29,653 research outputs found

    Automatic Analysis of Brain Tissue and Structural Connectivity in MRI

    Get PDF
    Studies of the brain using magnetic resonance imaging (MRI) can provide insights in physiology and pathology that can eventually aid clinical diagnosis and therapy monitoring. MRI data acquired in these studies can be difficult, as well as laborious, to interpret and analyze by human observers. Moreover, analysis by human observers can hamper the reproducibility by both inter- and intra-observer variability. These studies do, therefore, require accurate and reproducible quantitative image analysis techniques to optimally benefit from the valuable information contained in the MRI data. In this thesis, we focus on the development and evaluation of quantitative analysis techniques for brain MRI data. In the first part of this thesis, we focus on automatic brain tissue and white matter lesion (WML) segmentation. We propose an automatic WML segmentation method based on fluid-attenuated inversion recovery (FLAIR) scans that can be added as an extension to brain tissue segmentation methods. We optimize and evaluate a previously proposed automatic brain tissue segmentation method in combination with the WML segmentation extension. We compare the accuracy and reproducibility of this newly developed segmentation framework to several other methods, some of which are publicly available. Additionally, we compare two brain tissue segmentation methods on the segmentation of longitudinal brain MRI data. The second part of this thesis is about structural brain connectivity based on diffusion MRI data. We propose a framework for analysis of structural connectivity in large groups of subjects. Structural connectivity is established using minimum cost paths based on the diffusion weighted images and is summarized in brain networks. Using statistical methods, we demonstrate that the obtained networks contain information regarding subject age, white matter lesion load and white matter atrophy. Finally, we evaluate the reproducibility of the proposed brain connectivity framework

    Infant’s MRI Brain Tissue Segmentation using Integrated CNN Feature Extractor and Random Forest

    Get PDF
    Infant MRI brain soft tissue segmentation become more difficult task compare with adult MRI brain tissue segmentation, due to Infant’s brain have a very low Signal to noise ratio among the white matter_WM and the gray matter _GM. Due the fast improvement of the overall brain at this time , the overall shape and appearance of the brain differs significantly. Manual segmentation of anomalous tissues is time-consuming and unpleasant. Essential Feature extraction in traditional machine algorithm is based on experts, required prior knowledge and also system sensitivity has change. Recently, bio-medical image segmentation based on deep learning has presented significant potential in becoming an important element of the clinical assessment process. Inspired by the mentioned objective, we introduce a methodology for analysing infant image in order to appropriately segment tissue of infant MRI images. In this paper, we integrated random forest classifier along with deep convolutional neural networks (CNN) for segmentation of infants MRI of Iseg 2017 dataset. We segmented infants MRI brain images into such as WM- white matter, GM-gray matter and CSF-cerebrospinal fluid tissues, the obtained result show that the recommended integrated CNN-RF method outperforms and archives a superior DSC-Dice similarity coefficient, MHD-Modified Hausdorff distance and ASD-Average surface distance for respective segmented tissue of infants brain MRI

    Comparison of Two-Dimensional- and Three-Dimensional-Based U-Net Architectures for Brain Tissue Classification in One-Dimensional Brain CT

    Get PDF
    Brain tissue segmentation plays a crucial role in feature extraction, volumetric quantification, and morphometric analysis of brain scans. For the assessment of brain structure and integrity, CT is a non-invasive, cheaper, faster, and more widely available modality than MRI. However, the clinical application of CT is mostly limited to the visual assessment of brain integrity and exclusion of copathologies. We have previously developed two-dimensional (2D) deep learning-based segmentation networks that successfully classified brain tissue in head CT. Recently, deep learning-based MRI segmentation models successfully use patch-based three-dimensional (3D) segmentation networks. In this study, we aimed to develop patch-based 3D segmentation networks for CT brain tissue classification. Furthermore, we aimed to compare the performance of 2D- and 3D-based segmentation networks to perform brain tissue classification in anisotropic CT scans. For this purpose, we developed 2D and 3D U-Net-based deep learning models that were trained and validated on MR-derived segmentations from scans of 744 participants of the Gothenburg H70 Cohort with both CT and T1-weighted MRI scans acquired timely close to each other. Segmentation performance of both 2D and 3D models was evaluated on 234 unseen datasets using measures of distance, spatial similarity, and tissue volume. Single-task slice-wise processed 2D U-Nets performed better than multitask patch-based 3D U-Nets in CT brain tissue classification. These findings provide support to the use of 2D U-Nets to segment brain tissue in one-dimensional (1D) CT. This could increase the application of CT to detect brain abnormalities in clinical settings

    Multispectral segmentation of whole-brain MRI

    Get PDF
    Magnetic Resonance Imaging (MRI) is a widely used medical technology for diagnosis and detection of various tissue abnormalities, tumor detection, and in evaluation of either residual or recurrent tumors. This thesis work exploits MRI information acquired on brain tumor structure and physiological properties and uses a novel image segmentation technique to better delineate tissue differences.;MR image segmentation will be important in distinguishing between boundaries of different tissues in the brain. A segmentation software tool was developed that combines the different types of clinical MR images and presents them as a single colored image. This technique is based on the fuzzy c-means (FCM) clustering algorithm. The MR data sets are used to form five-dimensional feature vectors. These vectors are segmented by FCM into six tissue classes for normal brains and nine tissue classes for human brains with tumors. The segmented images are then compared with segmentation performed using Statistical Parametric Mapping (SPM2)---software that is commonly used for brain tissue segmentation. The results from segmenting the whole volume MRI using FCM show better distinction between tumor tissues than SPM2

    A SURVEY ON IMAGE SEGMENTATION USING DECISION FUSION METHOD

    Get PDF
    Neonatal brain MRI segmentation is challenging due to the poor image quality. Existing population atlases used for guiding segmentation are usually constructed by averaging all images in a population with no preference. However, such approaches diminish the important local inter-subject structural variability. Tissue segmentation of neonatal brain MR images remains challenging because of the insufficient image quality due to the properties of developing tissues. Among various brain tissue segmentation algorithms, atlas-based brain image segmentation can potentially achieve good segmentation results on neonatal brain images. Atlas-based segmentation approaches have been widely used for guiding brain tissue segmentation. Existing brain atlases are usually constructed by equally averaging presegmented images in a population. However, such approaches diminish local inter-subject structural variability and thus lead to lower segmentation guidance capability. To deal with this problem, we propose a multi-region-multi-reference framework for atlas-based neonatal brain segmentation
    • …
    corecore