29 research outputs found

    Extracting exact time bounds from logical proofs

    Get PDF
    Accurate evaluation of delays of combinatorial circuits is crucial in circuit verification and design. In this paper we present a logical approach to timing analysis which allows us to compute exact stabilization bounds while proving the correctness of the boolean behavior

    Asynchronous Logic Circuits and Sheaf Obstructions

    Get PDF
    AbstractThis article exhibits a particular encoding of logic circuits into a sheaf formalism. The central result of this article is that there exists strictly more information available to a circuit designer in this setting than exists in static truth tables, but less than exists in event-level simulation. This information is related to the timing behavior of the logic circuits, and thereby provides a “bridge” between static logic analysis and detailed simulation

    An Algebra of Synchronous Scheduling Interfaces

    Full text link
    In this paper we propose an algebra of synchronous scheduling interfaces which combines the expressiveness of Boolean algebra for logical and functional behaviour with the min-max-plus arithmetic for quantifying the non-functional aspects of synchronous interfaces. The interface theory arises from a realisability interpretation of intuitionistic modal logic (also known as Curry-Howard-Isomorphism or propositions-as-types principle). The resulting algebra of interface types aims to provide a general setting for specifying type-directed and compositional analyses of worst-case scheduling bounds. It covers synchronous control flow under concurrent, multi-processing or multi-threading execution and permits precise statements about exactness and coverage of the analyses supporting a variety of abstractions. The paper illustrates the expressiveness of the algebra by way of some examples taken from network flow problems, shortest-path, task scheduling and worst-case reaction times in synchronous programming.Comment: In Proceedings FIT 2010, arXiv:1101.426

    Modal logic for handling behavioural constraints in formal hardware verification

    Get PDF

    Proof Planning for Automating Hardware Verification

    Get PDF
    Centre for Intelligent Systems and their ApplicationsIn this thesis we investigate the applicability of proof planning to automate the verification of hardware systems. Proof planning is a meta-level reasoning technique which captures patterns of proof common to a family of theorems. It contributes to the automation of proof by incorporating and extending heuristics found in the Nqthm theorem prover and using them to guide a tactic-based theorem prover in the search for a proof. We have addressed the automation of proof for hardware verification from a proof planning perspective, and have applied the strategies and search control mechanisms of proof planning to generate automatically customised tactics which prove conjectures about the correctness of many types of circuits. The contributions of this research can be summarised as follows: (1) we show by experimentation the applicability of the proof planning ideas to verify automatically hardware designs;(2)we develop and use a methodology based on the concept of proof engineering using proof planning to verify various combinational and sequential circuits which include: arithmetic circuits (adders, subtracters, multipliers, dividers, factorials), data-path components arithmetic logic units shifters, processing units) and a simple microprocessor system; and (3) we contribute to the profiling of the Clam proof planning system by improving its robustness and efficiency in handling large terms and proofs. In verifying hardware, the user formalises a problem by writing the specification, the implementation and the conjecture, using a logic language, and asks Clam to compose a tactic to prove the conjecture. This tactic is then executed by the Oyster prover. To compose a tactic, Clam uses a set of methods which implement the heuristics that specify general-purpose tactics, and AI planning mechanisms. Search is controlled by a type of annotated rewriting called rippling, which controls the selective application of rewrite scaled wave rules. We have extended some of the Clam's methods to verify circuits.The size of the proofs were orders of magnitude larger than the proofs that had been attempted before with proof planning, and are comparable with similar verification proofs obtained by other systems but using fewer lemmas and less interaction. Proof engineering refers to the application of formal proof for system design and verification. We propose a proof engineering methodology which consists of partitioning the automation of formal proof into three different kind of tasks: user, proof and systems tasks.User tasks have to do with formalising a particular verification problem and using a formal tool to obtain a proof. Proof tasks refer to the tuning of proof techniques (e.g. methods and tactics)to help obtain a proof. Systems tasks have to do with the modification of a formal tool system. By making this distinction explicit, proof development is more manageable. We conjecture that our approach is widely applicable and can be integrated into formal verification environments to improve automation facilities, and be utilised to verify commercial and safety-critical hardware systems in industrial settings

    Optimization techniques for propositional intuitionistic logic and their implementation

    Get PDF
    AbstractThis paper presents some techniques which bound the proof search space in propositional intuitionistic logic. These techniques are justified by Kripke semantics and are the backbone of a tableau based theorem prover (PITP) implemented in C++. PITP and some known theorem provers are compared using the formulas of ILTP benchmark library. It turns out that PITP is, at the moment, the propositional prover that solves most formulas of the library

    WCRT algebra and interfaces for esterel-style synchronous processing

    Full text link
    Abstract—The synchronous model of computation together with a suitable execution platform facilitates system-level timing predictability. This paper introduces an algebraic framework for precisely capturing worst case reaction time (WCRT) characteris-tics for Esterel-style reactive processors with hardware-supported multithreading. This framework provides a formal grounding for the WCRT problem, and allows to improve upon earlier heuristics by accurately and modularly characterizing timing interfaces. I

    Synchronous Digital Circuits as Functional Programs

    Get PDF
    Functional programming techniques have been used to describe synchronous digital circuits since the early 1980s and have proven successful at describing certain types of designs. Here we survey the systems and formal underpinnings that constitute this tradition. We situate these techniques with respect to other formal methods for hardware design and discuss the work yet to be done

    Arrows for knowledge-based circuits

    No full text
    Knowledge-based programs (KBPs) are a formalism for directly relating agents' knowledge and behaviour in a way that has proven useful for specifying distributed systems. Here we present a scheme for compiling KBPs to executable automata in finite environments with a proof of correctness in Isabelle/HOL. We use Arrows, a functional programming abstraction, to structure a prototype domain-specific synchronous language embedded in Haskell. By adapting our compilation scheme to use symbolic representations we can apply it to several examples of reasonable size

    Formal methods and digital systems validation for airborne systems

    Get PDF
    This report has been prepared to supplement a forthcoming chapter on formal methods in the FAA Digital Systems Validation Handbook. Its purpose is as follows: to outline the technical basis for formal methods in computer science; to explain the use of formal methods in the specification and verification of software and hardware requirements, designs, and implementations; to identify the benefits, weaknesses, and difficulties in applying these methods to digital systems used on board aircraft; and to suggest factors for consideration when formal methods are offered in support of certification. These latter factors assume the context for software development and assurance described in RTCA document DO-178B, 'Software Considerations in Airborne Systems and Equipment Certification,' Dec. 1992
    corecore