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ABSTRACT 
 

Multispectral Segmentation of Whole Brain MRI 
 

Nitya Krishnan 
 
 
Magnetic Resonance Imaging (MRI) is a widely used medical technology for diagnosis 
and detection of various tissue abnormalities, tumor detection, and in evaluation of either 
residual or recurrent tumors. This thesis work exploits MRI information acquired on 
brain tumor structure and physiological properties and uses a novel image segmentation 
technique to better delineate tissue differences.  
 
MR image segmentation will be important in distinguishing between boundaries of 
different tissues in the brain. A segmentation software tool was developed that combines 
the different types of clinical MR images and presents them as a single colored image. 
This technique is based on the fuzzy c - means (FCM) clustering algorithm. The MR data 
sets are used to form five-dimensional feature vectors. These vectors are segmented by 
FCM into six tissue classes for normal brains and nine tissue classes for human brains 
with tumors. The segmented images are then compared with segmentation performed 
using Statistical Parametric Mapping (SPM2)-software that is commonly used for brain 
tissue segmentation. The results from segmenting the whole volume MRI using FCM 
show better distinction between tumor tissues than SPM2.  
 
 



 

ACKNOWLEDGEMENTS 
 
 
I would like to wholeheartedly thank my advisor Dr. Susan Lemieux for her continued 
support, guidance and encouragement during the course of this research work. Special 
thanks to Dr. Aina Puce for her help and valuable thoughts during my research work.  
 
I also wish to thank Dr. Mark Jerabek, Dr. Wils Cooley, Dr. Donald Adjeroh my 
committee members, for their advice and support. Also special thanks to Dr. Raymond 
Raylman for his constant encouragement and support in carrying out the experiments.  
 
I would also like to thank Dr. Mark Haut, Dr. Gary Marano, and Dr. Stephen Bloomfield 
who helped in recruiting subjects for this research work. Thanks to Dr. Michael Parsons, 
Kamal Sheikh, Dr. Jim Thompson, and Dr. Svenja Lowitzsch for their help in data 
analysis.  
 
And finally I would like to thank the members of Center for Advanced Imaging / 
Department of Radiology for all their help and guidance. 

 iii



 

Dedications 
 
To my parents and my brother for their support and guidance throughout my life and their 
help to fulfill my dreams in pursuing my masters. 
 
To Susan, my research professor who has been like my mother in this country and 
continuously encouraged and guided me both professionally and personally. 
 
And above all, to my beloved husband Bharath, who is my soul-mate, inspiration and 
friend. 

 iv



 

Table of Contents 

Chapter 1............................................................................................................................. 1 
Introduction...................................................................................................................... 1 
Principles of MRI............................................................................................................. 2 
Pulse Sequences ............................................................................................................. 10 
Brain Tumors ................................................................................................................. 12 

Chapter 2........................................................................................................................... 16 
MR Imaging Methods .................................................................................................... 16 

Fast Fluid - Attenuated Inversion-Recovery (FLAIR)............................................... 16 
Diffusion - Weighted Imaging (DWI)........................................................................ 17 
Perfusion - Weighted Imaging (PWI) ........................................................................ 19 
MR Spectroscopy Imaging......................................................................................... 22 

Segmentation Using Fuzzy C - Means Clustering Algorithm ....................................... 24 
Chapter 3........................................................................................................................... 29 

Methods ......................................................................................................................... 30 
Simulation Models ..................................................................................................... 30 
Simulation Using Stripes............................................................................................ 30 
Partial Volume Simulation ......................................................................................... 32 
Brain Region-of-Interest Simulation.......................................................................... 33 
MRI Volume Data Sets .............................................................................................. 33 

Data Acquisition and Analysis ...................................................................................... 34 
Chapter 4........................................................................................................................... 38 

Results............................................................................................................................ 39 
Simulation Using Stripes............................................................................................ 39 
Partial Volume Stripes ............................................................................................... 43 
Brain ROI Simulation Model ..................................................................................... 44 
MRI Data Sets ............................................................................................................ 46 

Chapter 5........................................................................................................................... 51 
Discussion and Conclusions .......................................................................................... 51 
Bibliography .................................................................................................................. 56 

Appendix A....................................................................................................................... 60 
 

 v



 

Table of Figures 

Figure 1.1 Proton alignment in the absence of magnetic field. .......................................... 2 
Figure 1.2 Protons in a magnetic field aligned along external magnetic field. .................. 3 
Figure 1.3 Interaction of a proton with magnetic field. ...................................................... 5 
Figure 1.4 Example of MRI ................................................................................................ 7 
Figure 1.5 Spin-echo pulse sequence................................................................................ 11 
Figure 1.6 Gradient-recalled-echo pulse sequence ........................................................... 12 
Figure 2.1 Diffusion-weighted imaging pulse sequence. ................................................. 18 
Figure 2.2 Methodology for perfusion imaging................................................................ 21 
Figure 2.3 Spectroscopic image of tumor patient with voxel at normal tissue................. 24 
Figure 2.4 Spectroscopic image of tumor patient with voxel at tumor tissue .................. 24 
Figure 2.5 3D Cluster center plot with four classes of a simulation dataset. ................... 28 
Figure 2.6 Membership functions with respect to m ....................................................... 29 
Figure 2.7 Membership function indicating threshold value............................................ 29 
Figure 3.1 Simulation of intensity using stripes ............................................................... 30 
Figure 3.2 Color map ........................................................................................................ 31 
Figure 3.3 Partial volume effects ...................................................................................... 32 
Figure 3.4 Brain ROI ........................................................................................................ 33 
Figure 3.5 Sketch of the central portion of the midline of the brain showing anatomical 

landmarks. ........................................................................................................ 36 
Figure 4.1 Simulation stripes of seven tissues with three types of images....................... 39 
Figure 4.2 Color map used for normal subjects................................................................ 39 
Figure 4.3 Cluster center plots ......................................................................................... 40 
Figure 4.4 Membership value plots ................................................................................. 41 
Figure 4.5 Membership value plots ................................................................................. 41 
Figure 4.6 FCM simulated images for noise = 0. ............................................................. 42 
Figure 4.7 Membership value plot . .................................................................................. 42 
Figure 4.8 FCM simulated images for noise =10. ............................................................ 43 
Figure 4.9 Partial volume simulation stripe...................................................................... 43 
Figure 4.10 FCM segmented images for partial volume simulation. ............................... 44 
Figure 4.11 Brain ROI of three image vectors.................................................................. 45 
Figure 4.12 FCM segmented Brain ROI........................................................................... 45 
Figure 4.13 FCM segmentation of normal subject. .......................................................... 46 
Figure 4.14 Difference maps of normal subject................................................................ 47 
Figure 4.15 FCM segmentation of tumor subject ............................................................. 48 
Figure 4.16 Difference maps of tumor subject ................................................................. 49 

 vi



 

List of Tables  
 
Table 1: Approximate values of T1 and T2 at 1.0 Tesla...................................................... 6 
Table 2: Tumor Grade....................................................................................................... 13 
Table 3: Pixel intensity values for simulation .................................................................. 31 
Table 4: Tumor types in patient sample............................................................................ 34 
Table 5: Imaging Parameters ............................................................................................ 35 
Table 6: Quantitative Difference in GM, WM, CSF maps using four feature vectors. .... 50 
Table 7: Quantitative Difference in GM, WM, CSF maps using five feature vectors. .... 50 

 

 vii



 

Chapter 1   
 

Introduction 

Magnetic resonance imaging (MRI) is used as a medical diagnostic tool for studying the 

human anatomy. MRI is based on the principles of nuclear magnetic resonance (NMR), a 

technique that provides information about properties of materials. NMR was developed 

by Bloch and Purcell in the 1940’s. In the 1970's Paul Lauterbur, Ray Damadian, and 

Peter Mansfield began to use the principles of NMR in MRI as an imaging modality in 

the head, spine and body.  MRI produces images of high spatial resolution (mm) with 

good soft tissue contrast that has made it useful for detection of diseases. In 2003, Paul 

Lauterbur and Peter Mansfield were awarded the Nobel Prize in Physiology or Medicine 

for their simultaneous pioneering research using magnetic resonance to image the human 

body.  

 

The focus of this thesis is the use of MRI in brain tumors utilizing their physiological 

properties and using image segmentation techniques to obtain better delineation. MRI is a 

commonly used modality for detection of brain tumor, their spread and in evaluating 

residual or recurrent brain tumors. The growth in technology allows for improved tumor 

detection and biological characterization of the tumor. Brain tumor detection is an 

important application which continues to be of keen interest to clinicians. MR imaging is 

utilized for tumor biopsy planning, treatment monitoring, and long term monitoring for 

reoccurrence.  

 

Current clinical methods that are used to differentiate tumors from normal tissues, even 

after the injection of a contrast medium, may not detect all tumors and sometimes tumors 

may not enhance well. Hence, there is a need to combine the various MRI data sets to 

classify brain tissues and differentiate them from abnormal tumor tissues. In particular, 

current brain segmentation methods like Statistical Parametric Mapping (SPM2) fail for 

brain images of patients with brain lesions. This is due to the fact that SPM uses a priori 

probability images for segmentation and in the case of patient data there is no valid a 

 1



 

priori model. In this thesis, a software tool in MATLAB has been developed for 

segmenting whole volume MRI data sets using the Fuzzy c-means (FCM) clustering 

algorithm.  

 

Principles of MRI 

Nuclei with odd number of protons and neutrons have a non-zero nuclear magnetic 

moment. The hydrogen nucleus, composed of a single proton, has the largest magnetic 

moment and is abundantly found in the body tissues (since the human body mostly 

consists of water, 1mm3 of water = 6.7x1019 hydrogen protons). Hence, the hydrogen 

proton is the primary nucleus used for MRI because it produces the strongest signal. The 

proton precessing in the absence of an external magnetic field may be oriented along any 

direction as shown in Figure 1.1. 

 

 

 

 

 

 

Figure 1.1 Proton alignment in the absence of magnetic field1. 
 

The net magnetic moment per unit volume known as the magnetization vector is given 

by: 

M = Mx i + My j + Mz k     (1.1) 

Where M – magnetization vector in the x, y, z direction, i, j, k are unit vectors. 

 

In the absence of an external magnetic field, the net magnetization vector M will be zero.  

When placed in a strong external magnetic field , the magnetic moments of the proton 

align (orient) themselves along the magnetic flux lines and precess about the flux lines. 

The magnetic moments of the protons precess along the z-direction (in the direction of 

) as shown in Figure 1.2. 

0B

0B
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Figure 1.2 Protons in a magnetic field aligned along external magnetic field 1
0B . 

 

The equilibrium value of the magnitude of proton magnetization , (average of all 

individual nuclear magnetic dipole moments), in the presence of magnetic field  is 

given as:  

0M

0B

s

0
22

0 3kT
B)1I(IhNM +

=
γ  (1.2) 

Where, 

0B - Static magnetic field, 

N  - Number of proton spins per unit volume,  
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γ  - Gyromagnetic ratio, a constant unique for each nucleus, 

h  - Planck’s constant, 

I  - Proton spin,  

Ts  - Absolute sample temperature in Kelvin, 

k  - Boltzmann’s constant.  

 

Thus magnetization  is proportional to external magnetic field . The magnetic 

moments exhibit the property of precessing around the field . The frequency of 

precession is given by the Larmor frequency: 

0M 0B

0B

π
γ
2
B

f 0
L =  (1.3) 

For the proton, 58.42
2

=
π
γ MHz / Tesla, thus the Larmor frequency will be in 

radiofrequency region (40-50 MHz). The Larmor frequency is proportional to the 

magnetic field strength  from Equation 1.3. 0B

 

To obtain an MR signal, radiofrequency (RF) pulses of electromagnetic radiation B1 are 

applied at the Larmor frequency Lf  perpendicular to the main magnetic field, 

disturbing the magnetic moments of the protons from their equilibrium position0B 2. The 

protons are aligned along the z-axis in equilibrium with the longitudinal magnetization 

(Mz) of magnitude . This alignment, when disturbed by a 90 degree RF pulse 

displaces M

0M

z to Mxy. The total displacement is proportional to the RF-pulse energy and 

also the Larmor frequency. If the energy of the RF pulse is sufficient to tip the 

magnetization vector by 90 degrees (tip angle), then Mz is tipped into the transverse 

plane (x, y). The magnetization vector continues to precess about in the transverse 

plane. This time-varying magnetization induces flux changes which are detected in a RF 

coil.  The interaction of a proton with the magnetic field is shown in Figure 1.3. 

0B
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Figure 1.3 Interaction of a proton with magnetic field - a) An RF-pulse creates the 

opposed field B1, displacing Mz and causing the precession about the z-axis. b) A large 

RF-pulse displaces Mz into the transverse plane (z-component is zero; x, y components 

are maximum) 3.  

 

The protons when returning to their equilibrium position along the z-axis undergo 

relaxation processes which can be described in two ways: The relaxation component of 

the net magnetization vector along the z-axis is called longitudinal or spin-lattice 

relaxation and this time constant is called T1. The relaxation component of net 

magnetization vector in the xy plane is called transverse or spin-spin relaxation and this 

time constant is called T2. 

 

Relaxation constants 

After a 90 degree RF pulse excitation, the return of the longitudinal component of 

magnetization to its equilibrium state along the z-direction is termed the longitudinal or 

spin-lattice relaxation. The T1 relaxation is due to the loss of energy by the protons to the 

surrounding nuclei as they return to their equilibrium state. The T1 relaxation is 

approximately an exponential process and is specified in milliseconds. T2 relaxation is 

the decay of transverse magnetization, also an exponential process, represents the overall 

loss of phase coherence due to dephasing of the spins. Each proton has unique T1 and T2 

time constants depending on the surrounding environment. The T2 time constant is 

typically about 10-1000 milliseconds long. The T2 spin dephasing can also be caused by 

tissue inhomogeneities, field inhomogeneities, or tissue interfaces. These 

inhomogeneities further reduce the relaxation constant and T2 is called the effective T2 or 
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T2
* time constant. The T2

* time constant is much shorter than T2. The relaxation constants 

are important parameters of MR and are different for various brain tissues as shown in 

Table 1.  

Table 1: Approximate values of T1 and T2 at 1.0 Tesla4. 

Tissue T1(msec) T2(msec) 

White matter 390 90 

Gray matter 520 100 

Cerebrospinal Fluid (CSF) 2000 300 

Muscle 600 40 

Fat 180 90 

Liver 270 50 

Blood 800 180 

 

Image Contrast 

In MR images, the magnitude of the MR signal is represented by the intensity of each 

pixel in the image. Contrast in the images depends on the pulse sequences used, and also 

on the tissue characteristics. The type of image produced depends on the TR and TE 

values. TR is the repetition time of the 90 degree pulse and TE is the echo time, the 

amount of time between the RF excitation and the measurement of the echo. The 

relaxation constants T1 and T2 provide good sources of contrast and by varying TR and 

TE the desired contrast can be obtained as shown in Figure 1.4. Varying these parameters 

along with different sequences allow different tissue types and pathologies to be 

highlighted. Radiologists, trained to interpret MRI scans, use these varied contrast 

images to detect abnormalities. A T1-weighted image is characterized by short TR and 

short TE values. A T2-weighted image has a long TR and a long TE value.  A proton 

density image has a long TR and a short TE value. Image contrast can also be changed by 

the exogenous contrast agents that have paramagnetic properties like gadolinium-

diethylene triamine penta-acetic acid dimeglumine (Gd-DTPA). Shown in Figure 1.4 are 

T1-weighted and T2-weighted images taken by a 3T scanner.  
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Figure 1.4 Example of MRI a) T1-weighted image b) T2-weighted image 

 

Bloch Equation 

During relaxation, the protons trace a spiral motion which can be described by the Bloch 

equation5. The equation of motion of magnetization around the total magnetic field 

present is given by the Bloch equation as:  

BMM
×= γ

dt
d  (1.4) 

Where:  

B  - Total magnetic field 

M - Magnetization vector 

γ  - Gyromagnetic ratio 

 

The Bloch equation states that the time rate of change of M is proportional to the cross 

product of M with γ B. Hence if B is static, this motion corresponds to a precession of M 

about B at an angular frequency of γ B . If B is time varying, then the precessional 

frequency also becomes time varying. The Bloch equation can be written to include the 

relaxation constants T1 and T2 and is given by: 

             
( ) ( )

1

0

2 T
M

T
kMjMiM

BMM zyx −
−

+
−×= γ

dt
d

 (1.5) 

Where:  

B - Total magnetic field 

M - Magnetization vector 
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γ  - Gyromagnetic ratio 

T1  - spin lattice (longitudinal – z) relaxation time constant  

T2  - spin-spin (transverse-xy) relaxation time constant 

M0 - equilibrium magnetization due to 0B

Mx, My, Mz - magnetization in the x, y, z plane respectively 

i, j, k - unit vectors in x, y, z directions respectively.    

 

The solution to the modified Bloch equation is shown below: 

                   

)e(tsin)t(

)e(tcos)t(

)e1(M)t(

2

2

1

T/t
0

T/t
0

T/t
0

−

−

−

ω−=

ω=

−=

xyy

xyx

z

MM

MM

M
(1.6) 

 

Signal Measurement  

After the application of the RF pulses, emissions by the protons of RF radiation by the 

relaxation process at the resonant frequency take place. Flux changes are detected in the 

receiver coil and the precessing magnetization in the transverse direction gives rise to an 

electromotive force ∈  which is given as the rate of change of flux (ϕ ) in the coil. 

t∂
ϕ∂

−∈=  (1.7) 

If B1(x, y, z) is the magnetic field at a point (x, y, z), the EMF in the coil is given as:  

( ) ( ){ } rMB1 dt,z,y,xz,y,x
t

d •
∂
∂

−∈=  (1.8)

Thus the total EMF signal s(t) is given as: 

( ) ( ){ } rMB1 dt,z,y,xz,y,x
t

)t(sd
vol vol

•
∂
∂

−=∈=∫ ∫   (1.9) 

The voltage is then amplified and demodulated to provide the MR signal. 
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Signal Localization using Gradients 

Within the magnet, gradient coils are placed so that they superimpose their fields on the 

main magnetic field . A set of gradient coils provide varying magnetic field strengths 

along the x (G

0B

x), y (Gy) and z (Gz) direction. Gradients change only the spatial variation 

of the amplitude of 0B  and not the direction of .0B  Thus the gradient coils in the three 

directions permit spatial information to be obtained. Switching between the three 

gradients allows for image data signals to be obtained. Simplifying from Equation 1.8 

and adding gradient fields G(t) in x and y direction, the received signal from an excited 

slice can be written as: 

( ) dxdyeey,xm)t(s y)t(k2ix)t(k2i

x y

yx π−π−∫ ∫=  (1.10)

Thus the intensity of the signal is proportional to the magnitude of the magnetization.  

 

The above equation can be compared with 2-D Fourier transform of m(x, y) given as: 

( )∫ ∫
+π−=

x y

)ykxk(2i
yx dxdyey,xm)k,k(M yx  (1.11) 

From Equation 1.10 and 1.11 we obtain the signal equation as: 

)k,k(Md)(G
2

,d)(G
2

(M)t(s yx

t

0
y

t

0
x =ττ

π
γ

ττ
π
γ

= ∫∫  (1.12) 

Thus at any given time, the signal s(t), equals the value of the 2D Fourier transform of 

m(x, y). Thus the total signal obtained s(t), is mapped to a trajectory through Fourier 

space. In MRI, raw data is stored in 2D Fourier space called “k” space, where k 

represents the spatial frequency variable. In order for the signal to be reconstructed, the 

trajectories of s(t) need to cover a sufficient amount of k space. The k space data is then 

2-D Fourier transformed to obtain the MR image.  
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Pulse Sequences 

A pulse sequence is a term used to describe the ensemble of RF pulses (and gradient 

magnetic field pulses) of defined time and amplitude repeated a specified number of 

times, resulting in the accumulation of MR signal which is then Fourier transformed to 

form the MR image6.  The most common types of pulse sequences used are: spin-echo 

(SE) and gradient-recalled-echo (GRE).  The type of pulse sequence chosen also 

determines the contrast observed in the MR image. 

 

Spin-Echo Pulse Sequence (SE): 

The spin-echo pulse sequence commences with a 90 degree RF pulse which shifts the 

magnetization vector into the transverse plane yielding a free induction decay (FID) 

signal.  A slice select gradient is applied during this time in order to selectively excite the 

protons in the desired slice. Next, a phase encoding gradient is turned on for specified 

time period and switched off. This gradient is used to distribute the phase of the spins 

according to their spatial locations. The amplitude of the gradient is varied as seen in 

Figure 1.5 in order to spatially encode the spins within the slice. At a time of TE/2 after 

the 90 degree pulse, a 180 degree RF pulse is applied to the slice protons to achieve spin 

rephasing of the FID signal. “Echoes” (transverse magnetization reappears and forms an 

echo) are obtained at time TE after the initial 90 degree pulse.  It can be seen from Figure 

1.5 that the slice select gradient is turned on again during the 180 degree RF pulse. This 

gradient is particularly useful for multislice spin-echo imaging. Further echoes can be 

obtained by applying additional 180 degree pulses and this is called fast spin-echo 

imaging. The final step of spin-echo imaging is the readout of the echo signal. The 

readout gradient is applied while data acquisition takes place. During the read out 

gradient, frequency encoding of the spins along the readout direction takes place.  The 

echo-to-echo amplitude decays as a function of T2.  Spin-echo sequences can be used to 

obtain T1-weighted images, T2-weighted or proton density weighted images (PD).  A 

spin-echo pulse sequence is shown below:  
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Figure 1.5 Spin-echo pulse sequence1. 

RF 

Phase encoding gradient

 

Sampling timeDephase 

Frequency-selection gradient / read-out 

Slice Slice

180° RF "sinc" pulse 

4 msec

90° RF "sinc" pulse 

SI 

FID Spin-echo

 

Gradient-Recalled-Echo Pulse Sequence (GRE): 

Gradient-recalled-echo imaging reverses the polarity of the gradient field rather than 

using a 180 degree RF pulse to invert the spins to generate an echo as seen in Figure 1.6. 

A gradient reversal in the readout direction is used. Hence the signal intensity for a given 

TE is a function of the effective T2, called T2
*, rather than T2 as in spin-echo method. The 

advantage of using a gradient-echo method is that it is a faster imaging method with 

sensitivity to T2
* contrast and also uses reduced flip angle and gradient reversal instead of 

a 180 degree RF pulse. It uses a shorter echo time (TE) and without the rephasing RF 

pulse, dephasing occurs more rapidly in gradient-echo imaging. The gradient-recalled-

echo method is particularly sensitive to signal loss at boundaries of bone and tissue or air 

and tissue. In spin-echo sequence, the use of gradient pulses increases the length of the 

echo time (TE) and uses long TRs which increase the scan time. A gradient-recalled-echo 

sequence is shown in Figure 1.6. 
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SI 

Slice selection gradient  

FID 

 RF sinc pulse - flip angle (α°) 

4 msec 

Dephase 

Sampling time 

Echo 

Slice 

Figure 1.6 Gradient-recalled-echo pulse sequence1. 
 

 

In this thesis the segmentation algorithm is applied to whole brain MR images with 

tumors. In order to understand the clinically important characteristics to appropriately 

segment the tumor tissues, it is necessary to understand the tumor types, physiology and 

metabolism of tumors. 

 

Brain Tumors 

A tumor is a growth of abnormal cells reproducing themselves in an uncontrolled 

manner. Brain tumors occur either in the brain (as primary brain tumors) or can spread 

from other parts of the human body to the brain (metastatic brain tumors). There are two 

types of brain tumor according to the National Cancer Institute7: 

• Benign brain tumor consists of abnormal cells and such tumors have distinct 

boundaries. The cells are slow growing and do not spread or infiltrate and can be 

removed if they are not located in sensitive areas of the brain. 

• Malignant brain tumor consists of cells that have no distinct separation from healthy 

cells. These cells destroy the surrounding tissues and then spread to other parts of the 

brain in an uncontrollable manner. 
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Most brain tumors are named after the cells from which they arise. Some of the primary 

brain tumors are: astrocytomas, glioblastoma, oligodendroglioma, and ependymoma. The 

World Health Organization (WHO) has developed a scheme for classifying and grading 

tumors. The grading is based on factors such as location, cell types, growth of blood 

vessels (vascular proliferation), dividing cells (mitotic activity), pathological variation in 

the appearance of the cells (nuclear atypia) and amount of dead cells or tissues 

(necrosis)8.  The different types of brain tumors according to their grade are shown in 

Table 2. 

Table 2: Tumor Grade8 

Grading Histological criteria 

Grade I & II Exhibit nuclear atypia 

Grade III High cellular density, nuclear atypia, mitotic activity 

Grade IV 
Nuclear atypia, mitotic activity, proliferation &/or 

necrosis. 

 

Low grade tumors (Grade I) of the brain are generally not well encapsulated unlike other 

tumor types but exhibit slow growth. Since they are slow growing and are relatively non-

invasive they are considered to be relatively benign.   

 

Grade II tumors are also considered to be slow growing but they are said to have more 

poorly defined margins. Surgical treatments for these tumors are difficult as their 

boundaries are poorly defined.  

 

Grade III tumors have a faster growth pattern and they are called “anaplastic”. These 

tumors exhibit histological signs of nuclear atypia and mitotic activity. Many low grade 

tumors develop slowly into anaplastic tumors. These tumors grow their own blood 

vessels (angiogenesis) and invade the surrounding tissues. 
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Grade IV tumors are said to be highly malignant and exhibit very rapid growth. Grade IV 

tumors also exhibit histological signs such as mitotic activity, proliferation, and/or 

necrosis. The existing knowledge about each tumor helps the clinicians in determining the 

course of treatment at each step.  

 

Types of Brain Tumors 

About 50 percent of the primary brain tumors in adults are astrocytomas. These arise 

from the astrocyte cells that are fibrillary and attach to the blood vessels. Astrocytomas 

occur primarily in the cerebral hemispheres. Most of the low grade astrocytomas also 

known as pilocytic astrocytoma are usually non-infiltrating tumors. They are usually 

considered benign and surgery can remove most of this cyst-like tumor. Grade II 

astrocytomas are infiltrating although they grow slowly. These astrocytomas are grouped 

according to their appearance and behavior. Some examples of grade II astrocytoma are: 

fibrillary, gemistocytic, and protoplasmic. Even after removal of this type of tumors, they 

might recur as high grade tumor. About 33 percent of the infiltrating astrocytomas mutate 

and progress from low grade astrocytoma to anaplastic astrocytoma (malignant). The 

anaplastic astrocytomas have projections like tentacles that grow into the surrounding 

tissues making it more difficult to completely remove them. About 20 percent of all the 

primary brain tumors are the grade IV glioblastoma multiforme (GBM). They are also 

known as grade IV astrocytomas. The glioblastoma tumors are capable of very rapid 

growth and usually contain necrotic cells and blood vessels. 

 

Gliomas are cancerous cells originating from glial cells. Malignant gliomas show 

prominent proliferation of microvasculature and have the ability to form blood vessels 

(angiogenesis).  An oligodendroglioma tumor arises from an oligodendrocyte cell and an 

ependymoma arises from ependymal cells of the brain.  

 

Tumor metabolism is influenced by many factors of which tumor vasculature is one 

important factor9. Once tumor starts to grow rapidly, the tumor cells induce vascular 
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growth called tumor angiogenesis, a process of formation of new blood vessels from 

existing normal blood vessels. The smallest vessels, such as the capillaries, arterioles, and 

venules known as microvasculature assists the growth of tumor cells by supplying 

nutrients and oxygen.  

 

Vascularization largely varies the physiology and metabolism of tumors resulting in 

hypoxia, substrate deprivation, and pH variations. Tumor vasculature is more chaotic; 

leaky and not enervated10 and hence there is an insufficient supply of oxygen and 

nutrients to the tumors. The amount of oxygen in the tumor can be of significant 

importance as the amount of oxygen supply to tumor cells can affect the therapy 

treatment since hypoxic tumor cells are more resistant to therapy than well-oxygenated 

tumors. This is due to the fact that cellular damage caused by ionization radiation largely 

depends on the concentration of oxygen in tissues11. Hence it becomes important to 

estimate the oxygen content in tumor cells. Imaging techniques help to analyze the entire 

lesion for further treatment. In addition, determining the amount of necrotic (dead) tissue 

has implications for understanding the efficacy of the treatment and the vascular supply 

to the tumor. 

 

MR based imaging techniques are used to characterize brain tumors according to their 

anatomy and physiology, particularly clinicians are interested in determining tumor 

location, extent, amount of necrosis, vascular supply, and associated edema. There are 

different imaging techniques that are useful. The specific aim of these techniques is to 

provide a relevant differential diagnosis. The various techniques used today for imaging 

brain tumors are listed below and is explained in detail in Chapter 2. 

 Fast fluid-attenuated inversion-recovery (FLAIR) imaging. 

 Diffusion-weighted imaging (DWI). 

 Perfusion imaging (PWI). 

 Gd-DTPA enhanced contrast imaging 

 MR spectroscopy imaging. 
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Chapter 2  
 

MR Imaging Methods 

MRI, known for its soft tissue contrast, is very useful in evaluating brain tumors. MRI 

based functional techniques and spectroscopic techniques provide more physiological 

information than the standard T1-weighted and T2-weighted imaging. Functional imaging 

provides information about vasculature and tissue perfusion, and optimizes tumor 

characterization. Following radiotherapy treatments, some tumors may not enhance even 

while imaging with contrast medium or the enhancement may not indicate malignancy. 

The concentration curves (rCBV) using perfusion imaging help in quantifying the 

regional blood flow and volume of a given tumor region. These concentration curves and 

quantifications will help to determine the remaining tumor region or reoccurrences. MR 

spectroscopy and spectroscopic imaging allows for measurement of the metabolites of the 

tumor tissue. These improved techniques give insight to the tumor vasculature, its 

metabolism, permeability and microcirculation. Different methods of imaging are applied 

in the clinical environment according to the tumor type and diagnostic requirements.  

Some of the methods used in this thesis work are described in detail below. 

 

Fast Fluid - Attenuated Inversion-Recovery (FLAIR) 

Fast fluid - attenuated inversion - recovery is a pulse sequence that produces T1-weighted 

or T2-weighted images with the cerebrospinal fluid (CSF) nulled. This is done by 

applying an inversion RF pulse before the regular 90 degree pulse sequence. Since the 

CSF signal is removed, lesions may appear hyperintense in these images. FLAIR is very 

useful in differentiating and detecting brain tumors. FLAIR is superior to T2-weighted 

images in distinguishing tumor and edema even though it has the drawback that 

periventricular tumors may go undetected12. 
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Diffusion - Weighted Imaging (DWI) 

Diffusion - weighted imaging (DWI) is a MRI technique in which contrast within the 

image is based on the movement of water molecules. The notation diffusion represents 

the random movement of molecules also known as Brownian motion.  In pure water, the 

diffusion of water molecules is completely random; however in a cellular environment 

diffusion is not completely random and is restricted by cellular boundaries and 

macromolecules.   

 

Using MR imaging, the diffusion properties of water molecules can be measured13. In 

clinical imaging, the tissue diffusion coefficient is denoted by a quantity called the 

apparent diffusion coefficient (ADC). ADC values are calculated as a representation of 

relative diffusion restriction. Diffusion is the highest in the ventricles which contain the 

cerebrospinal fluid (CSF) in the human brain. Hence, in DWI of the normal brain, the 

ventricles appear less intense than brain parenchyma since diffusion is higher in 

ventricles compared to parenchyma14.  Diffusion-weighted MRI sequences are formed by 

adding a pair of magnetic field gradients to the spin-echo or spin-echo echo-planar pulse 

sequences.  The first gradient is applied after the initial 90 degree pulse as shown in 

Figure 2.1. This dephases the spins. After the 180 degree pulse, a second gradient is 

applied which opposes the effect caused by the first gradient. If there is movement of the 

water protons between the two gradients, refocusing of the moving spins is incomplete, 

which will result in reduced signal intensity (in areas of high diffusion). The amount of 

diffusion sensitivity to a particular sequence is denoted by a b-value and is defined in 

Equation 2.2.  A higher b-value provides stronger diffusion weighting.  The signal 

intensity at a particular voxel in a diffusion-weighted MR image can be represented by 

Equation 2.1 and is called the Stejskal-Tanner equation15. 

⎥
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⎤
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⎣
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⎞
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⎛ δ

−∆δγ≈ ADC
3
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( ) ( 3/Gb 2 δ−∆δγ= )  (2.2) 
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Where, 

b - Amplitude and timing parameters of the gradient pulses, 

G - Amplitude of the gradient pulses, 

δ  - Duration of the gradient pulse, 

∆  - Time interval between gradient pulses, 

 γ  - Gyromagnetic ratio. 

Figure 2.1 Diffusion - weighted imaging pulse sequence15. 

 

The attenuation caused by diffusion is calculated by comparing the images between the 

two b-values (say b=0 and higher b value). ADC maps are then calculated by fitting a 

linear least-squares analysis on a set of diffusion-weighted images.  

 

Diffusion - Weighted Imaging of Tumors 

Diffusion-weighted imaging helps in tumor grading and also in differentiating tumors 

from edema. Previous studies have correlated the ADC values to tumor cellularity and 

signal intensity16.  It has been shown that highly cellular gliomas (higher grade) display 

lower ADC values than low grade gliomas due to restricted movement of water 

molecules. Thus the signal intensity in these regions is high. Areas of necrosis display 

higher ADC values than tumor regions. This is due to the fact that necrosis contains dead 

 18



 

tissue and hence may offer less impedance to water movement than viable tumor. The 

ADC values may help in delineating tumor tissue types.  However, ADC values alone 

cannot be used to differentiate tumors from edema but may be used to make a differential 

diagnosis along with other clinical imaging techniques. 

 

Perfusion - Weighted Imaging (PWI) 

Perfusion imaging measures the rate of delivery of a given quantity of blood to a 

particular region of interest.  Perfusion imaging involves the measurement of 

microvascular parameters like Cerebral Blood Flow (CBF), Cerebral Blood Volume 

(CBV) and Mean Transit Time (MTT).  This technique is particularly useful in the 

noninvasive assessment of brain tumors. Imaging is performed using either exogenous or 

endogenous contrast agents. By measuring the concentration of a tracer agent in the 

region of interest and measuring the arterial input function, tissue perfusion can be 

determined. Gadolinium Diethylene-Triamine Pentaacetic Acid (Gd-DTPA) is the most 

commonly used intravenous exogenous contrast agent in MRI. Gadolinium (Gd) is a 

metal ion with seven unpaired electrons which produce a large magnetic moment. The 

unpaired electrons cause faster relaxation of magnetization. Since the T1 of the local 

water protons reduces as gadolinium is injected into the human body, the signal in T1-

weighted images is increased17. The contrast agent Gd-DTPA cannot cross the blood 

brain barrier in normal brain and hence there is little relaxation effect and in the first pass 

it behaves as an intravascular agent. The change in the T1 relaxation rate is much larger 

than that of T2 and hence they are commonly known as T1 agents. When a GRE sequence 

is used, a T2
* signal loss occurs. This is due to the fact that the high magnetic moment of 

the gadolinium causes changes in the susceptibility of the blood as compared to the 

surrounding tissue18. The signal loss due to gadolinium is because the inhomogeneous 

field created additional dephasing of the spins, hence reducing the T2
* signal. Spin echo 

imaging can also be used, but it is more sensitive to the changes in the capillaries than the 

larger blood vessels. The signal changes can be used to quantify the local concentration 

of gadolinium by tracer kinetics principles. The application of tracer kinetics principles 

involves obtaining the concentration curve as the first passage of the bolus (Gd-DTPA) 
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into the tissue takes place.  Quantification can be achieved if the arterial input function is 

measured or modeled19.   

 

Imaging Using Perfusion Techniques 

In our institution, MR contrast agent (Gd-DTPA) is administered at a rate of 5cc/sec for 

20 seconds through a power injector. As soon as the contrast Gd-DTPA is administered, 

the tissue enhancement can be seen within 1 minute. The images obtained are then used 

to generate the relaxivity (the inverse of the relaxation time) versus time curves 

( . ∗∆ 2R = ∗∆ 2T/1 )

∗∆ 2R = - ln [S (t) / S0 ] / echo time                                      (2.3) 

Where S (t), S0:  signal intensities at time t and baseline.   

 

Cerebral Blood Volume 

Cerebral blood volume is defined as the total volume of blood in given region of interest 

and is measured in units of milliliters of blood per 100grams of tissue (ml/100g)20. The 

relative cerebral blood volume (rCBV) maps are obtained by fitting a gamma variate 

function to the relaxivity transit curve for each pixel. The rCBV is calculated as: *
2R∆

∫
∞
∆=

0
2 dt)t(RrCBV   (2.4) 

It is independent of the shape of the time course response. The rCBV has arbitrary units 

and is generally normalized to another tissue hence expressed as % of the control region. 

Figure 2.2 shows schematically the procedure to obtain an rCBV map.  
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Figure 2.2 Methodology for perfusion imaging21. 
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Mean Transit Time 

Mean transit time is defined as the average of the transit time of blood through a given 

brain region, integrated across the different paths. The transit time through brain tissues 

is usually about 4 seconds. Practically it is difficult to measure MTT because the bolus 

injection may not be instantaneous. The relative mean transit time (rMTT) is obtained as 

the normalized first moment of the gamma variate fitted curve, up to the peak of the 

curve expressed in units of seconds.   

∫

∫

∆

∆

=

∗

tpeak

0
2

tpeak

0
2

dt)t(R

dt)t(Rt

rMTT   (2.5) 

 

Cerebral Blood Flow 

Cerebral blood flow is defined as the volume of blood flowing through a given brain 

region per unit time. The CBF is measured in units of milliliters of blood per 100g of 

brain tissue per minute (mL/100 g/min). Normally CBF is 60 ml/100g brain tissue/min.  

As the Gd-DTPA contrast passes through larger blood vessels and diffuses into the 
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surrounding tissues, the changes obtained can be used to calculate the relative CBF 

(rCBV) maps using the central volume theorem as: 

rMTT/rCBVrCBF =  (2.6) 

rCBV is expressed in arbitrary units.  

 

Perfusion Imaging Of Brain Tumors 

Perfusion imaging can be an indicator of tumor angiogenesis which is associated with 

tumor growth. Perfusion imaging has been very useful in stereotactic biopsy guidance, 

differentiating necrosis from tumor. Relative CBV values only reflect the degree of 

vascularity and do not provide a direct measurement of blood volume. It has been shown 

that with histological confirmation, higher rCBV values indicate higher grade tumor and 

higher mitotic activity22. Low grade tumors which have low CBV demonstrated less 

contrast enhancement in tumor regions when compared to high grade tumors22.  

 

MR Spectroscopy Imaging 

Chemical Shift 

The difference between the resonant frequency of a nucleus and a standard, relative to the 

standard is known as chemical shift. Both water and fat in the human body contain 

hydrogen. The chemical shift difference between these two types of hydrogen containing 

substances is approximately 3.5 ppm. The concentration of most metabolites present in 

the human body is typically orders of magnitude less than that of the water or fat signal 

in tissues.  

 

Spectroscopy Imaging 

Spectroscopic imaging provides information about the tissue metabolite concentrations in 

a region of interest. Also known as chemical shift imaging (CSI), this method produces 

an image from one chemical shift component in a region of interest after suppression of 

water and/or fat. Spectroscopic information over multiple regions is processed to create 

maps of the metabolite concentration. In order to obtain the spectroscopic information, 

suppression techniques are used to eliminate the larger water signal and a spectral 
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dimension is added to the usual MR procedure. The gradients through their range of 

values are used to record the spectra from all points in the spatial-spatial domain. The 

spectra obtained are presented as a series of peaks based on the chemical shift relative to 

a standard (tetramethyl silanie). The peaks obtained in normal brain23 are: N - acetyl 

aspartate (NAA) at 2.0 ppm, choline at 3.2ppm, creatine at 3.0 ppm, and other minor 

peaks are obtained between 2.0-2.2 ppm. The NAA is an indicator of neuronal activity in 

the brain. Creatine is thought to be an indicator of energy, choline, a neurotransmitter, 

appears to be an indicator of membrane turnover 23.  Since the T1 and T2 are related to 

each peak, the height of the peaks obtained depend on the parameters chosen for TE and 

TR. Additional peaks are thus obtained at short echo times as seen in Figure 2.3.  The 

concentration of the metabolites is proportional to the area under the peak for each 

metabolite after correction for T1 and T2 decay.  

 

Spectroscopy Imaging Of Brain Tumors 

Many studies have indicated the potential of spectroscopic imaging in diagnosing brain 

tumors24. Comparison of relative peak heights may be used to indicate abnormalities in 

the brain. Studies have shown that brain tumors have elevated choline, decreased NAA, 

and decreased creatine peaks25. Decreased NAA levels in brain tumors indicate the lack 

of neurons (neuronal death) in glial neoplasm. Choline signal was found to be highly 

elevated in grade II and grade III tumors. High grade glioblastomas demonstrate a low 

creatine peak and in addition to these peaks, a lipid peak at 0.9-1.2ppm and a lactate peak 

at 1.3 ppm. One such set of spectra comparing normal tissue to tumor tissue is shown in 

Figure 2.3 and Figure 2.4. In Figure 2.3, left image shows the T2-weighted image of a 

tumor patient and right image is the spectrum under the square voxel. The square voxel is 

chosen in a normal tissue region so the spectrum of metabolites obtained should have 

increased NAA, decreased choline, and increased creatine peak as seen below. When the 

voxel is chosen in the tumor tissue region in Figure 2.4, the spectrum of the metabolites 

is seen as described for tumors above.  

 23



 

 
Figure 2.3 Spectroscopic image of tumor patient with voxel at normal tissue and its 

spectrum. 

 
Figure 2.4 Spectroscopic image of tumor patient with voxel at tumor tissue and its 

spectrum. 

 

Segmentation Using Fuzzy C - Means Clustering Algorithm 

Segmentation is the process of dividing an image into meaningful regions. MR image 

segmentation of brain or regions of interest can be used to extract different tissues. 

Segmentation in MR images may help in providing better visualization and good 

separation between tissues especially the tumor regions. In segmentation techniques, both 

supervised and unsupervised classification algorithms have been applied to MRI 26.   

 

Supervised and seeding techniques require human intervention. An operator familiar with 

human anatomy is required to outline the regions containing gray matter, white matter, 

etc., and assign a physical label (color) to that region. Then the algorithm is trained and 

data is segmented. Since the anatomical structures differ for each subject this process is 
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usually time consuming and difficult. The results produced by this method may vary with 

operators and hence may not be reliable and reproducible. Only trained operators may be 

able to use this method which is one of the disadvantages. But since the algorithm is 

trained and then data is segmented they may yield better results where operator 

intervention errors and time can be compromised.  

  

In the unsupervised approaches, the operator is required to assign tissue class labels to 

the colored segmented image data sets and not the original MRI data sets. Unsupervised 

segmentation methods are usually fast and do not require operator intervention to 

segment images hence reducing inter-user variability. Unsupervised algorithms are 

usually based on clustering algorithms and can be easily extended to multidimensional 

data sets. The fuzzy c-means (FCM) algorithm is a type of clustering algorithm that can 

perform segmentation on MR images based on pixel classification method. This may 

yield better results and provide better distinction between anatomical tissues than other 

unsupervised methods. 

 

In this thesis, a software tool is developed for applying unsupervised FCM clustering 

algorithm to a combination of whole volume MRI data sets taken on normal subjects and 

patients with tumors. The results are then compared with the available software SPM227. 

Most of the previous work using FCM segmentation on MRI images28-30 has not included 

any “physiological” data sets (DWI, perfusion, and gadolinium-enhanced images).  

 

Clustering is an unsupervised image segmentation technique that divides the given data 

set into clusters (classes). This division puts similar data objects in the same cluster 

whereas dissimilar data objects belong to other clusters. That is, “N” data samples are 

classified into “n” clusters. An important component of a clustering algorithm is the 

distance measure between data points. A Euclidean distance metric is used to group 

similar or dissimilar data points. Cluster analysis contains a group of different algorithms 

for classifying the data. These algorithms are based on the similarity measure. 
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Some of the clustering techniques are: 

• Exclusive clustering - Each data point assigned to only one cluster. 

• Overlapping clustering - Each data point can be assigned to one or more clusters. 

Fuzzy c- means algorithm is a type of overlapping clustering method.  

• Hierarchical clustering - Each data point is partitioned in several steps into finer 

classes using a set of fuzzy rules. 

• Probabilistic clustering - For each data point, a probability distribution over the 

clusters is determined from which the probability of belonging to a cluster is 

determined.  

• Objective function based clustering - Most of the clustering algorithms except 

hierarchical, involves minimizing the performance index “J”. Using the sum of the 

squared distances, the optimum value is obtained through iteration. The sum of the 

squared distances signifies the performance index.   

 

The fuzzy c-means (FCM) algorithm was established by J. Bezdek and Dunn in 198131.  

This algorithm is widely used in variety of pattern recognition and medical image 

segmentation applications today32,33. FCM is a fuzzy serial, soft segmentation 

unsupervised pixel classification clustering algorithm. In this algorithm, each data point 

may belong to more than one class through partial memberships. A membership function 

specifies the degree to which a data point (pixel intensity) belongs to a cluster and the 

membership value is the value or the degree of similarity to a cluster. The application of 

fuzzy sets in classifying MRI data sets causes the class membership to become relative, 

since an object can belong to several classes at the same time but with different degrees. 

Previous studies have shown that as the dimension of feature space (multispectral) 

increases, MRI image segmentation improves 34,35.  

 

The FCM algorithm uses an iterative approach which minimizes the objective function, J 

the sum of weighted distances (Euclidean distance) between each data point, and the 

cluster center, and searches for compact clusters. All clusters calculated are 

approximately the same size and each of them is represented by their centers. 
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Where, 

J - Objective function, 

uij  - Membership matrix - contains all the membership values for each data point xi in 

class j, 

cj - c = (c1, c2,….,cj) - Vector of cluster centers where cj – cluster center of class j,  

C - the number of classes for 1≤ j≤C, 

xi - ith of d-dimensional data,  

m - Weighting exponent of each membership, 

|| * || is any norm between any measured data and the center. 

 

In every iteration step of the objective function J, the membership uij and cluster centers 
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The iteration stops if ε<−− )1i(J)i(J , where ε >0. 

 

The membership matrix uij contains the membership degree values between [0,1] where 1 

represents that the data point xi belongs to a cluster j and a value of 0 represents that the 

data point does not belong to the cluster j.   

 27



 

An optimal number of classes must be chosen in order to obtain good segmentation 

results.  In this application, the number of classes represents the number of brain tissue 

types. The FCM algorithm clusters the data set into the number of classes specified. If 

more classes are specified it may result in over-segmentation in the case of normal 

tissues. But in case of abnormal tissues like tumor, more classes may be required to be 

specified. Hence it is important to know the number of tissue types to be classified. To 

understand our data set better, the FCM algorithm has been used with different number of 

classes and compared to find the best possible class number. A cluster center plot of the 

data set may be helpful in deciding the number of classes. Such a cluster center plot is 

shown in Figure 2.5. 

Figure 2.5 3D Cluster center plot with four classes of a simulation dataset. 

 

Another important parameter is the exponent ‘m’ which is the degree of fuzziness. For 

each iteration of the calculation of the objective function, the degree of fuzziness ‘m’ 

needs to be specified. The parameter m controls the slope of U thus determining the 

quantity of class overlapping. The degree of fuzziness m can be any value greater than 1 

for the FCM algorithm. As m increases, the membership function U decreases as seen 

from Equation 2.5. It has been shown that the greater the m, the fuzzier (greater the 

overlap) the results36. By decreasing the value of m (closer to 1) we can obtain crisp 

membership indicator functions. The different types of membership indicator functions 

for different m values are shown in Figure 2.6. 
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m = 1.5      m = 2.0 

Figure 2.6 Membership functions with respect to m 37. 

  

Keeping in mind the above parameters, the ideal number of classes and degree of 

fuzziness m for both normal and abnormal subjects were chosen in our algorithm. The 

iterative process J is minimized when high membership values (uij) are assigned to pixels 

whose intensities are closer to the particular cluster centroid and low membership values 

are assigned to pixels whose intensities are far from the cluster centroid.  

Keeping in mind the above parameters, the ideal number of classes and degree of 

fuzziness m for both normal and abnormal subjects were chosen in our algorithm. The 

iterative process J is minimized when high membership values (uij) are assigned to pixels 

whose intensities are closer to the particular cluster centroid and low membership values 

are assigned to pixels whose intensities are far from the cluster centroid.  
  
The segmented data are then labeled by class (tissue type). At this stage, the pixels are 

color-coded to differentiate between tissue types. The process called defuzzification uses 

the maximum membership rule. The maximum value of uij is chosen and if it is greater 

than a threshold value, the pixels containing those membership values are coded a color 

(segmented into a class). The plot in Figure 2.7 represents a membership matrix u with 

threshold of 0.55 for a one-dimensional data set. 

The segmented data are then labeled by class (tissue type). At this stage, the pixels are 

color-coded to differentiate between tissue types. The process called defuzzification uses 

the maximum membership rule. The maximum value of uij is chosen and if it is greater 

than a threshold value, the pixels containing those membership values are coded a color 

(segmented into a class). The plot in Figure 2.7 represents a membership matrix u with 

threshold of 0.55 for a one-dimensional data set. 

 
Figure 2.7 Membership function indicating threshold value of 0.55. 
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Chapter 3  
 

Methods 

Simulation Models 

Before pre-processing and segmenting the real MRI data sets, in order to understand our 

data three types of simulation models were created. They are: 

• Simulation using stripes -  7 tissue types 

• Partial volume simulation -  3 tissue types 

• Brain Region-of-Interest (Brain ROI) - 3 tissue types. 

 

Simulation Using Stripes 

The intensity values of a normal brain of seven different tissue types were measured for 

T1, T2 and FLAIR images. Using these values an 8 stripe matrix was created. This image 

contained eight tissue types and eight pixels per tissue stripe.  Figure 3.1 shows a 

simulations stripe containing such T1, T2, FLAIR image intensities.  

T1    T2     FLAIR  

Air, Air, Scalp, Skull, Meninges, Gray Matter, White Matter, CSF 

Figure 3.1 Simulation of intensity using stripes 

 

Table 3 shows the values for each tissue type. 
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Table 3: Pixel intensity values for simulation 

Tissue T1 T2 FLAIR 

Air 40 10 10 

Scalp 740 550 330 

Skull 80 40 20 

Meninges 380 220 130 

Grey Matter 370 480 140 

White Matter 570 400 90 

CSF 350 1530 50 

 

Using FCM, MATLAB38 scripts were written to segment these stripes. A standard color 

map was developed and each tissue type was assigned a color. The color map can 

accommodate up to 12 classes (tissues) presently and is shown in Figure 3.2. In this work 

only six classes (colors) for normal and nine classes (colors) for patients with tumors 

were used.  

 
 Unclassified Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11

Figure 3.2 Color map 
 
In MR images, thermal noise is the primary source of random noise and is characterized 

by a Rician noise but can be approximated by Gaussian distribution. Hence we add 

randomly generated white Gaussian noise to each intensity value in order to simulate 

noise in the MRI data.  The stripes are then segmented using the FCM algorithm in 

MATLAB. Since each stripe is a tissue (class) perfect segmentation should result in 

stripes only. The simulation stripes were segmented with and without intensity 

normalization. In intensity normalization, the intensity values were scaled to the 

maximum value. The centers calculated from FCM and their membership values were 
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plotted and examined for this optimization. The norms of the centers were also calculated 

and sorted to identify tissue types. The number of inconsistent classifications (incorrect) 

were calculated as percentage error for each run of FCM and plotted versus threshold for 

noise levels from 10 increasing to 40. The simulation stripes are segmented with different 

number of classes, noise levels, exponent m and thresholds for selecting of the optimal 

parameters for these types of images.  

 

Partial Volume Simulation 

A partial volume effect in a MR image means voxels may contain a mixture of tissue 

types.  The partial volume effects can be decreased by decreasing the voxel size in a MR 

image. Shown below in Figure 3.3 a) is an image with 1 x 1 x 1 mm3 slice. This image 

when the resolution is increased to 2 x 2 x 2 mm3 as in Figure 3.3 b) displays partial 

volume effects.  

 
Figure 3.3 Partial volume effects - a) 1 x 1 x 1 mm3 image  b) 2 x 2 x 2 mm3 image 

showing partial volume blurring. 

 

In order to see how partial volume affects FCM segmentation, partial volume stripes 

were created for only three types of tissue (gray matter, white matter, CSF).  The stripe 

model is shown below. 
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The simulation model was run for different values of exponent m, noise levels and 

thresholds. The number of classes was specified as only three since it contained only 

three tissue types.  

Avg. Avg. Avg. GM GM GM GM WM WM WM WM CSF CSF CSF CSF GM GM GM GM

 

Brain Region-of-Interest Simulation 

Next, to check in a real data set how FCM segmentation works, a region of interest (ROI) 

was selected from the obtained MR images of normal subjects. The ROI was chosen in 

such a way that it contained only the GM, WM, CSF tissues from the middle of the MR 

brain image. Figure 3.4 shows a brain ROI of a normal subject. 
FLAIR    SPGR    T2 

 

 

 

 

 

 

 

Figure 3.4 Brain ROI 
 

The FCM was then run for this model to see the segmentation results in actual data. Here 

also the FCM was executed for different values of exponent m and thresholds. The 

number of class was fixed at three since there are only three tissue types. The optimized 

values of m and threshold from all these simulations were used to segment the actual data 

sets.   

 

MRI Volume Data Sets 

In this thesis, the FCM clustering approach was applied to multispectral MRI (T2, 

FLAIR, SPGR-pre contrast, SPGR-post contrast, SPGR-post contrast (SPGRGd), DWI) 
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image data sets which segmented them into different tissue types including abnormal 

tissues. So for each pixel i, the feature vector was comprised of xi = [T2i, Fli, DWIi, Spgri, 

SpgrGdi]. By adding more image types (multi spectral) the segmentation may improve 

and provide more information 39. The feature vector xi is a five-dimensional vector. The 

feature vectors were then segmented into six classes for normal tissues and nine classes 

for abnormal tissues. The m value used on these data sets was set to m = 1.5. The 

optimized threshold value from the simulation data sets = 0.55 was used for classifying 

into clusters (tissues). These values were chosen as the best values to include pixels while 

not mixing classes after inspecting the cluster vector plots and membership function 

plots.  The tissue classes which look like white matter, gray matter and CSF were 

compared to white matter, gray matter and CSF segmented images from Statistical 

Parametric Mapping software27 (SPM2).  

 

Data Acquisition and Analysis 

Using all the imaging procedures mentioned in Chapter 2, MRI scans were obtained in 

four normal subjects and five tumor patients. Table 4 below shows the type of tumor for 

each tumor patient. All tumor patients have undergone radiation therapy, chemotherapy 

and / or surgery. 

Table 4: Tumor types in patient sample. 

Patient Tumor type 

Patient 1 Grade IV Glioblastoma Multiforme 

Patient 2 Grade II Gemistocytic Astrocytoma 

Patient 3 Astrocytoma 

Patient 4 Grade II Gemistocytic Astrocytoma 

Patient 5 Low grade Astrocytoma 

 

The types of MRI scan taken for each subject, and the parameters involved are 

summarized in Table 5. The total scan time was around 1 hour and 15 minutes.  

• Anatomical scans were taken first (3-Plane Localizer, DWI, FLAIR, and T2). 

• Next, pre-contrast high resolution images (3D SPGR) are obtained.  
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• Intravenous contrast Gd-DTPA (20ml) is injected through a power injector. During 

the first passage of the bolus, perfusion scans are obtained.  

• A high resolution (3D SPGRGD) post contrast scan is then obtained.  

• Last, a T1 (GD) contrast enhanced image is obtained. 

Table 5: Imaging Parameters 

 

Series 

Name 

(view) 

Field-of-

view(FOV) 

(mm) 

 

# 

Slices 

Slice 

thickness

(mm) 

TR 

(ms) 

TE 

(ms) 

TI 

(ms) 

Matrix 

Freq*phase

Loc(Sag) 25 14 5 10,000 73 - 128*128 

DWI(Ax) 25 14 5 10,000 73 - 128*128 

FLAIR(Ax) 25 14 5 11,000 170 2250 256*192 

T2(Ax) 25 14 5 5,000 102 - 256*256 

3D 

SPGR(Ax) 

25 14 5 7.5 7.5 - 256*192 

Perf(EPI) 25 14 5 2000 20 - 128*128 

3D 

SPGRGD(Ax) 
25 14 5 7.5 7.5 - 256*192 

T1GD(Ax) 25 14 5 750 7.5 - 256*224 

The obtained images were preprocessed before segmentation. The images were first 

converted into 3D datasets using Analyses of Functional Neuroimages (AFNI) 

software40. Since structure of the human brain varies across subjects, the first step for 

each subject was to align individual MR image scans. The subjects head position may not 

be in the same location during each and every scan taken. Also, image distortion varies 

from pulse sequence to pulse sequence.  

 

Most brain atlases are based on a detailed representation of anatomy in a standardized 3D 

coordinate system, or stereotaxic space. Anatomical points are chosen on high resolution 

(2mm3) 3D anatomical data sets. Anatomical markers help in transforming the MR data 
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sets to stereotaxic space. The stereotaxic coordinate system 41 is defined as below: 

The anatomical landmarks are:  

• Anterior commissure (AC) – It is a thin white matter tract connecting each 

hemisphere near the olfactory areas of the brain. 

• Posterior commissure (PC) – It is a C-shaped structure slightly rotated in a clock-wise 

direction located posterior and inferior to the AC also connects the hemispheres. 

There are two nerve fibers connecting the cerebral hemispheres across the longitudinal 

fissure as shown in Figure 3.5.  

• The anterior-to-posterior horizontal axis (y) is the tangent to the superior edge of the 

AC and to the inferior edge of the PC, at points crossing the longitudinal fissure.  

• The vertical axis (z) is perpendicular to the AC–PC line, in the longitudinal fissure, 

and the tangent to the posterior edge of the AC.  

• The remaining axis (right-to-left or x) is perpendicular to the y and z axes.  

 
Figure 3.5 Sketch of the central portion of the midline of the brain showing anatomical 

landmarks used to specify the stereotaxic coordinate system. 

 

The transformation to the AC–PC-aligned view was made by placing ‘‘markers’’ as 

shown in Figure 3.5 on: 

• The superior and posterior edges of the AC. 

• The inferior edge of the PC. 

• Given the AC–PC line (the new y-axis), one point in the new yz plane. 
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• Two points (separated by at least 20 mm).  

After choosing anatomical landmarks, the whole brain volume was rotated to align with 

the stereotaxic axes. This aligned, not scaled, coordinate system data set is called the 

AC–PC aligned view. The aligned datasets are then resampled into 1 x 1 x 1 mm3 

resolution in the slice select direction between input slices using cubic interpolation. The 

aligned data sets were written out as ACPC aligned volumes along with a header file.  

 

Another method for co-registering the data sets of the same subject is using rigid body 

transformation in SPM2 software42. SPM contains a list of subroutines based on 

MATLAB. Rigid body transformation is a subset of the affine transformations. Affine 

transformation is described by six parameters, three translational and three rotations 

along the orthogonal axes. For each point in an image (x1, x2, x3), an affine mapping is 

defined into the co-ordinates of another space (y1, y2, y3). The mapping is described as a 

simple matrix multiplication: 

 y = Mx  (3.1) 

Where, x – matrix containing values of an image, 

y – matrix containing co-ordinates of another space for the corresponding values of x, 

M - matrix containing mapping values. 

 

Using SPM2 software to co-register the images, an affine transformation was applied in 

which one of the images was considered as a reference image (the target image usually 

SPGR image). Another image was transformed (mapped) to match the co-ordinates of the 

target image. The images are then resampled based on the transformations by trilinear 

interpolation method. The voxel dimensions are resampled to the SPGR image voxel 

size. Hence, each image type (T1, T2, FLAIR etc.) are mapped to the SPGR image using 

an affine transformation.  The images are then spatially normalized where each subject’s 

image is mapped to a standard space.  This allows for averaging of data and comparison 

between subjects. The normalization is usually done by spatially transforming the images 

to a template image in standard space. The sum of the squared differences between the 

template image and the image is minimized or the correlation between the images is 

maximized. Spatial normalization can also be carried out using affine transformation. 
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This transformation uses a 12 parameter rigid body nonlinear transformation to map the 

image to a template. The intensity of the images may be scaled and smoothed to a certain 

extent in this method.   

 

Next, the high resolution SPGR images are segmented into gray matter (GM), white 

matter (WM) and Cerebrospinal fluid (CSF). The segmentation using SPM is based on 

the maximum likelihood mixture model clustering algorithm. It utilizes a priori 

probability images of GM, WM, and CSF 43. This model assumes that MR images 

contain a certain number of tissue types from which every voxel has been drawn. 

Through spatial transformation each voxel from the high resolution images was mapped 

to the corresponding location in the a priori probability images. The mapping was 

achieved by least squares matching the template images in the same standard space. 

Estimating which voxel belongs to which tissue type requires an iteration process. The 

iterative process ends when the change in log-likelihood function is negligible. The 

algorithm is also known as the expectation maximation (EM) algorithm 43. The E-step 

denotes the calculation of probabilities of belonging to a cluster and the M-step computes 

the clusters and non-uniformity correction parameters. For the calculation of probabilities 

belonging to a cluster, Bayes rule44 is used. For non-uniformity correction parameters, 

discrete cosine transform is utilized. SPM fails when patient data are analyzed as there 

are no prior probability images that can be used as a template image. 

 

In order for the segmentation to start, the AFNI data sets were first converted to 

ANALYZE format for compatible use in SPM2 where by the AFNI data sets were 

converted to “.img” format along with a header file. All the images were co-registered, 

spatially normalized and resampled to 1x1x1 mm3 resolution. The “.img” files were then 

read into a MATLAB script for performing fuzzy c-means segmentation of tissue types. 

Similarly, using SPM2 software, the high resolution SPGR images alone were segmented 

into the three tissue types (GM, WM, and CSF). The segmentation results using fuzzy c-

means clustering were then compared to the segmentation results using SPM2.  
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Chapter 4  
 

Results 

Simulation Using Stripes 

The FCM MATLAB code was executed for the simulation of stripes which contained 

seven tissue types. The stripe model shown below contains T1, T2, FLAIR intensity 

values with no noise. 
T1 T2  FLAIR 

Figure 4.1 Simulation stripes of seven tissues with three types of images. 

 

The eight tissues in Figure 4.1 are:  air, air, scalp, skull, meninges, gray matter, white 

matter, CSF. The air tissue is repeated twice in order to form an 8 x 8 stripe. The number 

of classes was chosen as seven for FCM segmentation and they were executed for m 

values of 1.05, 1.25, 1.5, 1.75, 2.0, noise levels of 0, 10, 20 (arbitrary units) and threshold 

values of 0.55, 0.75, 0.95. Since the number of classes was seven, each class (tissue) is 

assigned a color from the color map. The color map designed is shown below: 

 
  

 

Unclassified Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7

 
 
 
 

Figure 4.2 Color map used for normal subjects. 
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Cluster center plots: 

The segmentation was carried out for feature vectors composed of pixels from T1, T2 and 

FLAIR images. The cluster centers in 3-D space of the respective classes are plotted for 

each feature vector. The plots help in determining the number of classes (tissues) to be 

used. Shown below is a cluster center plot for m = 2.0, threshold = 0.55.   

Figure 4.3 Cluster center plots a) Clusters = 4 b) Cluster = 7 

 

Figure 4.3 shows the difference in cluster centers when we segment the data into cluster 

= 4 and cluster = 7. Note that when we group them into a larger number of clusters the 

centers are closer to each other thereby segmenting the data differently. Also, since the 

intensity values of air and scalp are close to each other, their respective cluster centers in 

Figure 4.3 b close to the origin can be seen to be redundant.   

 

Membership degree plots:  

During the iteration of the algorithm, the membership value are determined and updated. 

The membership values for each class were plotted. These plots help in determining the 

m (fuzziness) for the data set and also in setting the threshold.  The membership values 

for m = 1.25 for two different classes are shown in Figure 4.4. 
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X-axis pixel intensity values   X-axis pixel intensity values 

Figure 4.4 Membership value plots a) class - 4  b) class - 6 

 

Figure 4.4a shows that the membership degrees range between 0 and 1 for the pixel 

intensities from 35 – 55. Figure 4.4b shows that in the range of 35-55 pixel intensities the 

membership degree is zero. This indicates that pixel values in that range do not belong to 

cluster 4.  The membership value plots for m = 2.0 is shown below. 
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Figure 4.5 Membership value plots a) class - 4  b) class - 6 
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The membership values for the same pixel range as in Figure 4.4 for the class 6 is zero in 

Figure 4.5. Using these plots the m value was fixed at 1.5 with number of classes = 7.  

 

Threshold value: 

The threshold value determines which pixels belong to a particular (class) based on its 

maximum membership value. Since each stripe is a tissue, perfect segmentation should 

result in each color stripe only. The tissue class containing a mixture of colors may 

represent that the tissue class may contain two or more tissues.  The simulated segmented 

images of T1, T2, and FLAIR for noise = 0, m=1.5, threshold = 0.55 are shown below in 

Figure 4.6. 

 

 

 

 

 

 

 

a) Threshold value =0.55  b) Threshold value = 0.75 c) Threshold value = 0.95  

Figure 4.6 FCM simulated images for noise = 0. 

The differences in threshold values for a fully segmented and mixed segmentation class 

are shown below in Figure 4.7.  

0.55 0.55 

a) Pure segmentation class 4   b) mixed segmentation class 4 

Figure 4.7 Membership value plot showing threshold = 0.55. 
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From Figure 4.6 and 4.7 it can be seen that as the values of threshold increases mixed 

segmentation results. In the case where threshold value is less than 0.55, again mixed 

segmentation was obtained. Hence for our data set an optimized threshold value of 0.55 

was chosen. The simulated segmented images of T1, T2, and FLAIR for noise = 10, 

m=1.5, threshold = 0.55 are shown in Figure 4.8. 

 
a) Threshold value =0.55  b) Threshold value = 0.75 c) Threshold value = 0.95  

Figure 4.8 FCM simulated images for noise =10. 

 

Partial Volume Stripes  

As described in chapter 3, a partial volume stripe is created for the three feature vector         

(T1, T2, and FLAIR) as shown in Figure 4.9.  

 

 

 

 

 

 

 
T1     T2    FLAIR 

Figure 4.9 Partial volume simulation stripe. 
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These simulation stripes were executed for m values in the range of ima and a threshold 

value of 0.55, 0.75 and 0.95 with different noise levels. Figure 4.10 is a FCM segmented 

simulation stripe with different threshold values for an m =1.5. 

 

a) Threshold = 0.55   b) Threshold = 0.75  c) Threshold = 0.95 

 

 

 

 

Avg. Avg. Avg. GM GM GM GM WM WM WM WM CSF CSF CSF CSF GM GM GM GM

Figure 4.10 FCM segmented images for partial volume simulation. 

The red pixels in Figure 4.10 c) indicate unclassified tissue type. In Figure 4.10 a) the 

pixel stripe containing a mixture of white matter and CSF is classified as gray matter. 

The stripes may indicate more weighting to white matter. The cluster centers and 

membership degrees are also plotted for this simulation stripe.   

 

Classification error: 

The cluster plots and membership degrees for both types of simulation stripes change for 

different threshold values for different noise levels.  The percentage error of misclassified 

pixels is calculated as: 

(Number of incorrect pixels / Total number of pixels) x 100 

These values help in determining the range of m values and threshold values that can be 

used for segmenting our MRI data set.   

 

Brain ROI Simulation Model 

A region of interest was selected from the normal subject’s MRI data set as described in 

chapter 3. The region of interest contained only three types of tissue – GM, WM, CSF. 

The image vectors included were FLAIR, T2, SPGR and FCM algorithm is executed for 
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class = 3 for the ROI alone. The image inputs to FCM are shown in Figure 4.11.  

 FLAIR    SPGR    T2

 

 

 

 

 

 

 

Figure 4.11 Brain ROI of three image vectors 

 

The FCM was executed for different m values and thresholds of 0.55, 0.75 and 0.95.  The 

FCM segmented image for m = 1.5 is shown below in Figure 4.12. 

 

 

 

 

 

 

 

a) Threshold = 0.55   b) Threshold = 0.75  c) Threshold = 0.95 

Figure 4.12 FCM segmented Brain ROI, Green: Gray Matter; Black: White matter; 

White: CSF, Red: unclassified. 

 

Comparing Figure 4.12 a) segmented image to the original images, the segmentation is 

good. Though there might be some more weighing towards white matter consistent with 

the partial volume stripe model. From the above images it is seen that as the threshold 

value increases the number of unclassified pixels increases. Hence for our data set, m = 

1.5 with threshold = 0.55 is chosen as the optimal value for MR whole volume data sets.  
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MRI Data Sets  

The whole volume MRI data sets are then segmented using FCM for each subject. The 

optimal values are fixed at m = 1.5, threshold = 0.55.  Figure 4.13 shows the FCM 

segmented image for a normal subject for feature vectors (FLAIR, T2, SPGR pre and post 

contrast, DWI). The feature vector is segmented into six tissue types for normals and nine 

tissue types for patients with tumor. Different colors from the color map represent 

different tissue types. The FCM segmented image when another feature vector DWI is 

added is also shown in Figure 4.13.  

 FLAIR SPGR T2 

 
 SPGR-GD FCM image FCM image with DWI 

 
Figure 4.13 FCM segmentation of normal subject. 

The class representing gray matter (GM), white matter (WM), and CSF are extracted 

from the single colored image and displayed separately in Figure 4.14 a).  GM, WM, CSF 

maps are obtained from the standard SPM software and displayed in Figure 4.14 b). FCM 

images are subtracted from the SPM maps and the difference maps are displayed in 

Figure 4.14 c).  
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 a) FCM: Gray Matter White Matter  CSF 

 
 b) SPM: Gray Matter White Matter  CSF 

 
c) Difference image: Gray Matter White Matter  CSF 

Figure 4.14 Difference maps of normal subject 

 

For a tumor patient, as seen in Figure 4.15 the feature vector (FLAIR, T2, SPGR, 

SPGRGD, DWI) is segmented into nine tissue types. This is done in order to include the 

tumor tissues, edema and necrosis.  Figure 4.15 also shows the FCM segmented image of 

tumor subject with the addition of DWI to the feature vector. 
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FLAIR    SPGR    T2 

 
SPGR-GD    FCM image  FCM image with DWI 

 
Figure 4.15 FCM segmentation of tumor patient. 

 

The class representing gray matter (GM), white matter (WM), and CSF for tumor subject 

are extracted from the single colored image and displayed separately in Figure 4.16 a).  

GM, WM, CSF maps are obtained from the standard SPM software and displayed in 

Figure 4.16 b). FCM images are subtracted from the SPM maps and the difference maps 

are displayed in Figure 4.16 c).  The results for all the subjects are shown in Appendix A. 

The percentage of difference for the maps are calculated and tabulated in Table 6 and 7 

with and without DWI respectively. 
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a) FCM segmented GM map WM map CSF map 

 
b) SPM segmented GM map WM map CSF map 

 
c) Difference maps GM map WM map CSF map 

Figure 4.16 Difference maps of tumor patient. 
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Table 6: Quantitative Difference in GM, WM, CSF maps using four feature vectors. 

Gray matter White matter CSF 
Subjects 

FCM      SPM difference FCM SPM difference FCM SPM difference
Normal subj:   

N1 23.54        37.08 24.73 21.51 24.21 11.16 1.90 17.56 15.85
N2          26.36 35.25 15.30 22.79 23.92 4.88 8.37 20.85 14.23
N3          24.18 34.10 16.24 23.20 27.28 7.15 8.55 16.58 13.46
N4          20.85 36.77 17.69 26.77 37.46 11.45 4.28 11.83 16.11

Tumor subj:   
P1 18.50        36.30 24.93 14.73 22.51 14.95 3.66 21.08 17.76
P2          11.46 36.53 29.87 15.51 28.54 25.54 3.40 18.37 15.94
P3          19.07 37.63 24.32 19.73 21.89 11.23 10.70 18.90 22.08
P4          17.59 36.98 23.15 18.32 23.14 11.08 8.34 12.04 16.95

Table 7: Quantitative Difference in GM, WM, CSF maps using five feature vectors. 
 Gray matter White matter CSF 

Subjects  
      

# slices
FCM SPM difference FCM SPM difference FCM SPM difference

Normal 
subj:   

N1           70 21.18 35.48 21.43 20.53 23.85 6.90 10.59 17.92 18.64
N2        55 19.00 35.04 21.62 29.38 23.61 12.34 1.23 20.88 19.76
N3        39 17.31 33.93 21.87 34.23 26.79 15.54 3.83 16.66 15.34
N4        27 20.64 45.67 37.32 32.39 30.71 15.47 1.90 10.41 10.05

Tumor subj:   
P1 63       8.83 36.28 31.64 15.44 27.11 13.14 2.55 20.57 18.39
P2        76 14.04 38.11 37.77 15.36 29.45 24.93 2.06 18.55 17.40
P3        50 14.38 38.31 29.06 23.51 23.41 17.27 2.70 18.91 18.31
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Chapter 5  
 

Discussion and Conclusions

In this thesis, unsupervised fuzzy clustering was applied to MRI multispectral data (T2, 

FLAIR, SPGR, SPGRGD, DWI) for segmenting two types of images: those from normal 

brain and from brain with brain tumor. Our hypothesis was that using different MRI 

image types instead of the previously used T1-wtd., T2-wtd., and proton density MRI with 

FCM could yield better segmentation results for brain MRI of patients with brain 

tumor(s). We used four-dimensional feature vectors composed of FLAIR, T2-wtd., 

SPGR, and SPGR post Gd-contrast administration.  Each voxel contained data for a 

single pixel from each of the scans.  We also added another dimension to the feature 

vectors by including DWI-MRI. This extension to more and differently composed feature 

vectors has been suggested in previous work39.  

 

To the best of our knowledge, our work is the first whole-brain fully automated multi 

tissue segmentation that has been performed on both normal and patient data sets. The 

inclusion of the whole cerebrum provides more of each tissue type which improved the 

segmentation for the patient data. One drawback of previously published single slice 

segmentation is that it cannot be as automated since each slice may contain different 

numbers of tissue types as the location changes.  All tissue types were always included in 

this FCM processing so the number of classes remains stable. The data sets were checked 

for registration and then resliced to 1mm x 1mm x 1mm voxels for the segmentation. 

These results are not presented here. Having performed the appropriate and necessary 

preprocessing we could then quantify the difference between segmentation by our routine 

and another routine for the gray matter volume, the white matter volume and CSF 

volumes. We compared FCM to another brain segmentation package, SPM227. To our 

knowledge quantification by difference images of this sort has not been presented before. 

 

Our first results indicate that segmentation using the FCM algorithm when tumors are 

present provides the ability to segment normal gray and white matter without including 
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tumor as part of either.  The commonly used segmentation routines in SPM2 suffer this 

problem as they rely on an underlying model of the brain which does not include any 

abnormalities. All of the brains with tumor were segmented more accurately, as 

compared to the 3D-SPGR with good gray-white matter differentiation, using FCM than 

with SPM2. The FCM always separated the tumors as different tissue types than either 

gray, white, or CSF or even the scalp, skull or meninges. For the normal brains, SPM2 

was the better choice for segmentation as the FCM consistently underestimated the 

amount of gray matter, especially in the medial regions of the brain.  This may be 

because the T2 and FLAIR images used displayed some brightening in the middle caused 

by the dielectric effect seen at 3T which SPM2 seemed to correct in the SPGR data used 

for segmentation in SPM2.  FCM and SPM2 performed more comparably for the 

estimation of white matter and CSF.  Larger voxels, 2mm x 2mm x 2mm were also tried 

to increase FCM processing speed but this decreased the accuracy of the separation into 

classes when the FCM results were compared to the SPM2 results. 

 

It is to be noted that comparison of FCM segmentation tissues (GM, WM, and CSF) with 

SPM2 segmented tissues provides only a method for comparison and not a measurement 

of error because histological data confirming brain tissue types is not available from live 

humans. It is possible that future experiments could include histological staining and 

slicing of an animal brain could be used for such as absolute measurement of tissue type 

accuracy. The FCM to SPM2 segmentation comparison seems to improve with well 

registered data sets but since that is the best case for SPM2, this doesn’t mean that SPM2 

is inherently superior. In the case of tumor subjects the GM, WM, CSF tissues are not 

separated well by SPM2 or FCM.  This may be because the effects of radiation and 

chemotherapy may change the characteristics of normal tissues.  

 

Our work is an extension of previous studies of tissue segmentation using the fuzzy c-

means algorithm on MRI images that showed the promise of this method39. In that study, 

segmented tissues from FCM were compared to histology and postmortem reports.  The 

segmentation was applied to a single slice of the brain through the tumor with T1, T2, 

Proton density images as feature vectors. However, results indicated that this attempt to 
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classify the tumor cells infiltrating into normal tissues was unsuccessful although the 

edema was successfully segmented from the surrounding tissue.  No work was done to 

determine if the grey matter, white matter, and CSF classes were corrected identified and 

sample error from the biopsy was present in the results.  

 

In other work, FCM segmentation was compared to various other methods. One method 

compared the fuzzy and k-nearest neighbor algorithms32. For both of these algorithms 

knowledge-based techniques were used to improve the segmentation after the clustering. 

Both methods were applied to whole volume MR data sets using the same three mostly 

anatomical image types as in the other study. They used either the fuzzy or k-nearest 

neighbor (kNN) algorithm along with regions described by templates to label and classify 

the tissues after clustering.  However this method was unable to categorize the tissues 

with abnormalities since a prior model of normal brains cannot be used in this case.  

 

In another study45, a semi-supervised FCM (SFCM) algorithm was applied to tumor 

subjects and the results were compared to kNN, gray level thresholding and seed 

growing.  Seed growing methods require manual selection of voxels of interest; such 

methods can be highly operator dependent. Using their SFCM algorithm tumor volumes 

were measured and the values did not consistently match the values from the other 

techniques as measured by the inter- and intra-operator coefficients of variation. 

Moreover, the SFCM was performed on semi-supervised and masked (skull and 

meninges stripped) images so the advantage of automation was reduced.  In this study the 

problem of a gold standard was also mentioned. For human brain tumor segmentation 

only immediately post-mortem scans can be validated without sampling error. Presurgical 

or pre-biopsy scans can be helpful especially if performed under image guidance.   

 

The unsupervised segmentation of MR images using different algorithms has also been 

compared in earlier studies28. The algorithms used in this study were two types of fuzzy 

c-means: one which uses a predefined number of classes and another based on maximum-

entropy which does not. The results demonstrated that each of these methods can 

successfully segment normal brain MR images but they did not attempt to apply either 
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algorithm to patient data.   

 

An understanding of the fuzzy clustering algorithm is required before applying the 

algorithm to MR data sets. Important parameters like the number of clusters (tissues), m 

(degree of fuzziness), and threshold values of the FCM algorithm need to be considered. 

This technique, when used with a smaller number of classes, resulted in a segmentation 

that merged the tissue types. Moreover as the number of feature vectors or number of 

clusters increases, the FCM algorithm calculation times increase linearly.  The time 

consumed for segmenting approximately 100 slices is about 90 minutes.  An important 

future step for this project is the minimization of processing time by translating the 

MATLAB code into C and reevaluating the algorithm.  That is a large project that could 

take a significant amount of time. 

 

SPM2 is a commonly and popularly used software package to segment brain images.  

SPM2 is based on the maximum-likelihood mixture model clustering algorithm and can 

be performed using just T1-weighted or with multimodal inputs.  In the description of the 

SPM technique27, the segmentation results were verified only by comparison to the input 

T1-wtd., or T2-wtd. images. In order for the tissue segmentation to work well using 

SPM2, good contrast MRI images are a requirement. If the images are not registered 

well, the normalization and hence segmentation of the images using SPM2 is poor as 

seen in Figure A-20. The segmentation accuracy with respect to misregistration of images 

has been found to follow a normal distribution using SPM2 27. Moreover, when voxels 

contain partial volume effects, they are often segmented incorrectly as gray matter 

particularly. Since segmentation is done using a priori probability images, segmenting of 

abnormal tissues will almost always yield poor results. This is a primary limitation of 

SPM2 software is for the segmenting tissues when abnormalities are present. 
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For this project, the MRI data sets did not require co-registration because of patient 

movement or image distortion, the images were co-registered and normalized only in 

order to compare them to the segmentation using SPM2 software. The additional 

advantage of interpolation to a higher spatial resolution also improved the FCM results. 

For some patients, identical slice prescriptions were not possible across the MRI 

modalities, image reslicing allowed us to work around this problem. 

 

In spite of the intuitive sense that adding diffusion-weighted images would improve the 

tissue segmentation, our results indicate that adding DWI to the feature vectors did not 

yield better results for these images as seen in Figure 4.15 and Table 6, Table 7. This may 

be due to the fact that diffusion weighted images may contain distortions.  

 

Another confound was that the dielectric effect generated-inhomogeneities present in the 

more inferior portion of the MRI data sets added a spurious class to the data as seen in 

Figure A-1. This effect caused FCM results for the upper half of the slices to differ from 

the whole brain segmentations. The more superior slices which do not demonstrate this 

effect show good separation of tissues as seen from Figure A-4. In the future the FCM 

segmentation should be applied to images acquired on a 1.5T scanner to test if this effect 

can be removed.  Alternately, intensity smoothing filters could be applied or phased-array 

surface head coils could be used at 3T. 

 

In summary and conclusion, the FCM technique developed for this thesis work can be 

used as for tumor segmentation and in detecting brain tumor region changes along with 

MRI images. The method is better than SPM2 for selecting normal gray and white matter 

in brains that have tumors although not as good as SPM2 for segmentation of normal 

brains.  Future work should include an exploration of the application of this technique to 

1.5T images, application to other types of abnormalities, accuracy determination through 

animal model work, and improvements to speed of processing. 
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Normal subject (N1): Inputs to FCM (FLAIR, T2, SPGR, SPGRGD) 

 FLAIR SPGR-precontrast T2 

 
SPGR-Gd   FCM image 

 
Figure A-1: MRI volume data sets segmented into six classes (tissue) types. 
 

 FLAIR SPGR-precontrast T2 

 
SPGR-Gd  FCM image 

 
Figure A-2: MRI volume data sets at another slice location segmented into six classes (tissue) types. 
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Normal subject (N2): Inputs to FCM (FLAIR, T2, SPGR, SPGRGD) 

 FLAIR SPGR-precontrast T2 

 
SPGR-Gd    FCM Image 

 
Figure A-3: MRI volume data sets segmented into six classes (tissue) types. 
 

 FLAIR SPGR-precontrast T2 

 
SPGR-Gd    FCM Image 

 
Figure A-4: MRI volume data sets at another slice location segmented into six classes (tissue) types. 
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Normal subject (N3): Inputs to FCM (FLAIR, T2, SPGR, SPGRGD) 
 FLAIR SPGR-precontrast T2 

 
SPGR-Gd    FCM Image 

 
Figure A-5: MRI volume data sets segmented into six classes (tissue) types. 
 

 FLAIR SPGR-precontrast T2 

 
SPGR-Gd    FCM Image 

 
Figure A-6: MRI volume data sets at another slice location segmented into six classes (tissue) types. 
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Normal subject (N4): Inputs to FCM (FLAIR, T2, SPGR, SPGRGD) 
 FLAIR SPGR-precontrast T2 

 
SPGR-Gd    FCM Image 

 
Figure A-7: MRI volume data sets segmented into six classes (tissue) types. 
 

 FLAIR SPGR-precontrast T2 

 
SPGR-Gd     FCM Image 

 

Fig A-8: MRI volume data sets at another slice location segmented into six classes (tissue) types. 
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Tumor patient (P1): Inputs to FCM (FLAIR, T2, SPGR, SPGRGD) 
 FLAIR SPGR-precontrast T2 

 
SPGR-Gd    FCM Image 

 
Figure A-9: MRI volume data sets segmented into nine classes (tissue) types. 
 

 FLAIR SPGR-precontrast T2 

 
SPGR-Gd    FCM Image 

 

Figure A-10: MRI volume data sets at another slice location segmented into nine classes (tissue) types. 
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Tumor patient (P2): Inputs to FCM (FLAIR, T2, SPGR, SPGRGD) 
 FLAIR SPGR-precontrast T2 

 
SPGR-Gd    FCM Image 

 
Figure A-11: MRI volume data sets segmented into nine classes (tissue) types. 
 

 FLAIR SPGR-precontrast T2  

 
SPGR-Gd    FCM Image 

 
Figure A-12: MRI volume data sets at another slice location segmented into nine classes (tissue) types. 
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Tumor patient (P3): Inputs to FCM (FLAIR, T2, SPGR, SPGRGD) 
 FLAIR SPGR-precontrast T2 

 
SPGR-Gd    FCM Image 

 
Figure A-13: MRI volume data sets segmented into nine classes (tissue) types. 
 

 FLAIR SPGR-precontrast T2 

 
SPGR-Gd    FCM Image 

 
Figure A-14: MRI volume data sets at another slice location segmented into nine classes (tissue) types. 
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Tumor patient(P4): Inputs to FCM (FLAIR, T2, SPGR, SPGRGD) 
 FLAIR SPGR-precontrast T2 

 
SPGR-Gd    FCM Image 

 
Figure A-15: MRI volume data sets segmented into nine classes (tissue) types. 
 

 FLAIR SPGR-precontrast T2 

 
SPGR-Gd    FCM Image 

 
Figure A-16: MRI volume data sets at another slice location segmented into nine classes (tissue) types. 
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Normal subject (N1): Comparison between FCM and SPM segmented images. 
 W CSF FCM: GRAY MATTER HITE MATTER 

 
 FLAIR SPGRGd T2 

 
SPM: GRAY MATTER WHITE MATTER CSF 

 
Diff. image:  GRAY MATTER WHITE MATTER CSF 

 
Figure A-17: Comparison of tissues between FCM and SPM segmentation of N1. 
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Normal subject (N2): Comparison between FCM and SPM segmented images. 

FCM: GRAY MATTER WHITE MATTER CSF 

 
 FLAIR SPGR-Gd T2 

 
SPM: GRAY MATTER WHITE MATTER CSF 

 
Diff. image: GRAY MATTER WHITE MATTER CSF 

 
Figure A-18: Comparison of tissues between FCM and SPM segmentation of N2.  
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Normal subject (N3): Comparison between FCM and SPM segmented images. 
FCM: GRAY MATTER WHITE MATTER CSF 

 
 FLAIR SPGR Gd T2 

 
SPM: GRAY MATTER WHITE MATTER CSF 

 
Diff. image: GRAY MATTER WHITE MATTER CSF 

 
Figure A-19: Comparison of tissues between FCM and SPM segmentation of N3. 
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Normal subject (N4): Comparison between FCM and SPM segmented images. 
FCM: GRAY MATTER WHITE MATTER CSF 

 
 FLAIR SPGR Gd T2 

 
SPM: GRAY MATTER WHITE MATTER CSF 

 
Diff. image: GRAY MATTER WHITE MATTER CSF 

 
Figure A-20: Comparison of tissues between FCM and SPM segmentation of N4. 
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Tumor patient (P1): Comparison between FCM and SPM segmented images 
FCM: GRAY MATTER WHITE MATTER CSF 

 
 FLAIR SPGR Gd T2 

 
SPM: GRAY MATTER WHITE MATTER CSF 

 
Diff. image:  GRAY MATTER WHITE MATTER CSF 

Figure A-21: Comparison of tissues between FCM and SPM segmentation of P1. 
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Tumor patient (P2): Comparison between FCM and SPM segmented images. 
FCM: GRAY MATTER WHITE MATTER CSF 

 
 FLAIR SPGR Gd T2 

 
SPM: GRAY MATTER WHITE MATTER CSF 

 
Diff. image: GRAY MATTER WHITE MATTER CSF 

 
Figure A-22: Comparison of tissues between FCM and SPM segmentation of P2. 
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Tumor patient (P3): Comparison between FCM and SPM segmented images. 
FCM: GRAY MATTER WHITE MATTER CSF 

 
 FLAIR SPGR Gd T2 

 
SPM: GRAY MATTER WHITE MATTER CSF 

 
Diff. image: GRAY MATTER WHITE MATTER CSF 

 
Figure A-23: Comparison of tissues between FCM and SPM segmentation of P3. 
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Tumor patient (P4): Comparison between FCM and SPM segmented images. 
FCM: GRAY MATTER WHITE MATTER CSF 

   
 FLAIR SPGR Gd T2 

   
SPM: GRAY MATTER WHITE MATTER CSF 

 
Diff. image: GRAY MATTER WHITE MATTER CSF 

 
Figure A-24: Comparison of tissues between FCM and SPM segmentation of P4.  
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Normal subject (N1): Inputs to FCM (FLAIR, T2, SPGR, SPGRGD, DWI) 
 FLAIR SPGR-precontrast T2 

 
CM Image 

 
A-25: ets segme (tissue) types. 

 

 FLAIR SPGR-precontrast T2 

 
SPGR-Gd  DWI FCM Image 

 
Figure A-26: MRI volume data sets segmented into six classes (tissue) types. 

SPGR-Gd  DWI F

Figure  MRI volume data s nted into six classes 
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Normal subject (N2): Inputs to FCM (FLAIR, T2, SPGR, SPGRGD, DWI)  
 FLAIR SPGR-precontrast T2 

 
SPGR-Gd DWI FCM Image 

 
Figure A-27: MRI volume data sets segmented into six classes (tissue) types. 
 

 FLAIR SPGR-precontrast T2 

 
SPGR-Gd  DWI FCM Image 

 
Figure A-28: MRI volume data sets segmented into six classes (tissue) types. 
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Normal subject (N3): Inputs to FCM (FLAIR, T2, SPGR, SPGRGD, DWI)  
 FLAIR SPGR-precontrast T2 

 
SPGR-GD DWI FCM image 

 
Figure A-29: MRI volume data sets segmented into six classes (tissue) types. 
 

 FLAIR SPGR-precontrast T2 

 
SPGR-GD DWI FCM image 

 
Figure A-30: MRI volume data sets segmented into six classes (tissue) types. 
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Normal subject (N4): Inputs to FCM (FLAIR, T2, SPGR, SPGRGD, DWI)  
 FLAIR SPGR-precontrast T2 

 
SPGR-GD DWI FCM image 

 
Figure A-31: MRI volume data sets segmented into six classes (tissue) types. 
 

 FLAIR SPGR-precontrast T2 

 
 SPGR-GD DWI FCM image 

 
Figure A-32: MRI volume data sets segmented into six classes (tissue) types. 
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Tumor patient (P1): Inputs to FCM (FLAIR, T2, SPGR, SPGRGD, DWI)  

 

 

 FLAIR SPGR-precontrast T2 

 
SPGR-GD DWI FCM image  

 
Figure A-33: MRI volume data sets segmented into nine classes (tissue) types.

Tumor patient (P2): Inputs to FCM (FLAIR, T2, SPGR, SPGRGD, DWI)  
 FLAIR SPGR-precontrast T2 

 
 SPGR-GD DWI FCM image 

 
Figure A-34: MRI volume data sets segmented into nine classes (tissue) types.
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Tumor patient (P3): Inputs to FCM (FLAIR, T2, SPGR, SPGRGD, DWI)  
T  

 
 SPGR-GD DWI FCM image 

 
Figure A-35: MRI volume data sets segmented into nine classes (tissue) types. 

 FLAIR SPGR-precontrast 2
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Normal subject (N1): Comparison between FCM and SPM segmented images using five 

W CSF 

 
SPGR-GD 

 
CSF 

 
Diff. image: GRAY MATTER WHITE MATTER CSF 

 
Figure A-36 Comparison of FCM and SPM segmented images using five feature vectors 

feature vectors. 

FCM: GRAY MATTER HITE MATTER 

 FLAIR DWI 

SPM: GRAY MATTER WHITE MATTER 
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Normal subject (N2): Comparison between FCM and SPM segmented images using five 
feature vectors. 
FCM: GRAY MATTER WHITE MATTER CSF 

 
 FLAIR DWI SPGR-GD 

 
SPM: GRAY MATTER WHITE MATTER CSF 

 
Diff. image: GRAY MATTER WHITE MATTER CSF 

 
Figure A-37  Comparison of FCM and SPM segmented images using five feature vectors 
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Normal subject (N3): Comparison between FCM and SPM segmented images using five 
feature vectors. 
FCM: GRAY MATTER WHITE MATTER CSF 

 
 FLAIR DWI SPGR-GD 

 
SPM: GRAY MATTER WHITE MATTER CSF 

 
Diff. image: GRAY MATTER WHITE MATTER CSF 

 
Figure A-38  Comparison of FCM and SPM segmented images using five feature vectors 
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Normal subject (N4): Comparison between FCM and SPM segmented images using five 
feature vectors. 
FCM: GRAY MATTER WHITE MATTER CSF 

 
 FLAIR DWI SPGR-GD 

 
SPM: GRAY MATTER WHITE MATTER CSF 

 
Diff. image: GRAY MATTER WHITE MATTER CSF 

 
Figure A-39  Comparison of FCM and SPM segmented images using five feature vectors 
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Tumor patient (P1): Comparison between FCM and SPM segmented images using five 
feature vectors. 
FCM: GRAY MATTER WHITE MATTER CSF 

 
 FLAIR DWI SPGR-GD 

 
SPM: GRAY MATTER WHITE MATTER CSF 

 
Diff image: GRAY MATTER WHITE MATTER CSF 

 
Figure A-40  Comparison of FCM and SPM segmented images using five feature vectors 
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Tumor patient (P2): Comparison between FCM and SPM segmented images using five 
feature vectors. 
FCM: GRAY MATTER WHITE MATTER CSF 

 
 FLAIR DWI SPGR-GD 

 
SPM: GRAY MATTER WHITE MATTER CSF 

 
Diff image: GRAY MATTER WHITE MATTER CSF 

 
Figure A-41  Comparison of FCM and SPM segmented images using five feature vectors 
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Tumor patient (P3): Comparison between FCM and SPM segmented images using five 
feature vectors. 
FCM: GRAY MATTER WHITE MATTER CSF 

 
 FLAIR DWI SPGR-GD 

 
SPM: GRAY MATTER WHITE MATTER CSF 

 
Diff image: GRAY MATTER WHITE MATTER CSF 

 
Figure A-42: Comparison of FCM and SPM segmented images using five feature vectors. 
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