thus not adding such a short cap we observe. It may highlight
that AOSP developers have taken other actions than just the Android Bulletins.

3.3.2.3 Conclusion
The response time is shorter than in other studies analysing vulnerabilities in a

system, with the lifespan of the CVEs we analyse rarely (if not never) reaches extreme
values over 3 years since 2014-2015.

As we are only analysing publicly released vulnerabilities, it weakens slightly our
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conclusion that vulnerability lifetime reduces. Other vulnerabilities may lie uncovered
from a long time on. These could be a vulnerability type analysts have not focused on
yet.

3.3.3 Vulnerability Location
In this section, we investigate the distribution of vulnerabilities accross the layers

and the modules of AOSP.
RQ: Have some AOSP layers or modules been more exposed than

others?
To answer this question, we first provide a timeless analysis by describing Figure 3.3.

This figure represents the percentage of vulnerabilities affecting each layer, and each
module. Then we consider the temporal aspect for each layer through Figure 3.4.

Note: Sum of percentages may be above 100% as the list of patched files may redirect to several layers
and/or modules. However layers and modules are counted only once per CVE.

Figure 3.3: Vulnerability Location in the AOSP Framework
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3.3.3.1 Global Description Across AOSP

To produce the Figure 3.3, we used the usual AOSP’s Framework representation
and design from other works [216, 78] with our own data and conclusions. To achieve
this, we extract all the paths of all the files that are modified by all fixing commits into
a list. From this list, combined with the AOSP repository and its documentation, we
extracted paths that we could connect to a specific layer of the AOSP Framework. For
example, the directory platform/hardware/libhardware is used to host the code of
the Hardware Abstraction Layer (or HAL) as suggested in the documentation21. For
instance, it helps to conclude that CVE-2016-3760 has been corrected, at least partially,
by modifying the Bluetooth module of the HAL. The resulting list of such rules manages
to sort the 4400 file paths of the 978 CVEs. When several files are modified, we may
count several layers as concerned by this vulnerability. However a layer is only counted
once per CVE. Results of this automatic method may thus also differ from works of
reference [216, 78] as authors organised a vote for one affected area per CVE, while
here we infer automatically from the moment we understand one path is related to one
module of one layer. Our list of rules could be improved and completed further as new
vulnerabilities are added to the dataset.

Figure 3.3 is readable as follows: for each layer (from Application to HAL) the
more often CVEs affects a layer, the darker red this layer is coloured. Inside each layer,
the darker yellow the module, the more it is affected relatively to the layer’s individual
count. Thus, globally, the Media module of the Native layer is more affected than the
Core Libraries of the Android Runtime layer.

It appears the most affected layer is the Native layer, with 661 unique CVEs related
to it. In particular, the Media module is related to 382 different CVEs. This module
contains all the codecs for video display. The Bluetooth module of the Native layer is
the second most affected module with 86 CVEs. The most common root CWE of the
Native layer is CWE-664: Improper Control of a Resource Through its Lifetime with
54%, followed by CWE-682:Incorrect Calculation, with 11%, and CWE-707: Improper
Neutralization, at 10%.

The second most affected layer is the Application Framework (sometime called Java
API Framework), with 176 CVEs. In this layer, the most affected module is Content
Provider.

The others category is the sum of different but clearly identified modules like the
Location Manager, the Bluetooth Service or the Keystore.

In the Application Framework, the most common root weakness is CWE-284:
Improper Access Control, with 40% of CVEs related to it. Then comes CWE-664:
Improper Control of a Resource Through its Lifetime with 26%.

Third comes the Hardware Abstraction Layer, with 80 vulnerabilities. The NFC
module is the most affected with 39 of the related vulnerabilities pointing to it. Then
comes the Mediaserver and Audio modules, with 15% each. The two third of related
vulnerabilities are CWE-664: Improper Control of a Resource Through its Lifetime.

Ranked fourth by number of vulnerabilities, the Application layer is related to 61
vulnerabilities. The Settings application is the most affected with 26%. Then comes
main applications related to emailing (almost 19%). The most common weakness in
the Application layer is Improper Access Control, with 45% of the CVEs related to
CWE-284.

21https://source.android.com/devices/architecture/hal
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Finally, the Android Runtime has been affected by 18 vulnerabilities. The most
present CWE in the Android runtime is CWE-664: Improper Control of a Resource
Through its Lifetime, followed by CWE-707: Improper Neutralization.
3.3.3.2 Global Analysis Across AOSP

The most representative types of vulnerability follows expectations. Native layers,
using C and C++, offer more ground to memory corruption (that we can find in Improper
Control of a Resource Through its Lifetime). Specifically the Mediaserver libraries
that are impacted by several vulnerabilities in which the input was not appropriately
interpreted or neutralised.

Higher Layers are more prone to permissions related issues with Improper Ac-
cess Control vulnerabilities. Given how the user and the system grants applications
permissions to access resources and services it is logical result.

However, these results do not enable to answer how vulnerabilities are acknowledged
and fixed in relation with their location. Are some module more affected at some point?
Or are they affected in waves? With the focus being put on some modules/layers at
some point in the timeline?

RQ: How has each layer been impacted over time?

3.3.3.3 Temporal Description of AOSP Layers’ Exposure
To answer this question we propose Figure 3.4 that displays, for each layer, the

number of CVEs disclosed per semester. We find the trends we mentioned earlier: the
Native layer is the most impacted and overall there is a decrease of CVEs over time.
The Native layer has seen a peak in the first semester of 2016 and is since losing, on
average, 20 vulnerabilities every year. The peaks of the Native layer in 2016 and 2017
are largely related to the media server module. The Native Bluetooth module was the
mostly impacted in 2017 and 2018 with 26 and 37 CVEs.

The Application Framework noticeably reached a peak in 2016 related to the
ContentProvider, the ActivityManager and the TelephonyManager modules. The 2019
peak cannot be linked to a specific module given that almost all the layer’s module,
presented in Figure 3.3, had more related vulnerability disclosed.

In the HAL layer, the 2019 peak is mostly related to NFC vulnerabilities.
3.3.3.4 Temporal Analysis of AOSP Layers’ Exposure

Globally, more vulnerabilities seem to be published in first semesters. This time-
lapse could match with a few months after a new release. The number of vulnerability
in the HAL does not seem to demonstrate a global fall. It may be related to the fact
that figures are already low, or that the focus has been put on finding the HAL’s NFC
module’s weaknesses with relation to the increased number of authorisations for Google
Pay to be used.
3.3.3.5 Conclusion

Most of the vulnerabilities affected the native layer and media related modules.
Overall, vulnerabilities affect the ASOP framework according to both the usual vul-
nerabilities of a language (memory corruption in the Native layer written in C/C++),
and the use of the language (permissions centered for the higher levels written in Java).
Temporally, we can observe the global decrease of vulnerabilities; we can also notice
peaks that correspond to enquiries in specific modules for a semester or a year: Media
server libraries in 2016, Bluetooth on 2018 and the NFC in 2019.
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Figure 3.4: Temporal evolution of vulnerability emergence in AOSP Framework

3.3.4 Vulnerabilities Severity

Another aspect for which CVE Mitre’s data could help reveal the impact of An-
droid developers’ actions towards vulnerabilities are regarding the severity of the new
vulnerabilities.

RQ: Can we assess a diminution of the severity of new vulnerabili-
ties as a sign of maturity?
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Figure 3.5: Semester per semester evolution of the relative weight of the CVSS score
categories

3.3.4.1 Description

Figure 3.5 presents the distribution of the Severity Score (called CVSS) associated
with each CVE in the NVD database. 68 of the CVEs do not include a CVSS score in
their Mitre Webpage, and are thus excluded from the analysis.

If we were to strictly stick to an analysis semester per semester, some of the semesters
of the pre-2015 period would contain no vulnerability, or very few in comparison with
late semesters. Therefore, we gathered the vulnerabilities from before 2015 in one
timespan: the pre-2015. As this category gathers 115 CVEs, while 2015-S1 and 2015-
S2 hold respectively 105 and 168 CVEs, it enables a more accurate comparative analysis
than if we were to give the same importance to periods with hundreds of vulnerabilities
as to periods with just one or two vulnerabilities.

Vulnerabilities have been grouped together depending on their CVSS score following
the Severity Ratings provided by the NIST 22 as follows:

• Critical impact for CVEs with a CVSS of 9 or higher;
• High impact vulnerabilities are CVEs attributed a CVSS between 7 and 9 (ex-

cluded);
• Medium impact vulnerabilities are CVEs with a score between 4 (included) and 7

(excluded);
• Low impact are those with a score strictly below 4.
A first trend goes from the beginning to the end of 2017. In this period, the rate of

High impact vulnerabilities keeps increasing, reaching 84.8% of all the vulnerabilities
released during the second semester of 2017. From then, the share of High impact
vulnerabilities falls to 50%. It stays at this range between 46% and 57% for two
years before increasing again in 2020, reaching 71.4%. In the meantime, Low impact
vulnerabilities only reach 20% once (in the first semester of 2015) and their share is
decreasing in the last semesters of the study.

22https://nvd.nist.gov/vuln-metrics/cvss
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3.3.4.2 Analysis
The trends evolve back of forth several times. However, there are a few observations

we can make. For example, high impact vulnerabilities represent at least 47% since 2016.
They had two surges in 2017 and 2020. Low impact vulnerabilities, in the meantime,
rarely represent more than 20% of a semester’s CVEs. They have been decreasing for
two years between 2018 and 2020. With this unstable evolution, definitive future trends
stay unpredictable. The fact that there is no increase of low impact vulnerabilities
and that they keep representing a small share of CVEs affecting AOSP is nonetheless
sufficient to deny signs of maturity regarding AOSP vulnerabilities through the CVSS
at the time of the study.

In the Debian analogue study [76] about Debian Wheezy, high impact vulnerabili-
ties kept representing an important and steady proportion. The absolute number of
low impact vulnerabilities was also diminishing. Regarding this trend of low impact
vulnerabilities, original authors conclude that maybe only higher impact vulnerabilities
are patch-worthy. Less impacting vulnerabilities might wait the next major version to
be corrected. In our study, we consider several versions of Android rather than just one.
Regarding Debian [76], low impact vulnerabilities could not observed as patching and
disclosure happen only by the release of the next major versions of a target program.
In our study, they are normally part of our figures, as long as they are released as
vulnerabilities. It is nonetheless possible that these low impact vulnerabilities are
considered as bugs, and internally dealt with.
3.3.4.3 Conclusion

We can conclude that the overall CVSS score distribution has not significantly
evolved. Only a slight comparative increase of concerning vulnerabilities can be noted.
Thus, over the new versions, AOSP still features as significant vulnerabilities as it used
to over the analysis of MAZ19. The observable trend is a clue in the opposite direction
from which a mature or maturing system would go.

3.3.5 CWE Types of vulnerability
One could wonder then if the time passing enabled to tackle one type of vulnerability.

Or if one new type has appeared,evolved or skyrocketed over time.
RQ: Did any weaknesses emerge or disappear over the years?

We provide with semester per semester description of the proportion of vulnerability
types affecting AOSP. We then connect these weaknesses with the absolute number of
vulnerabilities disclosed every semester to provide another perspective. We eventually
conclude these two parts together.
3.3.5.1 Comparative Analysis of AOSP’s Weaknesses

a. Description
In Figure 3.6, we represent, per year of registration of the CVE, the evolution of

the six most numerous root CWEs to the Android OS given own manual categorisation.
The root CWEs are the CWEs of the first level below the three CWE trees described
in Section 3.2.2.1. These root CWEs are:

• CWE-664: Improper Control of Re-
source Through its Lifetime

• CWE-707: Improper Neutralization
• CWE-1218: Memory Buffer Errors

• CWE-284: Improper Access Control
• CWE-703: Improper Check or Han-

dling of Exceptional Conditions
• CWE-682: Incorrect Calculation
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As for some semesters before 2015 there are no vulnerabilities in our study set,
and they are very few when any is present, we gathered this whole period as one
in the pre-2015 category. It enables a more accurate comparative analysis as this
category gathers 115 CVEs, while 2015-S1 and 2015-S2 hold, respectively 105 and 168.
Otherwise, we would analyse based only on a few or no vulnerability per semester.
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Figure 3.6: Comparative evolution of the root CWEs affecting AOSP over the years

From Figure 3.6, we can see there can be a substantial variability from one semester to
the other. In order to reduce our sensitivity to those jumps, we average the percentages
over a temporal window of four temporal slots. In other words, the first one covers
pre-2015 until 2016_S1, the second slot from 2015_S1 to 2016_S2, so long and so
forth. They are presented in Table 3.3.

Table 3.3: Averages over 4 periods of CWE presence

Time Period / CWEs CWE-664 CWE-707 CWE-1218 CWE-284 CWE-703 CWE-682 Others
Pre-2015 to 2016-S1 20.55 18.61 5.20 6.55 3.94 6.32 38.58
2015-S1 to 2016-S2 20.83 19.34 6.80 5.98 4.48 6.75 35.58
2015-S2 to 2017-S1 22.32 19.48 7.17 6.11 4.79 4.50 35.39
2016-S1 to 2017-S2 22.53 19.41 7.88 4.46 5.95 3.59 35.94
2016-S2 to 2018-S1 22.89 21.44 9.30 3.22 5.68 3.22 34.26
2017-S1 to 2018-S2 23.50 22.99 11.32 2.43 4.87 2.85 32.04
2017-S2 to 2019-S1 22.50 20.28 11.06 3.48 3.94 3.94 34.79
2018-S1 to 2019-S2 24.06 20.12 11.73 5.54 2.70 3.09 32.80
2018-S2 to 2020-S1 25.41 17.92 11.97 6.30 2.82 2.71 32.89

1. We can relate that vulnerabilities categorised as CWE-664: Improper Control of
Resource Through its Lifetime have generally and steadily increased from 20.5%
to 25.4%;

2. If CVEs related to CWE-707: Improper Neutralisations have, at first, increased
from 18.6% to 23%, they thereafter gradually dropped back into representing
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barely 18%. The peak occurs when the first semester of 2018 is the last considered
slot.

3. CWE-1218: Memory Buffers Errors represented only 5% but have since reached
11% and maintained to this level.

4. Regarding CWE-284: Improper Access Controls, they have dropped from 6% to
2.7% in the 2017-2018 period. Since, they bounced back to over 6% .

5. CWE-703: Improper Check or Handling of Exceptional Conditions, likewise
Improper Neutralization, rose to drop in the end. Figures are relatively low, but
from 4% they reached 6% during 2016-2017. The have since decreased to only
2.8% by mid-2020.

6. CWE-682: Incorrect Calculation have steadily dropped from 6% to 2%.

7. The group of Other CWEs have recessed if we group the four first and the four
last semesters: from 39% to 32.5%.

b. Analysis
None of the above Weakness Enumerations has totally disappeared. Only Incorrect

Calculation may be on the verge of it, but it is still a trend to be confirmed. Ob-
servation of this figure may also go opposite to signs of maturity. For instance two of
those main weakness types are increasing. It is not a tremendous rise perhaps, in the
range of 5% to 6% each, but a rise that justifies wondering about it further. Those two
categories: Memory Buffers and Improper Control of Resource Through its Lifetime,
also bring the focus over a specific type of weakness: Memory Corruption, which could
regroup several, but not necessarily all, of their sub-categories. A study covering over
10.7K vulnerabilities from the NVD [32], that these vulnerabilities are among the most
reported, if not the most affecting software. In their study, Buffer Overflows are ranked
first and Use-after-Free ranked sixth in the top 10 most common vulnerabilities. An-
other study [75] ranks Buffer Overflows first with an average lifespan of 25 months. To
continue the comparison with Debian Wheezy [76]: the root CWEs authors studied and
that we share are CWE-664, CWE-707 and CWE-682, by order of importance in Debian
Wheezy’s release. Oddly, they consider CWE-118 to be one of those root CWE while it
is, when we access it, a ChildOf CWE-664 23. This category is thus, for us, integrated
to CWE-664. Even though the Debian Wheezy studyis using the CWE attributed on
the NVD website, they seem to have a substantially higher proportion of CWE-693:
Protection Mechanism Failure and CWE-118: Incorrect Access of Indexable
Resource (’Range Error’) than we do.

c. Conclusion
Thus, the analysis that several vulnerability types are relatively more persisting

than disappearing, nor diminishing, prevails. Only Incorrect Calculations weaknesses
show a significant decrease, though from an already low point. We cannot conclude to
an internal maturity of Android about any of the main weaknesses, identically as for
Debian’s Wheezy LTS [76]. This analysis however requires an absolute context to be
confirmed.

23https://web.archive.org/web/20210415124435/http://cwe.mitre.org/data/
definitions/118.html
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In the meantime, we can wonder why certain types, at least, of vulnerabilities are
not more significantly diminishing. Is it related to the coding standard? Or is the
introduction of vulnerabilities unpreventable? In this case, can we however prevent
their exploitation?

3.3.5.2 Global Analysis of AOSP’s weaknesses
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Figure 3.7: Absolute Evolution of the number of CVEs by CWE affecting AOSP the
most

a. Description
In Figure 3.7, we represent, by quarter (like we did for Figure 3.1), the number of

vulnerabilities per main CWE categories.
Most of them seem, in their range, to follow the global trend of CVEs seen in

Figure 3.1.
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1. Figure 3.7a: The weaknesses related to improper control of resource over its
lifetime seem to overly follow the global trend of vulnerabilities with the same 2
phases: an increase from 2015 to 2017, a low gap for a year and a decrease ever
since from a late peak in 2018.

2. Figure 3.7b: The trend of Improper Neutralization is overly the same

3. Figure 3.7c: Regarding Memory Buffers Errors, the peak arrived later, in the last
three months of 2019, and ever since figure dropped.

4. Figure 3.7d: Improper Access Control had almost disappeared in 2018 but have
since regained importance.

5. Figure 3.7e: Improper Handling of Exceptional Conditions show, in absolute
number, a constant decrease since 2016.

6. Figure 3.7f: Regarding incorrect calculation, the decrease is no more obvious as it
seemed during the comparative analysis. This type disappeared for nine months
in 2018, regained its previous level for another nine months in 2019 and back
again disappeared in the last three quarters with almost no new related CVE.

b. Analysis

CWE-664: Improper Control of Resource over its Lifetime
In the comparative analysis, this category seemed to increase, though with the
absolute analysis we can see less and less of this vulnerability type. Thus,
rather than an increase of this type, it is more likely a resistance of this kind of
vulnerability relatively to the global decrease.

CWE-707: Improper Neutralization
This weakness follows the same trend both relatively and absolutely since 2015:
in a first time an increase, then decreasing. The relative decrease synchronised
with the global reduction induces an absolute collapse of this kind of vulnerability.
It is a trend yet to be confirmed as it remains the second most numerous family
of weaknesses.

CWE-1218: Memory Buffers Errors
Here again the rise and stagnation is almost compensated by the general drop of
vulnerabilities. This type relatively resists but generally decreases.

CWE-284: Improper Access Control
This types performs better, in absolute number, as it has lately regained its 2016
absolute level after a year and a half of absence.

CWE-703: Improper Check or Handling of Exceptional Conditions
Meeting their peak in 2016, they have diminished ever since: justifying relatively
good hopes that the developing team might have the processes and/or the tools
to reduce the attack surface to that type of weakness.
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CWE-682: Incorrect Calculation
As for Improper Access Control, this category has recently known periods where
the number of vulnerabilities related is almost nil. Before and after this period,
the figures stay at almost the same level. It could then merely be that analysts
were not focused on this type of vulnerability for a few months. It could be
erroneous to consider that this category as disappeared once and for all based on
the last time slots. It had disappeared already, and came back nonetheless.

c. Conclusion
None of the most present CWE-Types are at their absolute highest by June 2020,

and nor is the absolute trend to an increase. It is an encouraging sign of maturity
first absolutely, and then it also lowers the concerns from the comparative analysis.
However, it is not possible to be positive regarding one category of weaknesses being
dealt with for good. There are signs of hope to be confirmed: we do not know if we are
heading toward a stabilisation or a clear decrease. For example, Incorrect Calculations
show both comparative and absolute weakening. Nevertheless to be confirmed as this
category reappeared in 2019. It is an analysis that we might extend to all CWE-Types
given that it happens for two of them (CWE-682 and CWE-284).

Others are persisting, such as Improper Control of a Resource over its Lifetime and
Memory Buffer Errors. Moreover, as noted above both have sub-categories that can be
mapped together under Memory Corruptions (through the management of pointers in
native as a foremost example for Improper Control of Resources during their Lifetime).

3.3.6 Memory Corruption
In 3.3.5, we mention a perpendicular category of weaknesses called Memory Corrup-

tion. It has been stated this CWE type to produce most impact on systems [32], and
Google claimed in 2016, that 86% of vulnerability that had affected the whole Android
system (i.e., beyond just AOSP) were related to Memory24.

RQ: How have evolved memory corruptions-related CVEs over the
years in AOSP ?

Description After analysing all the External Views from Mitre and not finding one
that sufficiently regrouped CWE that gathered all and exclusively Memory Corruption,
we decided to regroup all the CWEs unambiguously and stricto sensu related to Memory
Corruption. The list, based on the three main mappings described in the Section 3.2.2.1,
is provided in Appendix 6.2.3.
Comparative Description What Figure 3.8 shows is that Memory Corruption has
been an increasing issue until mid-2018, when it reached its peak. If again we compute
the average over a period of 4 semester, the share starts from 16.8%, peaks at 23% in
2018 and lowers to 20% in June ’20.
Description in Absolute Figures Judging from Figure 3.9, we can observe that it
is a trend that confirms in absolute figures. Before the bulletins, 14 Memory Corruption
related vulnerabilities were released. It reached above 60 in both 2017 and 2018 and
seems, at least until June 2020, to slower ever since.
Description of Severity Score In Figure 3.10, we provide with the severity of the
CVEs related to Memory Corruption per semester. The year 2017 is also a period

24Corruptionhttps://source.android.com/devices/tech/debug/cfi
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Figure 3.9: Absolute Evolution of Memory Corruption CWEs affecting Android over
the years

of time where Memory Corruption related vulnerabilities were scored as having the
biggest impacts to the Android ecosystem. It is, respectively, 72.3% and 94.1% of the
vulnerabilities that were scored high impact (rated 7 or above).

It can also be noted that Figure 3.10 does not present all the CVEs discussed above
as several of them are lacking an attributed CVSS score (as discussed earlier). The
most obvious example being the June 2020 period with none of the eleven CVEs being
attributed a CVSS. Another reminder of this lack of completeness of NVD data is the
first semester of 2018 in which 30 vulnerabilities have no CVSS.

Analysis of Memory Corruption An increase, both comparatively and absolute,
can be noticed regarding Memory Corruption related CVEs affecting AOSP around
the years 2017 and 2018. Then absolute figures reduce until June 2020. Only the
comparative figure for the first semester of 2020 increases back over 20%. It is however
a semester with few (only eleven CVEs) and partial (no CVSS) data. This category
remains nonetheless concerning as it often contains CVEs with high or critical impact.
Some semesters, more than 80% of Memory Corruption related CVEs have at least a
high impact. It is often the case in the last semesters of the study.

63



Chapter 3. Analysis of AOSP’s Disclosed Vulnerabilities

	0

	20

	40

	60

	80

	100

Pre
2 015

2015
S 1

2015
S 2

2016
S 1

2016
S 2

2017
S 1

2017
S 2

2018
S 1

2018
S 2

2019
S 1

2019
S 2

2020
S 1

low
medium

high
critical

Figure 3.10: Evolution of Memory Corruption Vulnerabilities CVSS over time

Conclusion Memory Corruption is a concerning vulnerability type affecting AOSP.
If figures are decreasing, related CVEs have not vanished and usually have high impact
on the system.
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4 Vulnerability Detection at Commit
Level

In this chapter, we address the issue of software vulnerability detection.We aim to
replicate the machine-learning based VCCFinder [30], that several tool considered since as
state-of-the-art, refer to without directly comparing given the absence of code availability.
We thus provide a replicable baseline for futur comparison. In a second time, we
explore parameters and algorithm selection, in attempt to improve resulting performance.
Finally, we also attempt to change the set of features and to address the issue induced
by the over-population of unlabeled set in the data set.
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Chapter 4. Vulnerability Detection at Commit Level

4.1 Motivation
Software development is a complex engineering activity. At any stage of the software

lifecycle, developers will introduce bugs, some of which will lead to failures that violate
security policies. Such bugs are commonly known as software vulnerabilities [219] and
are one of the main concerns that our ever-increasingly digitalised world is facing.
Detecting software vulnerabilities as early as possible has thus become a key endeavour
for software engineering and security research communities [26, 27, 28, 29]. Typically,
software vulnerabilities are tracked during code reviews, often with the help of analysis
tools that narrow down the focus scope by flagging potentially dangerous code. On
the one hand, when such tools build on static analysis (either deciding based on code
metrics or matching detection rules), the number of false positives can be a deterrent to
their adoption. On the other hand, when the tools build on dynamic analysis (e.g., for
pinpointing invalid memory address), they are operated on the entire software which
may not scale to the frequent evolutions of software.

To address the aforementioned challenges that static and dynamic tools face in
finding vulnerabilities, [30] have proposed the VCCFinder approach with two key
innovations: (1) the focus is made on code commits, which are “the natural unit upon
which to check whether new code is dangerous”, allowing to implement early detection
of vulnerabilities just when they are being introduced; (2) the wealth of metadata on
the context of who wrote the code and how it is committed is leveraged together with
the code analysis to refine the detection of vulnerabilities.

VCCFinder is a machine learning approach that trains a classification model, which
can discriminate between safe commits and commits that lead to the code being
vulnerable. The experimental assessment presented by the authors has shown great
promise for wide adoption. Indeed, by training a classifier on vulnerable commits made
in 2011 on open source projects, VCCFinder was demonstrated to be capable of precisely
flagging a majority of vulnerable commits that were made between 2011 until 2014.
VCCFinder further produced 99% less false positives than the tool the authors decided
to compare their implementation to, namely FlawFinder [82]. Finally, the authors
reported that VCCFinder flagged some 36 commits to which no CVE was attached,
one of which has been indeed confirmed as a vulnerability introducing commit.

VCCFinder constitutes a literature milestone in the research direction of vulnerability
detection at commit-time. Their overall detection performance, presented in the form
of Recall-to-Precision curve, however indicates that the problem of vulnerability finding
remains largely unsolved. Indeed, when precision is high (e.g., around 80%), recall
is dramatically low (e.g., around 5%). This high precision is a promise that security
experts’ time will be spent on likely Vulnerability-Contributing Commits. This is how
to make the best of their skills. Similarly, when aiming for high recall (e.g., at 80%),
precision is virtually null.

Unfortunately, since the publication of VCCFinder, and despite the tremendous
need and appeal of automatically detecting commits that introduce vulnerability, this
field has not attracted as much interest, and therefore as much progress, as one could
have imagined.

Thus, to date, it remains unclear (1) whether the ability of VCCFinder to detect
Vulnerability-Contributing Commits can be replicated1, (2) whether, given some varia-

1Throughout this chapter, we use the words reproduction (different team, same experimen-
tal setup) and replication (different team, different experimental setup) as defined in the ACM
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tions in the datasets or in the algorithm implementation, the produced classification
model is stable, and (3) whether some adaptations of the learning (e.g., to account for
data imbalance) can improve the achievable detection performance.

In this section. We perform a study on the state of the art of vulnerability finding
at commit-time in order to inform future research in this direction. To that end, we
first report on a replication attempt of VCCFinder. Replication attempt for which we
tried to stick as much as possible to the original work. Then, we present an exploratory
study on alternative features from the literature as well as the implementation of a
semi-supervised learning scenario. We contribute to the research domain in several
axes:

• We perform a replication study of VCCFinder, highlighting the different steps
of the methodology and assessing to what extent our results conform with the
authors published findings.

• We rebuild and share a clean, fully reproducible pipeline, including artefacts,
for facilitating performance assessment and comparisons against the VCCFinder
state-of-the-art approach. This new baseline might help unlock the field.

• We explore the feasibility of assembling a new state of the art in vulnerability-
contributing commit identification, by assessing a new feature set.

• We identify one issue to be the lack of labelled data, and we explore the possibility
to leverage a specialised technique, namely co-training, to mitigate that issue.

The main findings of this work are as follows:
• The VCCFinder publication lacks sufficient information and artefacts to enable

replication.
• Despite our best experimental efforts, we were unable to replicate the results

reported in the publication, suggesting some generalisation issues due to high
sensitivity of the approach to dataset selection and learning process.

• A semi-supervised learning approach based on our new feature set (inspired by
a recent work [1] that is targeting the detection of vulnerability fix commits,
rather than the detection of Vulnerability-Contributing Commits, or VCCs) does
not achieve the same detection performance as reported in the state of the
art. Nevertheless, our approach constitutes a reproducible baseline for this
research direction.

While our work contains a replication study, it also acknowledges the limits of the
replicated approach (i.e., VCCFinder) and, more importantly, it tries to unlock this
important research field by providing a reproducible setup. Data, code and instructions
are available. It also demonstrates that the artefacts we provide allow for new
experiments to advance the state of the field.

The rest of this section is organised as follows:
• We first focus on describing the VCCFinder approach: what resources are available,

what we had to guess, and how we reimplemented it (Section 4.2). We compare
the achieved results with the originally presented ones.

• We then propose and evaluate in Section 4.3 a new approach, built with another
feature set, and co-training.

Artifact Review and Badging Document. We further note that this terminology was updated
in August 2020; We use the updated version. https://www.acm.org/publications/policies/
artifact-review-and-badging-current
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• We finally summarise our contributions in Section 4.4.

4.2 Replication Study of VCCFinder
The first objective of our work is to investigate to what extent the VCCFinder [30]

state-of-the-art approach can be replicated (different team, different experimental
setup) and/or reproduced (different team, same experimental setup). VCCFinder2 is a
machine learning-based approach aiming at detecting commits which contribute to the
introduction of vulnerabilities into a C/C++ code base.

As most machine learning-based approaches, VCCFinder relies on several building
blocks:
1. A labelled dataset of commits which is used to train a supervised learning model;
2. A feature extraction engine that is used to extract relevant characteristics from

commits;
3. A machine learning algorithm that leverages the extracted features to yield a binary

classifier that discriminates vulnerability-contributing commits from other commits.
In the following, we present, for each of the aforementioned three building blocks,

the descriptions of operations in the original paper. We then discuss to what extent
we were able to replicate these operations. Subsequently, we present the results of our
replication study.

4.2.1 Datasets
4.2.1.1 Datasets - VCCFinder Paper

A key contribution in the VCCFinder publication is the construction of two labelled
datasets of C/C++ commits.
• A dataset of commits that contribute vulnerabilities (VCCs) into a code base;
• A dataset of commits that fix vulnerabilities that exist within a code base.

With the assumption that a commit that fixes a vulnerability does not introduce
a new one, the authors consider the second dataset as a negative dataset (i.e., the
corresponding dataset of non-vulnerability-contributing commits). To build both
datasets, the paper reports that 66 open-source git repositories of C and C++ projects
were considered. Overall, these repositories included some 170 860 commits. For the
creation of the vulnerability-fixing commits data set, the authors gather all the CVEs3

related to these repositories. They selected CVEs that are linked to a fixing commit.
With this method, 718 vulnerability fixing commits were collected.

Collecting commits contributing to a vulnerability is less straightforward. Indeed,
usually, commits introducing vulnerability are not tagged as such, and there are no
direct information in the commit message that indicates the vulnerable nature of the
commit.

To overcome this difficulty, the authors follow an approach defined by [111] and
called SZZ. The principle is to start from vulnerable lines of code. Such vulnerable
lines of code are identified thanks to the vulnerability fixing commits: indeed, it is
reasonable to assume that the lines that have been fixed were previously vulnerable.
Then the git blame command is used on these identified lines of code. The git blame
command allows finding the last commit that modified a given line. The assumption

2VCCFinder means Vulnerability-Contributing Commit Finder
3CVEs: Common Vulnerabilities and Exposures are publicly available cybersecurity vulnerabilities.
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here is that the last modification made on a vulnerable line of code is the modification
that introduced the vulnerability.

Thanks to this method, 640 vulnerability-contributing commits (VCC) have been
collected. Note that the numbers of vulnerability-contributing commits and vulnerability
fixing commits are different simply because one commit can potentially contribute to
more than one vulnerability.

In the VCCFinder paper, both datasets have been divided into a training set and a
testing set (following a two-third, one-third ratio). All commits created before January,
1st 2011 are put in the training set, and the remaining in the test set. The numbers of
commits of each dataset are presented in the left part of Table 4.1. Note that among the
whole dataset of 170 860 commits, only 1258 (640 + 718) commits have been classified.
The 468 (219 + 249) labelled commits in the test set is used as ground truth, notably
to compute Precision and Recall performance metrics.

All other commits that are not categorised into the two first datasets (169 502) are
put in a third dataset named unlabelled dataset. This dataset of unlabelled commits is
also split into two datasets. All commits created after January, 1st 2011 are in a test set.
In the original paper, this unlabelled test set is used to try to uncover yet-undisclosed
vulnerabilities. The authors claim VCCFinder was able to flag 36 commits as VCCs.
They detail one VCC for which they received confirmation from the development team
that it was indeed a VCC. At the time they wrote the presentation of their work, they
had not received confirmation for the others.

4.2.1.2 Datasets - Availability
The dataset of the original VCCFinder article is not directly accessible.
Online investigation may direct to a specific Github repository4 that holds the name

of the tool and the name of one of the authors. However, the original paper does not
mention this repository. The code present in this repository is not fully documented,
as was already mentioned by a prior work whose authors noted some major challenges
to exploit its contents [39]. After carefully analysing this repository, we came to the
conclusion that the artefacts in this repository would not allow us to re-construct the
exact same dataset as the one used in the original VCCFinder. Moreover, it would not
even allow to construct a different dataset, as parts of the features extraction process is
missing (to the best of our knowledge).

4.2.1.3 Datasets - Our Replication Study
At the time we reached a conclusion about the available Github repository, we had

already contacted the authors of VCCFinder who offered to provide directly the output
of their feature extraction pipeline. We accepted their offer, as it seemed that it was
the only viable solution.

This dataset provided to us by VCCFinder’s authors is a database export that
contains three tables:

• A table listing 179 public repositories of C/C++ projects;
• A table listing 351 400 commits, each commit being linked to a repository thanks

to the use of a repository id;
• A table listing the CVEs used to identify the vulnerability fixing commits.
Note that over those 179 repositories, all commits are related to an existing repository.

However, only 50 repositories have at least one declared commit (i.e., 129 repositories
4https://github.com/hperl/vccfinder
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Table 4.1: Datasets comparisons

VCCFinder Paper Replication
66 repositories 38 repositories

Training Test Total Training Test Total
Positive 421 219 640 470 253 723
(vuln. contr.
commit)∗

Negative 469 249 718 389 879 1268
(vuln. fixing
commit)
Unlabelled 90 282 79 220 169 502 229 381 119 489 348 870
Total 170 860 350 861

∗ Vulnerability-Contributing Commit

have no related commit).
Furthermore, out of these 50 repositories, only 38 repositories contain at least one

vulnerability fixing or vulnerability-contributing commit. Among these 38 reposito-
ries, only 27 are linked to both a vulnerability contributing commit and its relevant
vulnerability fixing commit.

While no such process is mentioned by original authors, we opted to discard commits
that do not modify any code file, as they are very unlikely to be involved in any
vulnerability fixing or introducing. We used a simple heuristic that discards commits
with no modification to a file whose extension is either .h, .c, .cpp, or .cc.

Table 4.1 presents a comparison between a) the number of commits that have been
involved in our replication attempt, and b) the dataset described in VCCFinder original
paper.

We note that the dataset provided to us is significantly different than the one
described in the VCCFinder paper. We also note that we are unable to evaluate
whether there is any overlap between the dataset we had access to and the original one.

As shown in Table 4.1, the datasets used in the VCCFinder paper and the ones used
in our replication study are not identical. Even if the number of positive and negative
samples in the training and test sets are close (same order of magnitude), we can
notice significant differences regarding: (1) the number of repositories presenting a
fixing commit (66 vs 38), (2) the number of negative samples (i.e. fix commits) in
the Test sets (249 in the VCCFinder paper, 879 in our replication study).
This fact alone guarantees that we will not be able to obtain exactly identical results.
Given how much the datasets are different, we even expect our results to be potentially
significantly different.

4.2.1.4 Use of the data sets

The aforementioned ground truth notion is important as VCCFinder’s authors opted
to both report performance metrics computed against this ground truth, and metrics
computed on data they had no ground truth for (we do not know how they did this).
Original authors were contacted but did not come back to us on the matter. As a result,
we faced huge difficulty to clearly understand the notion of ground truth as used in the
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Table 4.2: Dataset repartition scenarios

Training Test
Unlabelled
Train

positive 470 253

Replication negative 229 770 (389 + 229 381) 120 368 (879 + 119 489)
Unlabelled positive 470 253
Replication negative 389 120 368 (879 + 119 489)
Ground
Truth

positive 470 253

Replication negative 389 879

original VCCFinder paper.
Since our understanding of their notion of ground truth is based on deduction and

guesswork, and not on a clear authoritative description from original authors, we now
carefully detail on what we trained our classifiers on, and on what they were tested on.
More specifically, we performed three different experiments:

1. What we think the original experiment was;
2. A less coherent setup;
3. A more traditional setup.
We note that we cannot definitely affirm which of the first or the second setup

VCCFinder original paper used, as both are coherent with the figures reported. The
repartition is presented in Table 4.2, and detailed in the following paragraphs:

Unlabelled Train Replication: A classifier is trained on the whole training set,
including the unlabelled commits created before 2011. This first one is the one we
think to match the most with the description of the original experiment. The negative
label (i.e., not VCC) is associated with those unlabelled commits before training. The
resulting classifier is tested on the whole test set, including the unlabelled commits from
2011 and newer. Similarly, those unlabelled commits are associated with the negative
label. The goal being to find VCCs, if the resulting classifier predicts one originally
unlabelled commit to be a VCC, this will display as a False Positive.

Unlabelled Replication: This setup is very similar to the previous one, with the
exception that the unlabelled commits created before 2011 are not used in the training
phase. Those related to after 2011 are used in the test set (and associated with the
negative label). This scenario would enable to analyse the model’s behaviour once
facing security neutral commits. That is to say, commits that are neither VCCs nor
fixing commits, the latter having to be written with a security mindset. Still, the model
would train on the closest we have to a ground truth. This setup is less coherent in
the sense that unlabelled commits are not treated similarly in the training than in the
testing.

Ground Truth Replication: In this more traditional setup, a classifier is trained
on the train set for which we have a ground truth, i.e., excluding the unlabelled commits.
Similarly, the resulting classifier is tested on the test set for which we have a ground
truth, i.e., excluding the unlabelled commits.
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4.2.2 Features
4.2.2.1 Features - VCCFinder Paper

The second main step of the VCCFinder approach consists in extracting the relevant
features that will feed the machine learning algorithm. Among the selected features,
VCCFinder considers code metrics and meta-data related to both a particular commit
and the whole repository.

Regarding the commit5 itself, the patch code and the commit message are both
considered. Note that a specific section of the original paper is dedicated to asserting
the relevance of the features by comparing their frequency in vulnerability-contributing
commits and other commits.

Regarding code metrics, for a given commit m from a repository R, VCCFinder
extracts:

• The number of structural keywords of C/C++ programs (such as if, int, struct,
return, void, unsigned, goto, or sizeof, etc) present in m. Overall, 62 keywords
are referenced;

• The number of hunks6 in m;
• The number of additions in m;
• The number of files changed in R.
Regarding metadata, for a given commit m from a repository R, VCCFinder

considers:
• The total number of commits in R;
• The percentage of commits in R performed by the author of m;
• The number of changes performed on the files modified by m after m was applied;
• The number of changes performed on the files modified by m before m was applied;
• The number of authors altering the files impacted by m;
• The number of stargazers, forks, subscribers, open issues and others, including

the commit message itself.

4.2.2.2 Features - Availability

The earlier mentioned git repository ends up registering commits in a database,
though as already stated (Section 4.2.1.2), we are unsure whether the resulting database
would have all the information needed, in particular, we have been unable to locate code
that would compute all the features required. Furthermore, the original paper does not
contain enough details to fully re-implement the full feature extraction ourselves.

Therefore, regarding the extraction of features, we have to rely on the fields present
in the database given by the original authors.

4.2.2.3 Features - Our Replication Study

As already explained, the original paper does not precisely list all the features
extracted leading to a situation where we were unable to re-implement a feature
extraction engine, and thus unable to re-use their approach on another dataset.

However, the database that was shared with us already contains the features
computed by VCCFinder authors themselves. We hence directly used those features.

5We remind that a commit is composed of a patch (i.e., the "diff" representing the code changes),
and a commit message (explaining the modification performed by the patch)

6a hunk is a block of continuous added lines
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Since the VCCFinder authors sent us datasets with the features already extracted,
our replication study leveraged exactly the same features as the VCCFinder approach.
However, since we did not obtain or re-implement the feature extraction engine, we
are not able to extract features from other datasets of commits.

4.2.3 Machine Learning Algorithm
4.2.3.1 Machine Learning Algorithm - VCCFinder Paper

The VCCFinder approach leverages an SVM algorithm (through its LibLinear [220]
implementation) to learn discriminating vulnerability introducing commits from other
commits.

This algorithm builds a hyper-plan that would separate, in our case, vulnerability
introducing commits from others. To classify a given commit, a distance is computed
between the feature vector of this commit (i.e., a point in the hyper-space) and this
hyper-plan.

The sign of this distance determines whether this commit contributes to a vulnera-
bility or not.

Given a commit and the extracted features, we describe now the generation of the
feature vector of this commit that is used as input of the machine learning algorithm.

This process follows a generalised bag-of-words approach that normalises the features’
values into boolean vectors. Regarding the normalisation, for each feature, commits are
categorised into bins based on the occurrences of the feature. Then a string is built by
concatenating the name of the feature and the bin identifier.

Finally, joining all these newly created strings together with the texts formed by
the patch code and/or commit message, a considerable string is built and fed to a
tool named SALLY [221]. SALLY is a binary tokenisation tool which generates a
high-dimensional sparse vector of booleans from a string, computing a hash for each
split-on-space sub-string. At the end of this process, each commit is represented now
by, first, a boolean, indicating its class (vulnerability-contributing commit or not) and
a succession of pairs (feature_hash/binary value) that represent a sparse vector of
the features.

The VCCFinder authors mention they used a handicap value C of 1 and weight for
this one-class problem of 100 as "the best values" (last sentence of their section 4.2).

Eventually, the authors present their results on the test set with a Recall-to-Precision
curve for which the actual parameter is the threshold in Figure 4.1. After computing
the distance from the hyperplane for each commit in the test set and by incrementally
lowering the threshold, the commits the closest to the hyperplane will be classified as
VCCs. Lowering the threshold results in increasing the number of True Positives, but
might also quickly bring more False Positives.

The higher the Recall-to-Precision curve, the more precise, and the more horizontal,
the more the model is not sacrificing precision for recall.

4.2.3.2 Machine Learning Algorithm - VCCFinder Availability
As already explained, VCCFinder authors did not release code that perform all the

required steps of their approach. Even in the repository found on the Internet (but
not mentioned in the VCCFinder paper), the code that orchestrates the training of the
classifier and its usage is absent.

However, as noted above, authors provide some of the parameters in the paper. We
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note that the embedding step (i.e., tokenisation and discretisation) is almost adequately
described in the original paper, with the exception of the number of bins (cf. below).
4.2.3.3 Machine Learning Algorithm - Our Replication Study

The VCCFinder authors mentioned they used the LibLinear [220] library to run the
SVM algorithm. However, several front-ends of LibLinear exist. We decided to use the
LinearSVC7 implementation included in the popular framework scikit-learn.

Regarding the construction of the feature vectors, and more specifically regarding
the normalisation step, the authors do not specify the number of bins they use, nor
on which features this step was performed. We decided to consider 10 bins per feature
containing each, as much as possible, the same number of commits. This was done with
scikit-learn’s preprocessing.QuantileTransformer facility, assigning the value of 10
to n_quantiles parameter, and ’uniform’ to the output_distribution parameter.

We then apply LinearSVC classifier with C parameter equals to one, the weight of
the class one to 100 over 200 000 iterations.

With the exception of the exact usage of the unlabelled commits, we are rather confident
that our own implementation of the machine learning algorithm building blocks mimics
the VCCFinder one. However, we cannot evaluate if the differences have a significant
impact on the results obtained.

4.2.4 Results
In this section, we detail the results yielded by VCCFinder in the original paper, as

well as the results that we obtain when we replicate VCCFinder.
4.2.4.1 VCCFinder Paper

To assess the performance of their machine learning-based approach, the authors
keep about two-thirds of their datasets for training, and use one-third of the datasets
for testing. Table 4.1 presents the exact numbers. Note that, as explained in Sub-
Section 4.2.1, we are not sure about what the training and testing sets are composed
of.

The original results are presented in Figure 4.1, which is directly extracted from the
paper [30]. The plot is obtained by measuring/computing precision and recall values
when varying the threshold.

In the original paper, the authors compare VCCFinder against a then-state-of-the-art
tool named flawfinder(in red in Figure 4.1). Flawfinder is a static analyser tool that
looks for dangerous calls to sensitive C/C++ APIs in the code as strcpy and flags
them.

Figure 4.1 shows that VCCFinder greatly outperforms Flawfinder. The authors also
set their tool to the same level of recall that Flawfinder is capable of for this dataset,
24%, and show that their approach presents then a precision of 60%. In comparison,
Flawfinder can only achieve 1% in such conditions. For a recall of 84%, VCCFinder has
a precision of 1%.

With precision and recall values extracted from Figure 4.1, an F1-score can be
computed thanks to the following formula:

F1 = 2 ∗ Precision ∗Recall

Precision + Recall

7https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
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4.2. Replication Study of VCCFinder

Figure 4.1: Extracted from the
VCCFinder paper: precision/recall
performance profile of VCCFinders

Figure 4.2: Precision/recall performance
profile of VCCFinder’s Replication

We can notice that the maximal F1-score of VCCFinder seems to be lower than 0.4,
with a maximum of either (Recall;Precision) =(0.25;0.6) or (Recall;Precision)=(0.3;0.5).
Those lead to an F1-score of either 0.35 or 0.375.

Table 4.3 describes several metrics (extracted from the original paper) such as True
Positive, False Positive, etc computed on the test set. VCCFinder flagged 53 commits
that are, according to the ground truth, actually introducing a known vulnerability.
Applying VCCFinder to the larger set of unclassified commits, 36 commits were flagged as
suspicious. Among those 36 potential VCCs, one was described by authors as confirmed
by the project maintainers, who had already patched this vulnerability. Authors opted
not to comment on the other 35 commits, invoking "responsible disclosure".

These 36 commits are presented as belonging all to the post-January 2011 unclassified
set. Thus, on what they define themselves as the ground truth, no false positive is met.
4.2.4.2 Our Replication Study

The results presented in Figure 4.2 show the precision per recall we obtain on the 3
different test sets while diminishing the threshold. One can understand the threshold
as the minimum distance from the hyperplane for a commit to be considered as VCC.
The grey curves represent the lines for a constant F1-score at 0.2, 0.4, 0.6 and 0.8. We
now details the results for each of the 3 test sets presented in 4.2.1.4:

Ground Truth Replication:
The replication achieves a maximum F1-score of 0.63 for a recall of 0.76 and a precision
of 0.54 (see line 2 of Table 4.3 and green dots in Figure 4.2). We also set ourselves, for
the purpose of comparison, to the reference recall used in VCCFinder’s original paper
of 0.24 to find a precision of then 0.92. In these conditions, the F1-score is of 0.38. It
presents a progressive decline and correctly tags 61 commits as VCCs.

Unlabelled Replication:
This attempt trains on the ground truth but is tested on both ground truth and beyond
2011 unclassified is drawn in red in Figure 4.2. We can see it perform very poorly,
presenting more than three thousand false positives, once set to the same recall of 0.24.
The precision is then barely of 2% and the F1 score of 0.037.
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Table 4.3: Results of replication on updated test set
True Positive(VCC∗) False Positives False Negatives True Negatives† Precision Recall

VCCFinder 53 36 166 79 184 0.60 0.24
Ground_Truth Replication 61 5 192 885 0.92 0.24

Unlabelled Replication 61 3145 192 157 224 0.02 0.24
Unlabelled Trained Replication 61 695 192 159 674 0.08 0.24

∗ VCC: Vulnerability-Contributing Commit
† Vulnerability-Fixing Commit and post-2011 Unlabelled
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Unlabelled Train Replication:
It is after assessing how poorly the last experiments performed that we decided to include
unclassified in the training, forcing them as non-VCCs. The results are illustrated
thanks to the blue curve in Figure 4.2 and the last row of Table 4.3. It improves sensibly
the performances without reaching the level of the original. The precision for fixed
recall is of 8%, leading to an F1-score of 0.12.
4.2.4.3 Parameters Exploration

Besides the results on the 3 different test sets, we took the opportunity of this
replication attempt of VCCFinder to investigate the impact of various parameters.

Exploration over parameter C:
In the original paper it is just stated that the optimal conditions are for a cost parameter
C of 1. We experiment for different values of C on the basis of the Ground Truth
Replication. We experiment for values from C = 10−6 to 100, and obtain the values
presented in Figure 4.3.

It appears that the behaviour seems to tend toward an optimal behaviour starting
at C = 10−2 and higher. Thus, as advocated by the VCCFinder authors, using a value
of C at 1 makes sense.

Exploration over class weight parameter:
Altering the weight of the positive class (VCCs) from 0.1 to 100, we saw no difference
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in the output using the same other settings. There is, thus, no reason to deviate from
the original paper declared values.

Exploration with other algorithms:
We also experimented with a variety of different machine learning algorithms. Results
are presented in Figure 4.4. We note that SVM—that is used by the original VCCFinder
paper—is among the algorithms that produce the best results.

4.2.5 Analysis
We discuss the experimental results of our replication attempt of the VCCFinder

approach.
RQ: Is our reproduction of VCCFinder successful?

According to the terminology used by ACM’s Artifact Review and Badging guidelines,
a Reproduction requires the same experimental setup [222]. We recognise that some
elements of our setup were different from the setup in VCCFinder publication. We have
therefore documented the differences.

We note that the combination of a) an implementation of the approach, and b) the
exact dataset used originally would have allowed us—and any other researcher—to
positively validate the results reported by VCCFinder’s authors.

We have been unable to Reproduce VCCFinder.

RQ: Does the present work constitute a successful Replication of
VCCFinder?

The ACM’s terminology states that researchers conducted a successful Replication
when they "obtain the same result using artifacts which they develop completely
independently"8.

We were unable to obtain the same results, mostly because we were unable to
re-implement ourselves the code based on the paper. This is caused by the lack of
details and/or of clarity of the original paper. As an example, even if we had had access
to the software that collects the code repositories and built a database9, we would still
miss the complete list of repositories that were involved in the original experiment.

We have been unable to Replicate the results in the VCCFinder publication.

Given that the differences in experimental results between our replication study and
the original VCCFinder publication may be due to the variations in the dataset or in
the learning process, we propose to investigate an alternative approach, that we would
make available to the research community, and that could yield similar performance to
the promising one reported in the VCCFinder paper.

4.3 Research for Improvement
VCCFinder is an important milestone in the literature of vulnerability detection.

Indeed, departing from approaches that regularly scanned source code to statically find
vulnerabilities, VCCFinder initiated an innovative research direction that focuses on
code changes to flag vulnerabilities while they are being introduced, i.e., at commit

8https://www.acm.org/publications/policies/artifact-review-and-badging-current
9Note that the link provided in footnote 1 of page 3 in the original post-print publication raises a

404 error.
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time. Unfortunately, its replicability challenges advances in this direction. By investing
in an attempt to fully replicate VCCFinder and making all artefacts publicly available,
we unlock the research direction of vulnerability detection at commit-time and provide
the community with support to advance the state of the art.

Considering our released artefacts of a new replicable baseline, we propose to
investigate some seemingly-appealing variations of the VCCFinder approach to offer
insights to the community. Thus, in this section, we go beyond a traditional replication
by:

(1) Studying the impact of leveraging a different feature set that was claimed to be
relevant to vulnerabilities [1], thus proposing a new approach to compare against
VCCFinder (in Section 4.3.1);

(2) Trying to overcome the problem of unbalanced datasets, i.e., the fact that there
are much more unlabelled samples than labelled ones (in Section 4.3.2).

4.3.1 Using an alternate feature set
As described above, the feature set used in VCCFinder is not sufficiently documented

to be re-implemented, and the VCCFinder authors did not release a tool that is able to
extract features from a collection of commits.

In this section, we investigate the use of an alternate feature set, described in a
recent publication [1] that is targeting the detection of vulnerability fix commits,
rather than the detection of VCC. To reduce ambiguity when needed, we refer to
this alternate feature set as New Features, while the VCCFinder feature set is denoted
VCC Features.

In this experiment, the settings of the machine learning stay the same as in the
replication (LinearSVC with C=1 and the class weight set to 100).

RQ: How a less extensive but more security-focused feature set
alters the VCCFinder approach?

4.3.1.1 New Feature Set
The New Feature set is made of three types of features: Text-based features, Security-

Sensitive features and Code-Fix features. They are all shown in Table 4.4
• Code metrics: A difference between the two feature sets concerning the code is

that the new feature set focuses on 17 characteristics of the code, while VCCFinder
collects 62 keywords. Though, for each, it also computes whether they are added,
removed, the difference of those two factors and their addition.
Taken individually, most of them are common to the two feature sets. Except
for the count of elements under parenthesis, function calls, keywords: INTMAX,
define and offset, VCCFinder’s feature set includes them all and beyond.

• Commit message: In New Features, only the ten most significant words present
in the commit message corpus, as obtained through a term-frequency inverse-
document-frequency (TFIDF) analysis, are captured.

Note that we tried to normalise the features (as recommended in [223]). The results
of detection along the test set were the same or slightly worse with this normalisation
step. Thus we decided not to normalise the features.
4.3.1.2 Results

Figure 4.5 and Table 4.5 present the performances with the New Feature Set.
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Table 4.4: Alternate set of features (adapted from [1])

ID code-fix ID security-sensitive
F1 #commit files changed S1 #sizeof added
F2 #loops added S2 #sizeof removed
F3 #loops removed S3 S1−S2
F4 F2−F3 S4 S1+S2
F5 F2+F3 S5-S6 Like S1−S2 for continue

F6-F9 Like F2-F5 for if S7-S8 Like S1-S2 for break
F10-F13 Like F2-F5 for Lines S9-S10 Like S1-S2 for INTMAX
F14-F17 Like F2-F5 for Parenthesized expression S11-S12 Like S1-S2 for goto
F18-F21 Like F2-F5 for Boolean operators S13-S14 Like S1-S2 for define
F22-F25 Like F2-F5 for Assignements S15-S18 Like S1-S4 for struct
F26-F29 Like F2-F5 for Functions call S19-S20 Like S1-S2 for offset
F30-F33 Like F2-F5 for Expressions S21-S24 ike S1-S4 for void

ID text
W1-W10 Most recurrent top 10 word

Table 4.5: Confusion Table for New Features

True Positive(VCC) False Positives False Negatives True Negatives Precision Recall
VCCFinder 53 36 166 79 184 0.60 0.24

Ground_Truth New Features 61 9 192 854 0.871 0.241
Unlabelled New Features 61 5 672 192 120 346 0.010 0.241

By considering the Ground Truth only (second line of Table 4.5 and green curve
in Figure 4.5), the New Features are less performant than VCC Features. For, still, a
recall of 0.24, the precision is only 67% while it used to top at 92% in such a case.

Here again, because of the doubt on what is the actual test set in the original paper
(cf. Section 4.2.1.4), we also tested on both the ground truth and the unclassified
commits post January, 1st 2011 (red curve in Figure 4.5 and last row in Table 4.5).

Our feature set does not allow to outperform our VCCFinder replication.

4.3.2 Adding Co-Training
A major issue with any VCC detection endeavour is the lack of labelled data, with

less than one per cent of the data being labelled. While researchers can collect many
hundreds of thousands commits, acquiring even a modest dataset of known VCCs
requires a massive effort.

One field of machine learning focuses on the usability of the unlabelled data. The
study by [224] states that it is possible, in some case, to leverage unlabelled samples
to improve a machine learning model. [225] investigated the potential for gaining
information from unlabelled data. This last study concludes that so called active-
methods have already proven theoretical efficiency.

In our case, depending on the interpretation of the use of the dataset as explained
earlier, unlabelled commits for training (before 2011) are either discarded (Ground
Truth experiment) or incorporated in the non-VCCs set (Unlabelled Replication and
Unlabelled Train Replication).

RQ: Can semi-supervised sorting of unlabelled data improve the
VCCFinder approach?
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Figure 4.5: Precision-recall performances using New Features

One semi-supervised learning approach, called co-training and introduced by [226],
could help answer this question. On a Web page classification problem, [226] used two
classifiers in parallel to complete training sets with unlabelled data. They ended up
with an error rate of just 5% based on both the page content and hyperlinks over a test
set of 265 pages: only 12 pages labelled (3 as positives course-pages, 9 negatives) and
around 800 unlabelled. They demonstrated that Co-Training achieved performances
on this problem that was unmatched by standard, fully-supervised machine learning
methods. It is a technique that has industrially proven a reduction of false positive by
a factor 2 to 11 on specific element detection on a video [227], and for which conditions
of maximum efficiency it induces were analysed [228].

4.3.2.1 Co-Training Principle

When trying to detect VCCs, an important point is that unlabelled commits are
unlabelled not because they are not VCCs, but because it is unknown whether they are
VCCs. Arguably, in any large-enough collection of commits, it is reasonable to assume
at least some of them are actually VCCs.

The insight behind trying Co-Training with VCC detection is the following: By
building two preliminary and independent VCC classifiers, the unlabelled commits
predicted to be VCCs by both classifiers could be used to augment the training set.
By repeating this step, it might be possible to leverage the vast space of unlabelled
commits.

4.3.2.2 Description of the algorithm

[226] showed that the co-training algorithm works well if the feature set division of
dataset satisfies two assumptions: (1) each set of features is sufficient for classification,
and (2) the two feature sets of each instance are conditionally independent given the
class.

Both the VCC Features set and the alternate feature set can be split into two subsets
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of features: One based on code metrics, and one based on the commit message.
Previous work on security patches detection showed that, for the New Feature

set, the two resulting feature subsets are independent, and thus satisfy the two main
assumptions for Co-training [1].

Once these two assumptions are satisfied, the Co-training algorithm considers these
two feature sets as two different, but complementary views. Each of them is used as
an input of one of two classifiers used in Co-training: One focused on code metrics,
and the other on commit messages. The algorithm is given three sets: a positive set, a
negative set, and a set of unlabelled.

As described in Algorithm 1, and shown in Figure 4.6, the training process is an
iterative process in which each classifier (h1 and h2 on Figure 4.6) is initialised being
just given the labelled inputs LP, that is used as the ground truth. From the whole set
of unlabelled, a subset U’ is randomly selected.

At every round, each classifier is trained on a labelled set (LP for the first round).
Then a number of unlabelled commits from U’ are classified with those two classifiers.
When both classifiers agree on a commit, this commit is added to the ground truth,
i.e., it will be used to augment the training set in the next round. The process keeps
going until we reach a predetermined size of the labelled set.

Initial Ground-truth

Labeled Patches

LP

SVM binary 

Classifier h1

SVM binary

Classifier h2

Pool U’

pseudo-labeled 
instances by h1

pseudo-labeled 
instances by h2

View B
(e.g., only commit logs)

View A
(e.g., only code diffs)

Co-Training Algorithm
with Text features

Co-Training Algorithm
with Code features

Unlabeled patches

UP

μ samples

Metadata featuresCode features

Figure 4.6: Co-Training (Figure extracted from [1])

4.3.2.3 Implementation
For the implementation of the Co-training, we select two Support Vector Machines

(SVM) [229] as classification algorithms. We also perform experiments using three
different size limits of the training set: by 1000, 5000 and 10 000 unlabelled commits
added.

This variation enables us to compare the effect of this variable in prediction perfor-
mance. To respect temporality, the unlabelled commits were all taken before January,
1st 2011, as was for the original unaltered training set. For both sets of features, the
co-training occurs after the extraction of features. One classifier trains on the code
metrics and the other on the metadata. We finally use, as for the replication, a LibLinear
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Algorithm 1: Steps for each Co-Training iteration. (extracted from [1])
input : training set (LP ), unlabelled data (UP )
input : pool U ′

output : U ′: updated pool
output : LP : updated training set

Function getView(x, classifier)
if classifier = C1 then

return Text_features(x)
return Code_features(x)

Function buildClassifier(first)
vectors = ∅;
if first = True then

foreach x ∈ LP do
vectors = vectors ∪ getV iew(x, C1);

else
foreach x ∈ LP do

vectors = vectors ∪ getV iew(x, C2);

classifier ← train_model(SVM, vectors);
return classifier;

h1 ← buildClassifier(True); h2 ← buildClassifier(False);
(P1, N1)← classify(h1, U ′); (P2, N2)← classify(h2, U ′);
LP ← LP ∪ random_subset(#p, P1) ∪ random_subset(#p, P2);
LP ← LP ∪ random_subset(#n, N1) ∪ random_subset(#n, N2);
U ′ ← U ′ ∪ random_subset(#2 ∗ (p + n), UP );

model to classify the commits of the test set. For the latter values of C is 1 and, still,
the weight of the class to 100.

4.3.2.4 Co-Training Results

4.3.2.4.1 Co-Training with VCC Features
Performance is improved slightly (cf. Figure 4.7 vs Figure 4.2) when Co-Training is

used in conjunction with VCC Features. This improvement, however, does not appear
to change with the size increase of the training set (whether 1000 or 10 000).

When testing with the Unlabelled Test, performance drops for all attempts. There-
fore, no improvement can be concluded in this aspect.

4.3.2.4.2 Co-Training with New Features
Figure 4.8 presents the results for a Co-Training process based on New Features. It

includes variations for the training set (with 1000 and 10 000 unclassified commits) and,
tests with and without the unclassified commits. On testing without the unlabelled
Test set, one can conclude that the increase of 1000 unlabelled already helps perform
better than the baseline green curve of Figure 4.5. An increase of the dataset by 10 000
is further contributing to detect more VCCs.
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4.3.2.5 Co-Training Analysis

The Co-Training we implemented does not seem to be of particular help for the
identification of VCCs.

This finding is clear when we consider the unclassified commits, in which cases the
performance metrics dramatically drop. There seems to be an effect, though, for the
New Features when only considering the Ground Truth.

4.4 Conclusion
Vulnerability detection is a key challenge in software development projects. Ideally,

vulnerabilities should be discovered when they are being introduced, i.e., by flagging
the suspicious vulnerability-contributing commits. VCCFinder, presented in 2015
at the CCS flagship security conference held the promise of detecting vulnerability-
contributing commits at scale using machine learning. Since the research direction
that this approach initiated has not boomed since then, we have proposed to revisit it.
First, we attempted (and failed) to replicate the approach and to replicate the results.
Then, we propose to build an alternative approach for the detection of vulnerability-
contributing commits using a new feature sets (whose extraction is clearly replicable)
and a semi-supervised learning technique based on co-training to account for the
existence of a large set of unlabelled commits. Our experimental results indicate that
the proposed approach does not yield as good performance as the ones reported in
the VCCFinder publication. Nevertheless, it constitutes a strong and reproducible
baseline for the research community. Our artefacts are publicly available at https:
//github.com/Trustworthy-Software/RevisitingVCCFinder
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5 Prevention Efficiency: Defense Mech-
anism, the case of AOSP

Besides vulnerability detection, the implementation of defense mechanisms is an alter-
native to limit the exploitation of vulnerabilities. In this chapter, we review the defense
mechanisms proposed by the AOSP developers over a period of ten years. First, thanks
to available information, we trace the introduction and evolution of these defense mech-
anisms. We further verify at the binary level with dedicated tools, which mechanisms
related to memory corruption were implemented and where. Then, we confront the
evolution of Memory Corruption related vulnerabilities disclosure with the introduction
of Defense Mechanisms.
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5.1 Motivation
Code exploitation is a long recognised issue. In 1972, the U.S. Air Force released a

report [144] describing how resources shared on a system, such as memory, could be
accessed and modified by unintentional user1. This practice gained further publicity
in 1996, with an article [230] providing explicit methodology for hijacking the flow of
execution by overwriting the stack.

As we did with VCCFinder, one can attempt to detect predisposing conditions to
infringe to the security policy (i.e. vulnerabilities, see Section 2.1.1). It is, nonetheless,
not the only way to fight this battle. Another approach is to implement rules, tools
and methods that will prevent the exploitation of the vulnerability or cut the flow of
this exploitation before it achieves its targets.

Additionally, vulnerability detection will enable to correct one or a few vulnerabilities
while a defence mechanism hardens the system against a range of vulnerabilities. This
way around, efforts can be maximised implementing well-motivated defence mechanisms.

In this chapter, we focus on the defence mechanisms that AOSP implemented over
more than ten years. After a description of our methodology, we list them chronologically.
We also classify them according to the type the vulnerability they attempt to protect
from. We both use information collected on the internet and analyse AOSP binaries.
Finally, we investigate the influence of these defence mechanisms on the system safety
through the evolution of disclosed vulnerabilities.

5.2 Methodology
5.2.1 Listing of Defense Mechanisms implemented

The first part of the work, resides in gathering the list of defense mechanism that
have been implemented in AOSP up to API-level 30. To that end we manually extract
information that are provided in the following blogs, websites and articles:

• Android versions security releases2.
• Google Security Blog [231]
• Android developers blog [232]
• Android Security Experts publications [164, 233]
• Clang website [234]

5.2.2 Binary extraction
As the information provided in these blog may be incomplete and of varying quality,

we decided to get data one level deeper. We do so by analysing Android binaries
for API-levels 10 to 28. We downloaded one x86 system-image for each Android
API-level available in Android Studio. Then we analyse the binaries with the tools
hardening-check3 and checksec4.

• hardening-check is a utility developed for Debian that "examine[s] a given set of
ELF binaries and check for several security hardening features". It was developed
by Kees Cook for debian and is since 2012 under GNU General Public Licence
version 2. hardening-check enables to verify if the binary file:

1https://csrc.nist.gov/csrc/media/publications/conference-paper/1998/10/08/
proceedings-of-the-21st-nissc-1998/documents/early-cs-papers/ande72a.pdf

2As for Android 8.0: https://source.android.com/security/enhancements/enhancements80
3https://manpages.debian.org/testing/devscripts/hardening-check.1.en.html
4https://www.trapkit.de/tools/checksec/
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Table 5.1: Number of binaries per Android version in system.img

API-level 10 15 16 17 18 19 21 22 23 24 25 26 27 28
Nb binaries 212 274 306 323 313 337 365 370 384 461 464 499 529 660

– is compatible with ASLR (through what is called PIE),
– implements stack canaries (checking that this memory is not being tampered

with)
– is written with a modified set of instruction provided by Fortify_Source

so to prevent a significant number of buffer overflows
– provides instructions to mark certain areas as read-only for execution time

(called RelRO)
– further improves the RelRO by ordering the program to resolve all addresses

before the program is executed
– prevents the Heap and the Stack to overwrite each other (Stack Clash)
– checks for a -fcf-protection flag that indicates the binary is instrumented

to protect the execution of the flow of instructions with Intel’s implementation
of CFI, called Control-flow Enforcement.

• Checksec.sh is a tool initially developed by Tobias Klein and that knew its first
release in January 2009. It is now under BSD Licence.
Checksec.sh can also provide with PIE, Fortify_Source, Stack Canaries, RelRO
but it can also provide with whether the Stack is executable or not(NX), with
RPath and RunPath.

The analysis starts by mounting each system-image and select all the binaries. Those
binaries are the Executable and Linkable Format identifiable by their header, starting
by 0x7F 0x45 0x4c 0x46, or 0x7F ’E’ ’L’ ’F’. The number of resulting binaries for each
API-level is provided in Table 5.1. On each of those binaries, we run the security check
tools and collect the results in file summarising their level of protection. We further
provide our results in Figure 5.2.

We exclude .odex files as they are adjacent-to-applications files that optimise
applications’ boot up. They are only generated when an application is installed on the
device. An isolated analysis of earlier-mentioned .odex files confirm that these files
would rather confuse the reading has hardening-check only finds them to implement
PIE.

5.3 Timeline of the implemented Defence Mechanism
over Android versions

In this section we describe Defence Mechanisms presented in the Figure 5.1 timeline
using the information collected as described in Section 5.2.1. We further detail these
mechanisms, the moment of their introduction and improvement(s) following five
categories that differentiated as we collected the defense mechanims. We start with
(i) Cryptographic Improvements that gather the differente methods to encrypt data,
either to send it or store it. We continue with (ii) Access Control that we separate
in three as in Google’s developers article [164]. We mention therefore the evolution
for Android Permissions, Unix Access Control and SELinux Access Control. We also
explain how (iii) Authentification improved with new features. We list the Memory
Corruption related defense mechanisms in (iv). We finish with a category regrouping
(v) Other mitigations techniques.

87



Chapter 5. Prevention Efficiency: Defense Mechanism, the case of AOSP

> hardware NX
> format string vulnerability protection
> mmap_min_addr

> ASLR introduced

> PIE
> Read-Only Relocations
> kptr_restrict enabled
> ASLR improved for linker

> application verification
> premium SMS alert
> certificate pinning failure alert
> improved display of Android
permissions

> install hardenning
> 0_NOFOLLOW
> FORTIFY_SOURCE in system libs and apps
> openSSL support for TLSv1.1 & TLSv1.2

> reinforced SELinux Sandbox
> no setuid/setgid  programs
> ADB authentification
> capability bounding

> android keystore provider
> keychain isBoundKey algorithm
> zygote blocks privileges addition
> FORTIFY_SOURCE on x86  & MIPS

> RelRO enabled
and no text
relocations
> improved entropy
mixer

> reinforced SELinux sandbox
> per user VPN
> ECDSA Provider support
> device monitoring warnings

> certificate pinning alert on
installation attempt

> fulldisk encryption by default
> reinforced SELinux sandbox
> smartLock
> guest mode w/ temporary access
> updates of webView OTA

> updated crypto for HTTPS, TLS/SL
> non-PIE linker support removed
> FORTIFY_SOURCE for libc
> ASLR for every process

> runtime permissions
> verified boot
> hardware isolated security
> fingerprints

> SDcard adoption encrypted
> no cleartext in code
> SELinux enforcement policies
> usb access control

> file based encryption
> direct boot
> verified boot
> SELinux seaccomp config
> Improved ASLR

> kernel hardenning: memory
protection, restrict access
> APK signature v2
> trusted CA store
> network security config

> no encryption key in work file
> avb supports rollback protection
> tampering resistant lockscreen
> more secure keystore
> Treble sandboxing

> hardened usercopy, PAN
 emulation, KALSR
> CFI media stack
> stream updates
> TP apps install permission

> 1 SSAID per app &
per user
> FORTIFY_SOURCE
for clang

> DNS over TLS
> HTTPS by default
> encrypted android backups
> compiler level CFI for media, bt, nfc
> integer overflow sanitizer

> UI for biometric authentification
> microphone, camera 
and sensors permission restriction for
app in background
>permission sorting for user

> secure hardware
confirmation for
sensitive confirmation

> adamantium for hardware agnostic 
    encryption
> all user data encrypted
> TLS 1.3
> biometric api hardenning

> increased permission granularity
> less privileged components
> constrained codec sandbox
> bound sanitizer
> integer sanitizer 
 

> support for kernel hardware ASAN
> expanding compiler mitigations
> software codec sandbox

> shadow call-stack
> X-only memory for
AArch64

> -fstack-protector
> safe_iop
> openBSD dlmalloc

> automatic initialisation of the stack
> kernel initialisation
> scudo for memory protection
> GWP-ASan for heap safety

API 3
Cupcake
apr. 2009

API 9
Gingerbread

dec. 2010 

API14
Ice Cream Sandwich

oct. 2011

API 16
Jellybean

jul. 2012

API 17
Jellybean
nov. 2012

API 18
Jellybean

jul. 2013

API 19
Kitkat

oct. 2013

API 21
Lollipop
nov. 2014

API 24
Marshmallow

oct. 2015

API 25
Nougat

aug. 2016

API 26
Oreo

aug. 2017

API 28
PIE

aug. 2018

API 29
android 10
sep. 2019

API 30
 android 11

sep. 2020

M.C.

Access Control

Authentification

Cryptography

Memory Corruption

Others

Figure 5.1: Defence Mechanisms Timeline in AOSP
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5.3.1 Cryptographic Improvements
Data becomes encrypted by default, and as a block, in the local storage by API-level

21, in 2014. In 2015, the SDcard can also be encrypted as an extension of the local
storage. In API-level 25, the practice is updated with a finer granularity as they are
now encrypted at file level. It is first the backed-up applications’ data of users that is
encrypted starting API-level 28; then any user-related data by API-level 29.

Another narrative relates to regular updates to the latest and safer cryptographic
algorithms and libraries. In API-level 17 (2012), OpenSSL support for TLSv1.1 and
TLSv1.2 was introduced (respectively defined in 2006 and 2008). This cryptographic
protocol is extended to the DNS request in API level 28 (2018) and updated to TLSv1.3
in API-level 29. API 19 (2013) introduces support to Elliptic Curves.

A last angle provided relates to certificates. The user notified that a certificate
verification failed before rendering the content the device attempts to access in November
2012. A year later, the system starts to monitor the installation of certificates attempting
to impersonate Google’s authority. In 2016, Android is provided with an independent,
trusted Certificate Authority store for system activities5. To be reached, this Trust CA
Store needs either a rooted device or an emulated Android phone6.

5.3.2 Access Control
Android Permission System
Android higher layers follow a Discretionary Access Policy control based on per-

missions. Over the years, much effort was put into increasing users’ control, and
understanding of permissions. It also appeared with the aim of better controlling the
way processes inherit their privileges from parent processes.

Almost looking like an answer to recommendations provided by recent research [166],
the hierarchy of android permission was changed and the display improved in API-level
177.

Then, by API-level 24 Android permissions were no more granted once and for all
at installation time but could also be granted at runtime, upon request. Permissions
became individually revocable and not only as a bulk. Beforehand, rejection of one
permission meant rejection of the application’s installation.

Eventually, by API-level 29 it became possible to grant specific permissions to the
app only in usage. In other words, applications with such permission type granted
cannot accede the same functionalities when they are in the background.

Permissions are divided into several risk categories; elevating its permissions without
properly requesting them is a whole field of attacks that AOSP is vulnerable to [235].

Reducing the privileges of specific components (API-level 29, Sept.2019), plus the
gain in granularity prevented different Confused Deputy attacks. These attacks enabled
a third-party application to abuse other applications’ permissions they want to access
unknowingly of the user and the device [236].

Unix Access Control
In API-level-18 (2013), processes created from zygote (the process from which all

processes are forked) cannot inherit the permissions of the file’s owner. One desired
5https://android-developers.googleblog.com/2016/07/changes-to-trusted-certificate.

html
6https://medium.com/hackers-secrets/adding-a-certificate-to-android-system-trust-store-ae8ca3519a85
7Section Security Changes: https://developer.android.com/about/versions/jelly-bean#

android-4.2
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consequence is that these generated processes cannot change file and group ownership.
In API-level 19 (2014), a design flaw is corrected as users can now set up a VPN for

themselves. API-level 24 (2015) saw a change in the policy of the home directory, passing
to root only [164]. In API-level 26 (2017), an android advertisement identifier (SSAID)
is provided per application and user. It can, however, be shared between applications
from the same developer and enables to share states between these applications (i.e.,
logging in one app, logs in the other).

SELinux Access Control
SELinux Mandatory Access Contol was introduced in 2013 (API-level 18). It

coincides with criticism of the lack of control over the origin of Kernel calls [237]. At
first, it concerned only four processes: installd, netd, vold and zygote. These
are respectively: installation daemon, network connectivity daemon, volume events
daemon and process creation. API-level 21 (2014) has expanded its application has
been expanded to all userspace processes. Several rules were implemented in API-level
25 (2016) to tighten the application sandbox. In API-level 26 (2017), the introduction
of Treble permitted SOC vendors to update their own SELinux rules more easily and
independently from the rest of the OS.

5.3.3 Authentication
The use of fingerprints was enabled in API level 24 for devices with supporting

hardware. It was further improved by API-level 28 to make it available to all applications
as a secure way to access applications resources. In API-level 29, face recognition
was provided with the same level of security fingerprints were given in API-level 28.
Through Gatekeeper, the hardware provides a specific Trusted-Execution Environment
(an isolated trusted architecture) in which the checks are executed8. The smartLock
mechanism described in Section 2.3.1.3 was introduced in 2014.

5.3.4 Memory Corruption Prevention
Since the first Android versions, many defences mechanisms have been deployed

which have made the exploitation of memory corruption vulnerabilities more difficult.
The Stack Canaries were implemented early, by API-level 3 in 2009. Canaries are

memory locations on the stack initialised with specific values which are not supposed
to be altered during the execution of the program. If a canary is modified, the system
assumes that an undesired behaviour attempts to overwrite the stack, and the execution
stops. At the same time, a first sanitising of integer operations was introduced in the
code verification with safe_iop9.

The stack is also made non-executable in API-level 9 (in 2010), which means data
on the stack cannot be interpreted as a list of instructions. Later, in API-level 29,
and for AArch64 architecture, this mechanism is hardened by restricting the spans in
memory that can be interpreted as code, rather than specifying which spans cannot.

API-level 16, July 2012, saw the introduction of Read-Only Relocation (or RelRO).
Executables, given different devices and different executions, may be loaded in memory
at different addresses. One element loaded in memory is the Global Offset Table, which
retains the different offsets enabling to access appropriate elements independently from
the changing context. RelRO hardens the GOT to protect it from being overwritten.

8https://source.android.com/security/authentication/gatekeeper
9https://android.googlesource.com/platform/external/safe-iop/+/

b805514f31a231a0e78a18f296c0454fcadead1a/src/safe_iop.c
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This defence mechanism can be improved with Immediate Binding. The latter forces
addresses to be resolved at load time. This closes the window between load-time and
run-time for the alteration of the GOT.

Another mechanism, ASLR, was developed iteratively over AOSP’s layers and
sometime needed corrections to be functional. When introduced in API-level 14 (2011),
it was flawed. It only had an impact on the position of the stack but not on the
heap, on the linker, nor on libraries10. Furthermore, the memory layout was shared
between all Android applications because the randomisation only happened during
boot [238]. Thus, leaking the memory layout of one application made it possible to
guess any application’s layout. Since 2014 (API 21), all binaries are required to be
Position Independent Executable. Thus both the code and the Process Linkage Table
(i.e., the table that holds the addresses where other code functions are written) are
randomised. ASLR is further strengthened in API-level 25 (2016) with an improvement
of randomisation functions for libraries.

Other defence mechanisms were developed following an iterative process, starting in
most vulnerable modules. So happens for Control-Flow Integrity. CFI was first deployed
in the media stack in API-level 26 and then in Bluetooth and NFC components by
API-level 28. It is a possibility provided by the change of compiler from GCC to LLVM’s
Clang, achieved in API-level 26. API-level 29 saw a complementary improvement of CFI
called Shadow Call-Stack. The Call Stack is duplicated in a secure memory location
and used to check unusual changes in the regular stack.

safe_iop was only dropped in 2018, when API-levels 28, 29 and 30 hardened the
system with better sanitising. Integer Sanitisers were, first, expanded to more libraries
than just the media ones (i.e., libui, libnl, mediaplayerservice, libexif, ...)
in API-level 2811 and, then, to software codecs in API-level 30 (i.e., FLAC, hevdec,
mpeg2, ...). The development team also introduced Bound Sanitisers in API-level 29,
which will enforce the check of indexes and sizes of arrays. Last but not least of these
sanitisers to be mentioned are Address Sanitisers, implemented in randomly selected
system process and the kernel at boot. They help collect use-after-free and heap-buffer
overflows. It is a technique that has already managed to unravel several vulnerabilities
in Google’s Chrome Web Browser12.

5.3.5 Other Improvements
Finally, the Others category regroups spare categories but nonetheless relevant to

how widespread and diverse is the range of action aiming to increase Android security
level. Treble, a system to deliver OS patches independently from the device vendors,
was implemented in API-level 26 [233]. It is the generalisation of an exploit prevention
technique that already had happened with API-level 21 for a specific and sensitive
component: webView. This component is used to render Internet resources through
an application. It was a favoured gate to access a device’s resources as providing
the best and the worst of both worlds between applications and dynamically loaded
web-content [239, 240] It was further bypassing checks for installation of non-explicitly
authorised content13. Thus in 2014, the Webview component was made updatable aside

10https://threatpost.com/analyzing-aslr-android-ice-cream-sandwich-40-022112/76239/
11https://android-developers.googleblog.com/2018/06/compiler-based-security-mitigations-in.html
12https://bugs.chromium.org/p/chromium/issues/list?q=Hotlist%3DGWP-ASan&can=1
13https://labs.f-secure.com/archive/webview-addjavascriptinterface-remote-code-execution/
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from the rest of the system through the PlayStore (or Over The Air).14

Google also realised that 90% of the vulnerabilities in the upstream kernel had
already been patched in the upstream kernel [193]. Better than developing their own
patch, or cherry-picking the fixing patch from the upstream updated kernel into an
Android Common Kernel, it appeared more advantageous to keep the kernel updated
with the latest version of the LTS upstream kernel. Hence the kernel was now divided
into two clear parts: the AOSP Generic Kernel Image and vendor modules. Each can
now be updated independently, reducing further the exposure window.

Version rollback attacks are targeted starting API-level 24, in case an undesired
third party gains physical access to the device.

We can also observe several improvements made to make the user aware of doubtful
action,such as when sending premium SMS (API-level 17, Nov.2012), or installation of
applications with unverifiable origin(e.g., API-levels 17 and 26).

5.4 Binary Analysis
The collection of information sources to provide the above timeline is heterogeneous,

providing data of different quality. This data could be incomplete, or for instance,
specific defence mechanisms may only partially cover some layers or modules of AOSP.
Therefore, specifically for Memory Corruption, we undertake an analysis of the binaries
of each version of AOSP from API-level 10 to 28, for which we found an file-system
image in Android Studio.

As explained in Section 5.2.2, we gathered the binaries present in the x86 system.img
file-system for each Android version available for download in Android Studio. To
these binaries we apply the tools hardening-check and checksec.sh.

The evolution of defence mechanisms is illustrated in Figure 5.2. The black line
represents the total number of binaries analysed in for each file-system. We observe
that there is a constant increase of the number of binaries and an overall increase of
the proportion of binaries featuring defence mechanisms. In the following, we describe
our observations for the different defence mechanisms.
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Non-eXecutable: All binaries of all studied Android versions from API-level 10
14https://support.google.com/work/android/thread/103741642/

force-managed-play-update-of-google-chrome-and-system-webview?hl=en
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to 28 have their stack non-executable. This matches with Figure 5.1 as the stack is
enforced to be non executable since API-level 9

PIE: Our analysis indicates that Position Independant Executables have been
introduced in API-level 16. However, in Android API-level 16, PIE is activated on
only 36% of the binaries. 95% of the binaries without PIE are from the lib folder,
and almost all will be found with PIE activated in the following version, released four
months later. In API-level 17, PIE is indeed applied to almost all binaries, with only
10 binaries not PIE-compliant. For all the following versions, the number of binaries
for which we found no evidence of being compliant to PIE oscillates around 10. The
binaries that do not provide signs to be Executable Independently from the Position
tend to be the same over the versions. We note these could be artefacts of using
versions from Android Studio for emulation. In android API-level 28, they are six if we
do not count the 64 to 32 versions of these: adbd (android debug bridge debugging),
gdbserver, mdnsd (local broadcasting), bpf_kern.o (monitoring and debugging the
kernel 15), micro_bench_static, and simpleperf (code performance analysis).

Stack Protector: From Android API 10 to API 26, the proportion of binaries
with Stack Protector activated remains stable around 96%.

However, we notice that starting with API 27, this proportion slightly decreases,
lowering to 90% in API 28.

This early implementation confirms information provided in Figure 5.1 with the
early implementation of this Defence Mechanism in API-level 3.
Fortify Source: Our analysis of binaries finds that the first binaries using Fortify
Source in the API-level 18. This confirms information provided in Figure 5.1 for x86
architecture. However, only 33% of the binaries provided do implement Fortify Source
in this version of Android. This number only slowly increases until API-level 24, in
which 55% of the binaries are protected. The absolute number of binaries protected
then stays overall constant until API-level 26. So to remember, it is in API 26 that
the Android development team provides full support of Fortify for LLVM’s Clang after
a switch from GCC. From then, the absolute number of binaries protected rises in
absolute while representing still around 50% of all binaries. Overall, the implementation
of Fortify Source is different from other defence mechanisms. It seems to take its own
pace and to be more independent from the global number of binaries. For example, the
number of binaries protected in API-level 25 is higher than in API-level 26, while the
global number of binaries rises.

Read-Only Relocation: This defence mechanism started to be implemented in
API-level 16 with 91% and keeps representing this percentage of all binaries, if not
higher when reaching 95% with API-level 28. One explanation for why some binaries do
not hold such protection could be that we are working from file-system images provided
by Android Studio that could hold specific debugging binaries.

Immediate Binding: Starting with API-level 17 and until API-level 26, the
number of binaries implementing Immediate Binding is almost equal to the number
of binaries with only 10 to 20 binaries present that do not provide it in each version.
Strengthening of RelRo, covers almost all the binaries holding RelRO, but not all.

CFI: The hardening-check tool seeks Intel’s implementation of CFI flag, called
Control-flow Enforcement. Therefore it does not enable us to acknowledge the introduc-
tion of LLVM’s implementation of CFI in Figure 5.2. However, AOSP’s source code make
it possible to see the spread of CFI along the different components. First, by December

15https://source.android.com/devices/architecture/kernel/bpf
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201616, CFI was implemented on media libraries libmedia and libstagefright, only
to be released in API-level 27 (December 2017). It is since spreading among components
as provides a dedicated makefile17 from April 2018. The last extension regards the layer
responsible for abstracting the hardware (called HAL), set under protection of CFI in
January 202118. It makes now twenty-one components covered.

Duration of project from 0% to 100%: From our analysis, we can conclude that,
generally, once the Android development team decides to introduce a given Defence
Mechanism in AOSP, this mechanism ends up being applied to the vast majority
of binaries in the span of only 2 or 3 versions. Fortify_Source stands as an outlier
to that regard. Indeed, after a long-running effort spanning more than 10 versions,
Fortify_Source is applied to only around half the binaries. Of all the defences we
measured here, it is also the only one that saw a period of regression, where both the
absolute number of covered binaries, and the proportion of covered binaries decreased
between API-level 25 and API-level 26. One likely hypothesis for this slower development
is that the team working on Fortify_Source was focusing on the change to LLVM and
not on increasing the system coverage. Nonetheless, the project of using Fortify_Source
in more and more binaries seems to still be dedicated resources as the number of covered
binaries keeps increasing in the latest versions we analysed.

5.5 Investigating impact of Defence Mechanisms on
CVEs

The category of defence mechanisms that received the most attention is Memory
Corruption. They represent 35 different implementations and/or improvements in
Figure 5.1 versus 25 for cryptography. It is an understandable behaviour given the
figure provided by Google (see Section 2.3.1.1) that they considered by 2016 that 86%
of the vulnerabilities affecting android to be related to Memory Corruption.

The defence mechanisms most often target the risk for vulnerable code to be exploited
better than necessarily preventing the apparition of vulnerable code. We can, however,
expect these defence mechanisms to make the exploitation more complex: requiring more
time and effort. As we discussed for bypassing ASLR (needing a leak of the memory
mapping to exploit a buffer overflow), it becomes required to combine vulnerabilities to
succeed in the exploitation of vulnerable code. The reduction of available techniques to
attackers, and the increasing skills required to manage them, could be correlated with
a reduction of the number of vulnerabilities that need to be fixed.

We thus try to observe if their is a correlation between the number of exploitable
code and the introduction of Memory Corruption defence mechanisms.

5.5.1 Memory Corruption
5.5.1.1 Description

Figure 5.3 presents the introduction timeline of memory corruption related defence
mechanisms (presented in Figure 5.1) and the evolution of declared memory corruption
related CVEs (as seen in Figure 3.9). We focus on the different steps followed in the
implementation of ASLR, Fortify_Source and CFI.

16https://android.googlesource.com/platform/frameworks/av/+/
a4a6d63ec590a3be60a60527c619fb0bf7870b59^!

17https://android.googlesource.com/platform/build/+/e003a0a6cec52c2a8bd561673509f3a34bc5c052^!
18https://android.googlesource.com/platform/build/+/08764606dee8784d6251a92459cdae673001f5cb
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Figure 5.3: Evolution of the number of Memory Corruption related Vulnerabilities
related to the introduction of Memory Corruption related Defence Mechanisms

Many of the defence mechanisms were implemented, or knew a first implementation,
before 2016. It affects the capacity to conclude as the most meaningful pool of data
came in 2015 with Android bulletins.

We saw in Section 3.3.6 that the number of Memory Corruption vulnerabilities has
been rising up to 2017, and began a noticeable decrease in 2019.

There is a time of high variations, between those two periods during which GCC’s
FORTIFY_SOURCE was already implemented, PIE was already enforced and that
saw ASLR’s entropy to be improved (API-level 25).

Also, the apparent decrease happens after the release of API-level 27 that, as we
saw, provided a fully-capable FORTIFY_SOURCE for clang, and the introduction of
CFI in the media stack.
5.5.1.2 Analysis

We cannot attribute directly any effect on the curbs of CVEs to any introduction
of a specific defence mechanism. First, because the data quality is not homogeneous
over time (before vs after Android bulletins). Second, because of the introduction
and the improvements of different mechanisms overlay. Third, it is not possible to
exclude external causes to the focus we provide. As a reminder, the global count of
vulnerabilities drops from 2018 on.

There is however a significant drop. More progressive than the one of the second
semester of 2017, and not recovering as far as the data we analyse go. This trend
covers a year and a half, thus 18 months and as many Android bulletins, and can be
considered encouraging. Nonetheless, we cannot consider it definitive because of the
before-mentioned limitations.

Another piece of information highlights that the Android team keeps chasing memory
corruptions regardless of the trend up to API-level 28. In the last versions, API-levels
29 and 30 (over the scope of CVEs presented in Figure 5.3) studied in Figure 5.1.
The development team keeps hardening the system with each version against Memory
Corruption. It can also be seen as a further encouraging signal that now, Google wants
to anticipate potential existing attack vectors.

5.6 Discussion
This discussion is divided into three different points. We first mention threats to

this study, reminding the hypotheses on which the analyses are based. We then list
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key points in the story of the implementation of defence mechanisms we believe to be
worth remembering and exporting to other programs. And finally, we prospect to what
can also be done for AOSP from where it stands.

Threats to the study: We begin reconsidering the nature of the relationship between
the evolution of vulnerabilities and the implementation of defence mechanisms.

[Actual Impact of Def.Mech.] Defence mechanisms target exclusively the introduction
of a vulnerability. They can very well make the target program resilient to the impact
or the exploitability more complex for triggered vulnerabilities. Hence a vulnerability,
as a Buffer Overflow, may still be exploitable after the implementation of certain
defence mechanisms, as making the stack Non-Executable. In other cases, as with the
Clang’s UBSanitizer for integer sanitising [241] (API-level 29 and 30 in Figure 5.1),
the source code may present the possibility of an overflow. Nonetheless, the compiler
will instrument the code to monitor the evolution of integers and be redirected in
error-catching branches in case a program leads to an overflow of one of these values;
therefore preventing the exploitation. We have to acknowledge that the link of causality
is not complete.

[To patch or not to patch] In contrast, when security experts consider the exploitation
to be rendered extremely unlikely or when the resulting advantage does not compensate
for the effort to complete the exploit: then the decision of the developing team can be
not to patch the vulnerability. In such a case, vulnerabilities hardly impacting after
the implementation of a defence mechanism will not appear in our statistics (as not
patched as a security issue). Consequently, the evolution of the number of patched
CVEs may be more correlated to the actual level of exposure of a system than implied
in the paragraph just above.

[Context] This last point underlines another threat to our analysis: a patched CVE
does not carry the same impact in different contexts. Not only due to its severity
(i.e. end-impact on the system), but a vulnerability that needs to be patched in early
versions does not mean the same as a vulnerability exploitable when several defence
mechanisms have already been implemented. In the second case, the vulnerability is still
exploitable while the cost of implementing several defence mechanisms has already been
engaged. In the first case, late defence mechanisms may have prevented the exploitation.
Thus, representations as in Figure 3.1 consider with the same weight vulnerabilities of
different nature.

[Data Quality] Additionally, we take most of our data in Android Security Bulletins.
Our analyses depend on the level of transparency they adopt on vulnerability patches.
We also, de facto, integrate without clarifying it, the definition of what is a vulnerability
that needs to be patched and what is a vulnerability that does not (or that is considered
a bug and patched as such).

[Detection Efforts] Finally, the relevance of using patched vulnerabilities is based
on the crucial hypothesis that analysts deploy enough effort to detect vulnerabilities
that are detectable with the current State-of-the-Art techniques, and that they disclose
these vulnerabilities responsibly. For instance, in case the attention of analysts shifts
to other products, or if there is no incentive to detect vulnerabilities in AOSP, the
reduction of the number of vulnerabilities cannot be considered as a consequence of
an actual hardening of the platform [76]. The level of adoption of Android and the
diversity of security-needy features provided by Android protects us from this threat,
but it has not been precisely measured. This gap also underlines the necessity for
new detection methods to be tested and implemented. With time, the easiest-to-spot
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vulnerabilities are detected, and it becomes incrementally complex, and costly, to
detect newest ones. Additionally, these vulnerabilities that evade defence mechanisms
are particularly worrying, and underline that defence mechanisms and vulnerability
detection are complementary.

Good habits: We cannot measure precisely either what would be the vulnerability
trends, had Android developers not implemented these defence mechanisms. We can,
however, notice several measures that ought to produce beneficial outcomes, regardless
of our capacity to measure them.

[Monitoring & Transparency] First, the list of defence mechanisms integrated into the
Android Open Source Project, however spreading over more than ten years, demonstrates
a genuine will to anticipate future threats; either these unknown threats are existing,
yet uncovered, vulnerabilities or ones introduced in the future. It covers all the types
of vulnerabilities we have observed AOSP to be subject to. In the case of Memory
Corruption, it also demonstrates a continuous focus on developing newest, safest, even
if costly, defence mechanisms. Regardless of the cost and the time (over two years until
release), a decision was made to re-implement Fortify_Source for Clang as Clang further
enables the use of Overflow Sanitizers (integer, bound, address) and of Control-Flow
Integrity.

The motivation to undertake such consequent measure can be built on the knowledge
provided by the publication of monthly security Bulletins.

• This monitoring provides the developing team and the public with up-to-date
figures. It helps trigger alarms if the system, or one of its modules, appears
particularly exposed to a particular vulnerability type. This exposure can be
understood as the cost of not increasing the safety of the system.

• Engaging in transparency through the publication of fixed vulnerabilities is also
beneficial for the development and the adoption of Android as an OS. First,
engaging in such a procedure brings trust to the product. Developers recognise
the product used to be vulnerable, but exposure is monitored, and action to fix
the issue is undertaken. Second, such practice engages the developers to continue
this procedure, resulting in a constant improvement of the product.

• Further, the acknowledgement from whom the vulnerability disclosure originates
underlines a discussion with analysts and public recognition of their work. Thus,
the detection of vulnerability is valued and is encouraged. It answers the above-
mentioned requirement to keep the focus on the detection of vulnerabilities on
Android.

[Modularisation and Updates] Second, we have acknowledged in the Section 2.1.3
the period of time between the disclosure of a vulnerability and the eventual update of
users’ devices to have the most impact on both end-users and product developers. For
instance, in the introduction of this thesis (Section 1.1), we mentioned Eternal Blue.
The attack occured on June 27th 2017, while Microsoft had emitted a fixing patch by
March 14th 2017. Thus the late (or lack of) adoption of updates (3 months after release)
that partially explains the extent to which this malware affected a country and the
global economy. In Figure 5.1, we can observe how much effort has been developed into
modularising AOSP and fluidising the independent update of these modules. It was
first undertaken for WebView. As an open gate to web content, and thus to web threats,
the modularisation and update through the Play Store made the system defence more
responsive to newest threats. This capacity to react has been followed up with project
Trebble and with the Generic Kernel Image project for the kernel. They differentiate
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more clearly AOSP components from third parties elements (e.g. device, vendors). The
system is since autonomous regarding the update and can, for instance, month after
month provide the latest security update available for download to all devices. AOSP
thus answered the main lead for improvement from Mazuera et al. [78].
Perspectives: In this paragraph, we mention what could be further done to either
strengthen the system or assess the efficiency of defence mechanisms. Both would help
software developers to prioritize the implementation of defence mechanisms.

[Integration Testing] As mentioned by Mazuera et al. [78], further implementing
integration (authors say "just-in-time") quality control tools and techniques can be
implemented (as a commit-level detection algorithm). Another profound change, more
consequent than the development of Fortify_Source for Clang, would consist in changing
coding languages for more resilient ones. For instance, strengthening toward memory
corruptions could benefit from a change from C to Rust in lower layers of the AOSP
Stack.

[Behaviour Monitoring] The focus could be ported to the applications by making
a remote copy of users’ device and, on this copy, scanning for Potentially Harmful
Applications (PHAs) and producing a dynamic taint analysis [242]. The paper focuses
on practical aspects as minimising the useful trace and the size of the data to be sent.
The suggestion yet has significant drawbacks as the battery life was reduced by 30%.

[Restructuration] Applications, still, could be the subject of an architectural re-
foundation [243]. They could implement their own SELinux rules, as the original paper
describes and provides templates for. It however requires to grant the developer of the
application with a higher level of trust, which brings other trust-related issues.

[Precise Measurement of the Impact of Def.Mech.] In relationship with the threats
evoked above: we have not properly assessed the efficiency of later-introduced defence
mechanisms toward the vulnerabilities that required a fix. One way to acknowledge
the actual efficiency of defence mechanisms would consist in providing, per defence
mechanism, the number of CVEs they would have prevented, or made the exploitation
more complex, had they been implemented earlier. To do so, we need a pool of exploits
for each CVEs. We would then roll back specifically the patch and observe if the
exploitation is altered on the newly compiled AOSP version. The resulting score
could be seen both as a criticism of not anticipating enough specific weaknesses, or
demonstrating the capacity to have taken the right decision to implement a specific
defence mechanism. Proper meaning to these figures would nonetheless also require
a considerable number of CVEs to test for, and also to compare with other systems’
results to qualify the reactivity.

98



6 Conclusion and Perspectives

In this final chapter, we conclude regarding the challenges that software vulnerabilities
brings to the research community and to becoming resilient. We collect the main
elements to remember and put them in further perspective. We underline how they
nurture further detection of vulnerabilities and nourish detection of exploitation of these
known vulnerabilities.

Contents
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2.1 Detecting vulnerability clones in the Android OS . . . . . . 101
6.2.2 Reference a library of exploit specific to these vulnerabilities 102
6.2.3 Abstract exploits and detection of Android applications

exploiting known vulnerabilities . . . . . . . . . . . . . . . . 103



Chapter 6. Conclusion and Perspectives

6.1 Conclusion

In this thesis, we, first, contribute to the understanding of what is a vulnerability and
to analyse them. Our work allows for the creation of usable and updatable consistent
vulnerability data sets. Thus, we produced a manual categorisation of the Android
Open Source Project vulnerabilities that clearly states to follow a vulnerability analysis.
We focus on the predisposing condition creating a vulnerability in the code before the
patch happens. From this set of vulnerabilities and their classification, we analyse the
evolution of vulnerability disclosures over more than ten years of the Android Open
Source Project. The first fact is that there are still vulnerabilities needing a patch, as
of June 2020, and that their severity does not diminish. Also, efforts did not manage
either to make any root CWE affecting AOSP to properly vanish; not even memory
corruption. Nonetheless, and while our analyses are circumvented by the data time
span, there is a trend to the reduction of the number of CVEs that needs to be patched
in AOSP, at least since 2017. This encouraging sign affects all CWEs and particularly
memory corruption and the native libraries layer. Their lifetime also has significantly
shortens.

We explain to have chosen a vulnerability oriented analysis with the ambition to
tackle the challenge of vulnerability detection. As such, a machine-learning-based
detection system, such as VCCFinder [30], that we attempted to replicate, could be
trained with information that we could statically consider as among the most significant.
Confronted with the lack of control over the data set graciously provided by the original
authors, we could not replicate nor reproduce the approach. We nonetheless distribute
our code as a reproducible baseline and attempted to out-perform original results with
exploration over parameters, algorithms and to attempt to face the issue of imbalanced
data set, regarding the set of unlabeled commits, using co-training. With our code
available it is now possible to evaluate and compare with more recent tools that built on
the success of VCCFinder to determine most successful and most promising approaches
in vulnerability detection.

We eventually analyse how the AOSP development team hardened AOSP over time
and further anticipated both the discovery of existing vulnerabilities and the introduction
of newest ones. Instead of only patching disclosed vulnerabilities, the implementation
of defence mechanisms prevents the exploitation of specific weaknesses in the
components they are applied to. We further verify quantitatively that this information
does match with the binaries of AOSP from API-level 10 to 28. Developing these
protections may take time, can spread over different versions, and may necessitate
rebuilding the project from early stages, but, as far as we can observe, these defence
mechanisms are eventually beneficial. Specifically for Memory Corruption related
vulnerabilities, the introduction of specific defence mechanisms is correlated with a
reduction of the number of vulnerabilities needing to be patched. An observation that
could not be noted in other studies, regarding other systems, regardless of the efforts to
observe such tendencies [59, 53, 76], hence contributing to AOSP’s widespread adoption.
Nonetheless, Android stands as an Operating System. As such, not all the practices
adopted and not all the defence mechanisms are applicable to any software. However, a
consistent approach would scale down from AOSP’s list in case of motivated uselessness
better than building up by cherry-picking.
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6.2 Perspectives
In this final part, we will describe several challenges that this thesis paves the way

to. Some of these objectives where originally ambitioned to be part of the thesis. Other
where only revealed through the learning process.

6.2.1 Detecting vulnerability clones in the Android OS
6.2.1.1 Detection of new vulnerabilities

On the one hand, we have a machine learning-based vulnerability detector at the
commit level that we could not confirm as a proper replication of the original work,
partially because of the lack of command over the database provided by the original
authors. On the other hand, we have a database of around a thousand commits fixing
a vulnerability. The combination of these two elements could serve several purposes:

1. Finish to assess the precision and recall of our revisited VCCFinder implementation
with real cases of native (C/C++) vulnerabilities in AOSP.

2. After the determination of the conditions for a good enough ratio of True Positives
over False Positives, we could analyse the rest of the native layers of AOSP. The
resulting commits, sorted with most confidence by the algorithm, as VCCs could
be manually verified to assess whether they are True or False Positives. In other
words, if the vulnerable version pointed at is exploitable.
As vulnerabilities are classified regarding their CWEs, and we have the connection
to parents CWEs, the revisited VCCFinder algorithm could be trained separately
for different CWEs.

Challenges:
• If we have the commit that fixes the vulnerability, there is one step further to

produce to pass from a vulnerable version to the actual(s) VCC(s). This implies
that an SZZ-like algorithm would have to be implemented and that, for each
vulnerability, provided VCCs would have to be manually verified.

6.2.1.2 Detection of Vulnerability Clones
This list of vulnerable commits for Android could be helpful through another type

of vulnerability detection, namely code clone detection.

1. A first exploration of the code would consist in referencing Abstract Syntax Trees
of these vulnerabilities and implementing a code comparison analysis with the
code of AOSP using the same language as the vulnerability, as Deckard does [92].
This technique could be further expanded to include Program Dependence Graphs
and Control Flow Graphs to produce analogue methods like Yamaguchi et al. [91].
Further promising improvement uses the Code Property Graphs from raw code
with Joern [244]. VGRaph [245] is another perspective for which, to be considered
vulnerable, the target code has to be close enough to the code shared between the
unpatched and patched version, but looking, however, closer (i.e. above a specific
threshold), to the vulnerable version, and not too close to the patched version of
the code.

2. Another tool, earlier mentioned (Section 2.2.1), sounds promising regarding the
expectation to detect vulnerability clones at the function level, namely MVP [87].
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MVP is based on both the syntax and the semantic of vulnerable code. It first
needs to cut programs into functions and then hashes the syntax of normalised
lines of the code. It also keeps score of the relationships between lines of the
same code(semantic). Eventually, MVP confronts resulting abstractions with a
database of vulnerability signatures. As for VGraph, specific rules are established
so the code is close enough from the vulnerable version of the code, and not so
close from the patched version, both syntactically and semantically.

Challenges:
• The code of MVP [87] is not publicly released. Even though the article provides a

respectable amount of details about the implementation, others might be lacking
(like the hashing function used). Further, any replication, or attempt, could
only focus on the C++ code as the tool depends heavily on the Joern [244].
Evaluation of the eventual implementation would suffer the same challenges as
our VCCFinder-revisited for both reproduction and replication.

6.2.2 Reference a library of exploit specific to these vulnerabilities
Another aspect that this thesis provides the bases for is either or both referencing

and developing exploits for these vulnerabilities.
The development of such exploits can help train security experts to measure the

severity of a vulnerability accurately. Several exploit libraries already exist and are
available online [246, 247]. They can serve as a base to start tackling faster other issues
such as characterising threats and suspicious programs
6.2.2.1 Exploit Generation

Provided with the patch, we can deduce the sub-goals or input to feed the program
with so to exploit the vulnerable version of the code.

The development of such exploit can also be generated faster with fuzzing. The
location of the issue in the code and the analysis of the patch can enable to constraint the
inputs to reach the vulnerable lines. Then we could adapt existing tools implementing
afl into android [105] to explore the desired code locations until an exploit is generated.
6.2.2.2 Assess the maximum potentiality of vulnerabilities

As we have stated, the appropriate importance to attribute to the resolution of a
vulnerability in the code can be given if the report contains accurate information about
the vulnerability. Therefore, stating the actual severity of a vulnerability is crucial
to the resolution of the issue. From one exploit, Koobe [15] is capable of fuzzing the
Linux kernel to find other exploits that match the maximum capability of exploitation
of Out-of-Bound Overwrite on the Heap of the Linux kernel. With the code available,
the principle might be applicable to AOSP native code and extended to other memory
corruption weaknesses.

Challenges:
• Koobe relies first on the availability of a first exploit. As such, either we already

achieved the steps in Section 6.2.2.1, or enough exploits for the specific CWE we
tackle have been gathered.

• If the tool is available1, the eventual exploitability relies heavily on what the
original authors call feng-shui. It consists in using various techniques to set objects
on the heap in ideal disposition for the overflow to occur in an exploitable manner.

1https://github.com/seclab-ucr/KOOBE
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Their feng-shui is not the focus of the article and thus is not detailed. This
absence could imply complications in reproducing the chain before and when
further attempting to apply it to other types of vulnerabilities in other algorithms.
However MAZE [248] could be used as a resource so to use various techniques on
the heap.

6.2.3 Abstract exploits and detection of Android applications ex-
ploiting known vulnerabilities

The aforementioned steps lead to an eventual application in the wild of the database
of vulnerabilities, their exploits and the knowledge gathered relative to their character-
istics. With millions of android applications, certainly several of these applications have
attempted, or still do attempt, to exploit these referenced vulnerabilities. Detecting
these applications having a, properly speaking, malicious behaviour could first enable
blacklisting the developers behind these applications. Such detection could also provide
a more direct answer as one device used in the world in two runs on a version of AOSP
older than 2 years. In some cases, this implies that these vulnerabilities might not
receive the last security patch anymore and thus be at risk of the latest vulnerabilities.
Increasing user’s exposure.

A parade would reside in detecting the exploitation of these vulnerabilities in the code
of applications. Either statically, or dynamically this requires two steps: 1. Abstraction
of the exploitation of the vulnerability 2. Detection of the exploitation

• Statically, the code of the exploits gathered or created above could be the source of
the abstraction. We could use several of the methods overviewed in Section 6.2.1.2.
Such as applying an MVP-like [87] approach from vulnerability clones to exploit
clones, with the limitation that the exploit fully holds in one function, and
there might not be an equivalent for the patched code, that serves as a rejection.
Limitations of these techniques are, in the first case, the high rate of false positives
if the abstraction becomes too general. Another limitation is the granularity. An
MVP-like approach can only detect the exploit if it entirely fits in one function.

• Dynamic detection could use Enhanced Attack Trees mentioned in Section 2.2.3.
Better than abstracting the code of the exploit, a medium could be to abstract
the actions the exploit has to take and sub-goals the exploit has to capture so
that the end-of-line goal can be achieved. Once such representations are archived
for several vulnerabilities (e.g. Enhanced Abstract Trees [108]) the OS can be
recompiled with a watchdog program verifying, at runtime, actions performed
and permissions granted to applications. The trade-off is as follows: the defence
would not depend on the semantic nor on the syntax of the exploit but only on
the application’s behaviour on the system. The detection is independent of the
granularity from when the actions can be traced back to their original commander.
For such instrumentation MADAM [214] stands as an example of on-device
monitoring (see 2.4.4).
Challenges:
However, the abstraction of so many vulnerabilities requires the implementation
of an automated abstraction.
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Annexe 1: List of Memory Corruption
CWEs

CWE-288 Authentication Bypass Using an Alternate Path or Channel
CWE-305 Authentication Bypass by Primary Weakness
CWE-1084 Invokable Control Element with Excessive File or Data Access Operations
CWE-1127 Compilation with Insufficient Warnings or Errors
CWE-115 Misinterpretation of Input
CWE-179 Incorrect Behavior Order: Early Validation
CWE-408 Incorrect Behavior Order: Early Amplification
CWE-440 Expected Behavior Violation

CWE-444
Inconsistent Interpretation of HTTP Requests

(’HTTP Request Smuggling’)
CWE-480 Use of Incorrect Operator
CWE-483 Incorrect Block Delimitation
CWE-698 Execution After Redirect (EAR)
CWE-783 Operator Precedence Logic Error
CWE-835 Loop with Unreachable Exit Condition (’Infinite Loop’)
CWE-837 Improper Enforcement of a Single, Unique Action
CWE-841 Improper Enforcement of Behavioral Workflow
CWE-385 Covert Timing Channel
CWE-257 Storing Passwords in a Recoverable Format
CWE-349 Acceptance of Extraneous Untrusted Data With Trusted Data
CWE-130 Improper Handling of Length Parameter Inconsistency
CWE-166 Improper Handling of Missing Special Element
CWE-167 Improper Handling of Additional Special Element
CWE-168 Improper Handling of Inconsistent Special Elements
CWE-182 Collapse of Data into Unsafe Value
CWE-229 Improper Handling of Values
CWE-233 Improper Handling of Parameters
CWE-237 Improper Handling of Structural Elements
CWE-241 Improper Handling of Unexpected Data Type
CWE-409 Improper Handling of Highly Compressed Data (Data Amplification)
CWE-471 Modification of Assumed-Immutable Data (MAID)

CWE-79
Improper Neutralization of Input During Web Page Generation

(’Cross-site Scripting’)

CWE-88
Improper Neutralization of Argument Delimiters in a Command

(’Argument Injection’)
CWE-140 Improper Neutralization of Delimiters
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CWE-188 Reliance on Data/Memory Layout
CWE-463 Deletion of Data Structure Sentinel
CWE-641 Improper Restriction of Names for Files and Other Resources
CWE-791 Incomplete Filtering of Special Elements
CWE-1083 Data Access from Outside Expected Data Manager Component
CWE-544 Missing Standardized Error Handling Mechanism
CWE-617 Reachable Assertion
CWE-783 Operator Precedence Logic Error
CWE-129 Improper Validation of Array Index
CWE-179 Incorrect Behavior Order: Early Validation
CWE-183 Permissive List of Allowed Inputs
CWE-184 Incomplete List of Disallowed Inputs
CWE-606 Unchecked Input for Loop Condition
CWE-641 Improper Restriction of Names for Files and Other Resources
CWE-120 Buffer Copy without Checking Size of Input (’Classic Buffer Overflow’)
CWE-123 Write-what-where Condition
CWE-124 Buffer Underwrite (’Buffer Underflow’)
CWE-125 Out-of-bounds Read
CWE-126 Buffer Over-read
CWE-127 Buffer Under-read
CWE-131 Incorrect Calculation of Buffer Size
CWE-786 Access of Memory Location Before Start of Buffer
CWE-787 Out-of-bounds Write
CWE-121 Stack-based Buffer Overflow
CWE-122 Heap-based Buffer Overflow
CWE-805 Buffer Access with Incorrect Length Value
CWE-806 Buffer Access Using Size of Source Buffer
CWE-128 Wrap-around Error
CWE-190 Integer Overflow or Wraparound
CWE-191 Integer Underflow (Wrap or Wraparound)
CWE-192 Integer Coercion Error
CWE-193 Off-by-one Error
CWE-197 Numeric Truncation Error
CWE-198 Use of Incorrect Byte Ordering
CWE-369 Divide By Zero
CWE-681 Incorrect Conversion between Numeric Types
CWE-839 Numeric Range Comparison Without Minimum Check
CWE-1077 Floating Point Comparison with Incorrect Operator
CWE-466 Return of Pointer Value Outside of Expected Range
CWE-587 Assignment of a Fixed Address to a Pointer
CWE-823 Use of Out-of-range Pointer Offset
CWE-501 Trust Boundary Violation
CWE-341 Predictable from Observable State
CWE-412 Unrestricted Externally Accessible Lock
CWE-73 External Control of File Name or Path
CWE-502 Deserialization of Untrusted Data
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CWE-763 Release of Invalid Pointer or Reference
CWE-770 Allocation of Resources Without Limits or Throttling
CWE-774 Allocation of File Descriptors or Handles Without Limits or Throttling
CWE-789 Uncontrolled Memory Allocation
CWE-908 Use of Uninitialized Resource
CWE-909 Missing Initialization of Resource
CWE-1188 Insecure Default Initialization of Resource
CWE-828 Signal Handler with Functionality that is not Asynchronous-Safe
CWE-15 External Control of System or Configuration Setting
CWE-372 Incomplete Internal State Distinction
CWE-134 Use of Externally-Controlled Format String
CWE-135 Incorrect Calculation of Multi-Byte String Length
CWE-681 Incorrect Conversion between Numeric Types
CWE-843 Access of Resource Using Incompatible Type (’Type Confusion’)
CWE-450 Multiple Interpretations of UI Input
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