86 research outputs found

    Properties and Microstructures of Sn-Ag-Cu-X Lead-Free Solder Joints in Electronic Packaging

    Get PDF
    SnAgCu solder alloys were considered as one of the most popular lead-free solders because of its good reliability and mechanical properties. However, there are also many problems that need to be solved for the SnAgCu solders, such as high melting point and poor wettability. In order to overcome these shortcomings, and further enhance the properties of SnAgCu solders, many researchers choose to add a series of alloying elements (In, Ti, Fe, Zn, Bi, Ni, Sb, Ga, Al, and rare earth) and nanoparticles to the SnAgCu solders. In this paper, the work of SnAgCu lead-free solders containing alloying elements and nanoparticles was reviewed, and the effects of alloying elements and nanoparticles on the melting temperature, wettability, mechanical properties, hardness properties, microstructures, intermetallic compounds, and whiskers were discussed

    Properties and behaviour of Pb-free solders in flip-chip scale solder interconnections

    Get PDF
    Due to pending legislations and market pressure, lead-free solders will replace Sn–Pb solders in 2006. Among the lead-free solders being studied, eutectic Sn–Ag, Sn–Cu and Sn–Ag–Cu are promising candidates and Sn–3.8Ag–0.7Cu could be the most appropriate replacement due to its overall balance of properties. In order to garner more understanding of lead-free solders and their application in flip-chip scale packages, the properties of lead free solders, including the wettability, intermetallic compound (IMC) growth and distribution, mechanical properties, reliability and corrosion resistance, were studied and are presented in this thesis. [Continues.

    Materials science experiments in space

    Get PDF
    The criteria for the selection of the experimental areas and individual experiments were that the experiment or area must make a meaningful contribution to the field of material science and that the space environment was either an absolute requirement for the successful execution of the experiment or that the experiment can be more economically or more conveniently performed in space. A number of experimental areas and individual experiments were recommended for further consideration as space experiments. Areas not considered to be fruitful and others needing additional analysis in order to determine their suitability for conduct in space are also listed. Recommendations were made concerning the manner in which these materials science experiments are carried out and the related studies that should be pursued

    The nucleation and growth of Cu6Sn5 in solders

    Get PDF
    Microstructure formation and evolution in Pb-free solder alloys and solder joints on Cu substrates depend on the nucleation and growth of primary Cu6Sn5 and beta-Sn during solidification and thermal cycling in service. This thesis explores the mechanisms responsible for microstructure evolution at different stages during the lifetime of a solder joint. Cu6Sn5, a common intermetallic in Pb-free soldering, is usually first to nucleate and past work showed that aluminium additions can cause significant refinement of primary Cu6Sn5. In this work, it is showed that the mechanism of refinement is heterogeneous nucleation of Cu6Sn5 on either deltaCu33Al17 or gamma1Cu9Al4 coupled with significant constitutional supercooling ahead of growing Cu6Sn5 crystals. Cu-Al particles are shown to be effective catalytic nucleant particles in both hyper-eutectic Sn-4Cu-0.02Al and hypo-eutectic Sn-0.7Cu-0.05Al/Cu joints and share reproducible orientation relationships with Cu6Sn5. The growth of primary Cu6Sn5 also plays a role in determining the final microstructure. A deeper understanding of crystal growth mechanisms and transitions between different Cu6Sn5 morphologies is developed. It is shown that, for different composition and cooling rate combinations, Cu6Sn5 crystals undergo a faceted to non-faceted growth transition as a result of a kinetic interface roughening transition and a gradual change in mechanism from lateral growth governed by anisotropic attachment kinetics to continuous growth governed by diffusion and curvature. As the majority phase in most solder joints, betaSn nucleates at a later stage of solidification after Cu6Sn5 has nucleated. The nucleation of betaSn on the Cu6Sn5 layer in solder joints is studied in detail. It is shown that primary Cu6Sn5 is not a potent nucleant for Sn, but the Cu6Sn5 layer plays a key role in betaSn nucleation and microstructure formation in solder joints. Thermal contraction of Cu6Sn5, betaSn and other common phases in soldering is another important phenomenon that affects the performance of solder joints in service. Directional data on the anisotropic coefficient of thermal expansion (CTE) of Cu6Sn5 and other non-cubic intermetallics are measured and correlated with the directional Young’s modulus.Open Acces

    Electrodeposition and characterisation of lead-free solder alloys for electronics interconnection

    Get PDF
    Conventional tin-lead solder alloys have been widely used in electronics interconnection owing to their properties such as low melting temperature, good ductility and excellent wettability on copper and other substrates. However, due to the worldwide legislation addressing the concern over the toxicity of lead, the usage of lead-containing solders has been phased out, thus stimulating substantial efforts on lead-free alternatives, amongst which eutectic Sn-Ag and Sn-Cu, and particularly Sn-Ag-Cu alloys, are promising candidates as recommended by international parties. To meet the increasing demands of advanced electronic products, high levels of integration of electronic devices are being developed and employed, which is leading to a reduction in package size, but with more and more input/output connections. Flip chip technology is therefore seen as a promising technique for chip interconnection compared with wire bonding, enabling higher density, better heat dissipation and a smaller footprint. This thesis is intended to investigate lead-free (eutectic Sn-Ag, Sn-Cu and Sn-Ag-Cu) wafer level solder bumping through electrodeposition for flip chip interconnection, as well as electroplating lead-free solderable finishes on electronic components. The existing knowledge gap in the electrochemical processes as well as the fundamental understanding of the resultant tin-based lead-free alloys electrodeposits are also addressed. For the electrodeposition of the Sn-Cu solder alloys, a methanesulphonate based electrolyte was established, from which near-eutectic Sn-Cu alloys were achieved over a relatively wide process window of current density. The effects of methanesulphonic acid, thiourea and OPPE (iso-octyl phenoxy polyethoxy ethanol) as additives were investigated respectively by cathodic potentiodynamic polarisation curves, which illustrated the resultant electrochemical changes to the electrolyte. Phase identification by X-ray diffraction showed the electrodeposits had a biphasic structure (β-Sn and Cu6Sn5). Microstructures of the Sn-Cu electrodeposits were comprehensively characterised, which revealed a compact and crystalline surface morphology under the effects of additives, with cross-sectional observations showing a uniform distribution of Cu6Sn5 particles predominantly along β-Sn grain boundaries. The electrodeposition of Sn-Ag solder alloys was explored in another pyrophosphate based system, which was further extended to the application for Sn-Ag-Cu solder alloys. Cathodic potentiodynamic polarisation demonstrated the deposition of noble metals, Ag or Ag-Cu, commenced before the deposition potential of tin was reached. The co-deposition of Sn-Ag or Sn-Ag-Cu alloy was achieved with the noble metals electrodepositing at their limiting current densities. The synergetic effects of polyethylene glycol (PEG) 600 and formaldehyde, dependent on reaching the cathodic potential required, helped to achieve a bright surface, which consisted of fine tin grains (~200 nm) and uniformly distributed Ag3Sn particles for Sn-Ag alloys and Ag3Sn and Cu6Sn5 for Sn-Ag-Cu alloys, as characterised by microstructural observations. Near-eutectic Sn-Ag and Sn-Ag-Cu alloys were realised as confirmed by compositional analysis and thermal measurements. Near-eutectic lead-free solder bumps of 25 μm in diameter and 50 μm in pitch, consisting of Sn-Ag, Sn-Cu or Sn-Ag-Cu solder alloys depending on the process and electrolyte employed, were demonstrated on wafers through the electrolytic systems developed. Lead-free solder bumps were further characterised by material analytical techniques to justify the feasibility of the processes developed for lead-free wafer level solder bumping

    Early space experiments in materials processing

    Get PDF
    A comprehensive survey of the flight experiments conducted in conjunction with the United States Materials Processing in Space Program is presented. Also included are a brief description of the conditions prevailing in an orbiting spacecraft and the research implications provided by this unique environment. What was done and what was learned are summarized in order to serve as a background for future experiments. It is assumed that the reader has some knowledge of the physical sciences but no background in spaceflight experimentation or in the materials science per se

    Multiscale Modeling of the Anisotropic Creep Response of SnAgCu Single Crystal

    Get PDF
    The lack of statistical homogeneity in functional SnAgCu (SAC) solder joints due to their coarse grained microstructure, in conjunction with the severe anisotropy exhibited by single crystal Sn, renders each joint unique in terms of mechanical behavior. An anisotropic multiscale modeling framework is proposed in this dissertation to capture the influence of the inherent elastic anisotropy and grain orientation in single crystal Sn on the primary and secondary creep response of single crystal SnAgCu (SAC) solder. Modeling of microstructural deformation mechanisms in SnAgCu (SAC) solder interconnects requires a multiscale approach because of tiered microstructural heterogeneities. The smallest length scale (Tier 0) refers to the Body Centered Tetragonal (BCT) structure of the Sn matrix itself because it governs: (1) the associated dislocation slip systems, (2) dislocation line tension (3) dislocation mobility and (4) intrinsic orthotropy of mechanical properties in the crystal principal axis system. The next higher length scale, (Tier 1), consists of nanoscale Ag3Sn intermetallic compounds (IMCs) surrounded by Body Centered Tetragonal (BCT) Sn to form the eutectic Sn-Ag phase. The next higher length scale (Tier 2) consists of micron scale lobes of pro-eutectic Sn dendrites surrounded by eutectic Sn-Ag regions and reinforced with micron scale Cu6Sn5 IMCs. Unified modeling of above two length scales provides constitutive properties for SAC single crystal. Tier 3 in coarse-grained solder joints consists of multiple SAC crystals along with grain boundaries. Finally, Tier 4 consists of the structural length scale of the solder joint. Line tension and mobility of dislocations (Tier 0) in dominant slip systems of single crystal Sn are captured for the elastic crystal anisotropy of body centered tetragonal (BCT) Sn by using Stroh's matrix formalism. The anisotropic creep rate of the eutectic Sn-Ag phase of Tier I is then modeled using above inputs and the evolving dislocation density calculated for the dominant glide systems. The evolving dislocation density history is estimated by modeling the equilibrium between three competing processes: (1) dislocation generation; (2) dislocation impediment (due to backstress from forest dislocations in the Sn dendrites and from the Ag3Sn IMC particles in the eutectic phase); and (3) dislocation recovery (by climb/diffusion from forest dislocations in the Sn dendrites and by climb/detachment from the Ag3Sn IMC particles in the eutectic phase). The creep response of the eutectic phase (from Tier 1) is combined with creep of ellipsoidal Sn lobes at Tier 2 using the anisotropic Mori-Tanaka homogenization theory, to obtain the creep response of SAC305 single crystal along global specimen directions and is calibrated to experimentally obtained creep response of a SAC305 single crystal specimen. The Eshelby strain concentration tensors required for this homogenization process are calculated numerically for ellipsoidal Sn inclusions embedded in anisotropic eutectic Sn-Ag matrix. The orientations of SAC single crystal specimens with respect to loading direction are identified using orientation image mapping (OIM) using Electron Backscatter Diffraction (EBSD) and then utilized in the model to estimate the resolved shear stress along the dominant slip directions. The proposed model is then used for investigating the variability of the transient and secondary creep response of Sn3.0Ag0.5Cu (SAC305) solder, which forms the first objective of the dissertation. The transient creep strain rate along the [001] direction of SAC305 single crystal #1 is predicted to be 1-2 orders of magnitude higher than that along the [100]/[010] direction. Parametric studies have also been conducted to predict the effect of changing orientation, aspect ratio and volume fraction of Sn inclusions on the anisotropic creep response of SAC single crystals. The predicted creep shear strain along the global specimen direction is found to vary by a factor of (1-3) orders of magnitude due to change in one of the Euler angles (j1) in SAC305 single crystal #1, which is in agreement with the variability observed in experiments. The second objective of this dissertation focuses on using this proposed modeling framework to characterize and model the creep constitutive response of new low-silver, lead-free interconnects made of Sn1.0Ag0.5Cu (SAC105) doped with trace elements, viz., Manganese (Mn) and Antimony (Sb). The proposed multiscale model is used to mechanistically model the improvement in experimentally observed steady state creep resistance of above SAC105X solders due to the microalloying with the trace elements. The third and final objective of this dissertation is to use the above multiscale microstructural model to mechanistically predict the effect of extended isothermal aging on experimentally observed steady state creep response of SAC305 solders. In summary, the proposed mechanistic predictive model is demonstrated to successfully capture the dominant load paths and deformation mechanisms at each length scale and is also shown to be responsive to the microstructural tailoring done by microalloying and the continuous microstructural evolution because of thermomechanical life-cycle aging mechanisms in solders

    Advances in Thermoelectric Energy Conversion Nanocomposites

    Get PDF

    Nanostructured Semiconductor Electrodes for Solar Energy Conversion and Innovations in Undergraduate Chemical Lab Curriculum

    Full text link
    This dissertation presents the methodology and discussion of preparing nanostructured, high aspect ratio p-type phosphide-based binary and ternary semiconductors via “top-down” anodic etching, a process which creates nanostructures from a large parent entity, and “bottom-up” vapor-liquid-solid growth, a mechanism which builds up small clusters of molecules block-by-block. Such architecture is particularly useful for semiconducting materials with incompatible optical absorption depth and charge carrier diffusion length, as it not only relaxes the requirement for high-grade crystalline materials, but also increases the carrier collection efficiencies for photons with energy greater than or equal to the band gap. The main focus of this dissertation is to obtain nanostructured p-type phosphide semiconductors for photoelectrochemical (PEC) cell applications. Chapter II in the thesis describes a methodology for creating high-aspect ratio p-GaP that function as a photocathode under white light illumination. Gallium phosphide (GaP, band gap: 2.26 eV) is a suitable candidate for solar conversion and energy storage due to its ability to generate large photocurrent and photovoltage to drive fuel-forming reactions. Furthermore, the band edge positions of GaP can provide sufficient kinetics for the reduction of protons and carbon dioxide. The structure is prepared by anodic etching, and the resulting macroporous structures are subsequently doped with Zn by thermally driving in Zn from conformal ZnO films prepared by atomic layer deposition (ALD). The key finding of this work is a viable doping strategy involving ALD ZnO films for making functioning p-type GaP nanostructures. Chapter III compares the GaP nanowires grown from gold (Au) and tin (Sn) VLS catalysts in a benign solid sublimation growth scheme in terms of crystal structure and photoactivity. Sn is less noble than Au, allowing complete removal of Sn metal catalysts from the nanowires through wet chemical etching which found to be useful for subsequent thermal diffusion p-type doping without fear of contaminations like Au. The main finding of this work is Sn-seeded GaP nanowires although Sn was removed without any residues and the nanowires had less twin defects than Au-seeded GaP, the nanowires were degenerately n-doped. On the contrary, Au-seeded GaP nanowires exhibited n-type characteristics with orthogonalized light absorption and charge separation. Chapter IV describes the synthesis of zinc tin phosphide (ZSP), a ternary analog of GaP comprised of low-cost, earth-abundant elements in the nanowire form using Sn nanoparticles as the VLS growth seed. The as-prepared ZSP nanowire film is capable of sustaining stable cathodic photoresponse in aqueous electrolyte under white light illumination. The nanowires were crystalized in the stoichiometric sphalerite form and possessed a direct optical band gap of ~ 1.5 eV instead of the chalcopyrite structure that has comparable band gap energy to GaP. The Sn nanoparticles acted as the VLS seed as well as Sn source for the ZSP nanowires growth. Chapter V summarizes the progress and findings of p-GaP nanowire array films as well as a phase non-specific, persistent ALD dye attachment scheme that facilitates hole injection into p-GaP photocathodes, extending the photon absorption range beyond its band gap. Lastly, a separate work about undergraduate chemical education development is documented in Chapter VI of this thesis. Chapter VI details the efforts made in two distinct undergraduate laboratory coursework with the intention to introduce modern microfluidics and photovoltaic technologies including multidisciplinary research experience to the undergraduate students.PHDChemistryUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/138476/1/sudlee_1.pd
    • …
    corecore