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intuitionistic logic. These techniques are justified byKripke semantics and are the backbone
of a tableau based theorem prover (PITP) implemented in C++. PITP and some known
theorem provers are compared using the formulas of ILTP benchmark library. It turns out
that PITP is, at the moment, the propositional prover that solves most formulas of the
library.
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1. Introduction

The development of effective theorem provers for intuitionistic and constructive logics is of interest both for the
investigation and application of such logics to formal software/hardware verification and to program synthesis (see i.e.
[19,8,12,21,13,6,1]).
In this paper we present a proof strategy and an implementation based on a tableau calculus for propositional

intuitionistic logic. Our decision procedure implements the tableau calculus of [2] (this calculus is an enhancement of the
calculus given in [15] and is related to the tableau and sequent calculi of [25,18,11]).
We introduce some new techniques utilized by our decision procedure to narrow the search space and the width of

the proofs (some of these techniques have already been described in our previous work [4]). The PSPACE-completeness of
intuitionistic validity [30] suggests that backtracking and branching cannot be eliminated. In order to improve the time
efficiency of the implementations and make them usable, strategies have to be developed to bound backtracking and
branching as much as possible.
The optimizationswe present are justified by the Kripke semantics for intuitionistic logic. Such semantical techniques are

related to the fact that tableau calculi are strictly joined to the semantics of the logic at hand. Loosely speaking, a tableauproof
for a formula is the attempt to build amodel satisfying the formula. The construction of such amodel proceeds by increasing,
step by step, the information necessary to define such a model (thus, step by step the accuracy of the model increases). If
the proof ends in a contradiction, then there is no model for the formula. Otherwise, a model satisfying the formula is
immediately derived from the proof. With this machinery at hand, we first adapt Simplification, a technique introduced in
[20] for classical and modal logics, to intuitionistic logic. Then we present a technique to deduce the satisfiability of a set
of formulas S, when the satisfiability of a set S ′ and a substitution τ such that S = τ(S ′) are known (where with τ(S ′) we
mean the application of τ to S ′ in the obvious way). Such a technique allows us to bound backtracking. Next we discuss a
technique suitable to bound branching on the formulas which only contain conjunctions and disjunctions. Such a technique
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is an adaptation of regularity, a technique well known to people engaged in classical theorem proving (see [17] for further
details). Finally we discuss a criterion which allows us to establish that a set of formulas is satisfiable. In this way it is not
necessary to search for a proof of contradiction.
Besides the strategy and its completeness, in the final part of the paper we present some experimental results on the

implementation of PITP (wemention that a systemdescription of PITP canbe found in [5],where no account of the theoretical
results related to the optimizations is given). PITP is written in C++ and it is tested on the propositional part of ILTP v1.1.2
benchmark library [28]. Of 274 propositional benchmarks contained in ILTP v1.1.2, PITP decides 234 formulas within the
time limit of ten minutes (we point out that this version of PITP outperforms the previous one described in [4], where, since
Simplification was not implemented, only 215 formulas were decided). To give the reader more elements to evaluate PITP
optimizations, comparisons with different versions of PITP are provided.

2. Notation and preliminaries

We consider the propositional language L based on a denumerable set of propositional variables PV , the boolean
constants> and⊥ and the logical connectives¬,∧,∨,→. An atom is either a propositional variable or a boolean constant.
(Propositional) Kripke models are the main tool to semantically characterize (propositional) intuitionistic logic Int (see [7,
15] for the details). A Kripke model forL is a structure K = 〈P,≤, ρ,〉, where P is a set of worlds, 〈P,≤, ρ〉 is a poset with
minimum ρ and  is the forcing relation, a binary relation on P × (PV ∪ {>,⊥}) such that: (i) if α  p and α ≤ β , then
β  p; (ii) for every α ∈ P , α  > holds and α  ⊥ does not hold. The forcing relation is extended in a standard way to
arbitrary formulas ofL as follows:

(1) α  A ∧ B iff α  A and α  B;
(2) α  A ∨ B iff α  A or α  B;
(3) α  A→ B iff, for every β ∈ P such that α ≤ β , β  A implies β  B;
(4) α  ¬A iff for every β ∈ P such that α ≤ β , β  A does not hold.

We write α 1 A when α  A does not hold. It is easy to prove that for every formula A, if α  A and α ≤ β , then β  A. A
formula A is valid in a Kripke model K = 〈P,≤, ρ ,〉 if and only if ρ  A. It is well known that Int coincides with the set of
formulas valid in all Kripke models.
If we consider Kripke models K = 〈P,≤, ρ,〉 such that |P| = 1 we get a classical interpretation for (propositional)

classical logic Cl. Classical interpretations are usually seen as functions σ from PV to {true, false}. Given a formula A and a
(classical) interpretation σ , we use σ |= Awith the usual meaning of satisfiability of a formula in a classical interpretation.
Given a set S, the set PV(S) denotes the elements of PV occurring in S.
In the following presentation, we give a brief overview of the tableau calculus Tab of [2] which is implemented by our

decision procedure. The rules of the calculus are given in Fig. 1. The calculus operates on signed well-formed formulas (swff
for short), where a swff is a (propositional) formula prefixed with a sign T, F or Fc.
The sign Fc was first introduced in [27] and later published in [22,23]. This sign, which intuitively represents certain

falsehood, partially solves a problem mentioned in [15], where the tableau calculus for intuitionistic propositional logic
contains an implicit rule, which allows the duplication of formulas following the application of a rule. Without this implicit
rule, the calculus in [15]would not be complete; technically, the calculus usesmultisets S of signed formulas,where the same
signed formula SA can be repeated in S disregarding the order of elements of S. The rules in relation to sign Fc guarantee
that rule T¬, which introduces sign Fc, does not require the duplication of the negated formula to which it applies and
therefore, for instance, all proofs of doubly negated classical propositional tautologies, which do not contain implications,
can be proved without duplications. As we are dealing with semantic tableaux, we can say that sign Fc captures within the
syntax the semantics of intuitionistic negation in terms of Kripke models in so far as the truth of a negation ¬A in a node
Γ implies that A is always false in every ∆ node connected with Γ and sign Fc is the syntactical witness of this. In [16]
Fitting points out that sign Fc is optimal w.r.t. the treatment of negation in tableau calculi for intuitionism and still in [16]
Waaler and Wallen present sign Fc in the framework of sequent calculi for the same logic. Since in rule T → duplication
on its left-hand side was still necessary, the problem of obtaining a propositional calculus without duplication remained
unsolved. The same problem, mutatis mutandis, arose in sequent calculi (contraction rule) and natural deduction calculi
(reuse of assumptions). In [29] (pp. 624–625), where ft, one of the first sequent based ATP for intuitionistic predicate logic
is presented, we can find a lengthy and detailed discussion about the computational and applicative restrictions related
to the necessity of duplication. Finally, in [11] a correct and complete contraction-free sequent calculus for intuitionistic
propositional logic is presented, while in [25] the ideas outlined in [11] are successfully applied to obtain a correct and
complete tableaux calculus for intuitionistic first-order logic, which does not require any duplication in its propositional
part.1 The rule T→ is subdivided into five rules according to the logical structure of the antecedent of the implication. This
treatment of implication is more syntactical than semantical. The implications are rewritten in formula(s) intuitionistically
equivalent,which are less complex as regards implications, and the subformula property is lost, but in any case a duplication-
free calculus, which is optimal w.r.t. computations, is obtained. The calculus of Fig. 1 (first introduced by Fiorino in his Ph.D.

1 The present version of ft [29] uses in its propositional part a contraction-free sequent calculus derived from [11].
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Fig. 1. The Tab calculus.

thesis [14] and published in [2]), which is the logical basis of the prover PITP and of its variants described here, is optimized
by including in rule T →→ some ideas introduced by Hudelmaier in [18] in order to obtain an O(n log n)-space decision
procedure for intuitionistic propositional logic by using a particular sequent calculus. The calculus of Fig. 1 is of the same
complexity as Hudelmaier’s. The logical complexity of the formula(s) obtained by applying the rules of Fig. 1 is in a sense
less than the logical complexity of premises, and this guarantees a computational bound of proofs containing branching and
backtracking. This property will be explained in detail at a later stage. To conclude, we reaffirm that the calculus of Fig. 1
does not allow the duplication of formulas and therefore the sets S of signed formulas cannot be considered multisets.
Given a Kripke model K = 〈P,≤, ρ,〉, a world α ∈ P , a formula A and a set of swffs S, the definition of B is as follows:

• α B TA (α realizes TA) iff α  A;
• α B FA iff α 1 A;
• α B FcA iff α  ¬A;
• α B S iff α realizes every swff in S;
• K B S iff ρ B S.

A proof table (or proof tree) for S is a tree, rooted in S and obtained by the subsequent application of the rules of the calculus.
As an example, let S = {T(B ∧ C), F(A ∨ B)} and H = T(A ∧ B). With ‘‘rule T∧ applies to S ∪ {H} taking H as main swff’’ we
mean that T∧ applies to S ∪ {H} as S,H

S,TA,TBT∧. If no confusion arises, we say that a rule applies to S ∪ {H} or, equivalently, a
rule applies to H . Finally, with Rule(H) we mean the rule related to H (in our example Rule(T(A ∧ B)) is T∧). We emphasize
that in the premise of the rules the notation S,H means S ∪ {H} and H does not belong to S.
For every proof table for S, the depth of the tree and the number of symbols occurring in nodes of a branch is linearly

bounded in the number of symbols occurring in S (see [2] for further details). This is the key feature to implement a depth-
first decision procedure whose space complexity is O(n log n); as a matter of fact, it is well known that to generate all the
proof tables in the search space and to visit them with a depth-first strategy, it is sufficient to have a stack containing, for
every node of the visited branch, the index of the main swff and a bit to store if the left branch has been visited [18].
Now, we give the tableau closure conditions. A set S of swffs is closed if at least one of the following conditions holds:

(1) S contains a conjugate pair, that is {TA, FA} ⊆ S or {TA, FcA} ⊆ S;
(2) S contains F>, Fc> or T⊥.

Proposition 1. If a set of swffs S is closed, then for every Kripke model K = 〈P,≤, ρ ,〉, ρ 7 S.
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The proposition is proved in Appendix A.
A closed proof table is a proof table whose leaves are all closed sets. A closed proof table is a proof of the calculus and a

formula A is provable iff there exists a closed proof table for {FA}.
For every rule of the calculus it is easy to prove that if there exists a Kripke model K = 〈P,≤, ρ,〉 and α ∈ P such that

α realizes the premise of the rule, then there exists (a possibly different) Kripke model K ′ = 〈P ′,≤′, ρ ′,′〉 and β ∈ P ′ such
that β realizes the conclusion. This is the main step to prove the soundness of the calculus:

Theorem 2 (Soundness). Let A be a wff. If there exists a closed proof table starting from {FA}, then A is valid.

To prove that a given calculus is complete one can show that if a formula is valid, then by generating all the possible
proofs of the calculus, sooner or later a proof is found. This naive way to proceed, although complete and finite, has a huge
search space. The calculus has several invertible rules, that is, the realizability of one of the sets in the conclusion implies the
realizability of the premise. This suggests the standard way to apply the rules that reduces the search space and preserves
the completeness: build a proof giving precedence to invertible rules and when no invertible rule is applicable, then apply the
non-invertible rules in all possible ways. This procedure is present in the papers proving the completeness by using model
theoretic techniques (see e.g. [15,25]). This basic strategy can be further refined by introducing new optimization criteria
which reduce the search space while still preserving the completeness. These criteria are described in the following section.

3. From the basic to the optimized algorithm

In the following we sketch the recursive procedure Basic Tab(S), which is the backbone of PITP. Given a set S of swffs,
Basic Tab(S) returns either a closed proof table for S orNULL (if there exists a Kripkemodel realizing S). To describe Basic Tab
we use the following notation. Let S be a set of swffs, let H ∈ S and let S1 or S1 | S2 be the nodes of the proof tree obtained by
applying to S the rule Rule(H) corresponding to H . If Tab1 and Tab2 are closed proof tables for S1 and S2 respectively, then
S
Tab1

Rule(H) or S
Tab1 | Tab2

Rule(H) denote the closed proof table for S defined in the obvious way. Moreover, Ri(H) (i ∈ {1, 2})
denotes the set containing the swffs of Si which replaces H . For instance:
R1(T(A ∧ B)) = { TA, TB },
R1(T(A ∨ B)) = {TA},R2(T(A ∨ B)) = {TB},
R1(T((A→ B)→ C)) = { TA, Fp, T(B→ p), T(p→ C) },
R2(T((A→ B)→ C)) = {TC}.
The procedure Basic Tab divides the formulas into six groups according to their behavior with respect to branching and

backtracking:
C1 = {T(A ∧ B), F(A ∨ B), Fc(A ∨ B), T(¬A), T(p→ A)with p an atom, T((A ∧ B)→ C), T((A ∨ B)→ C)};
C2 = {T(A ∨ B), F(A ∧ B); }
C3 = {F(¬A), F(A→ B)};
C4 = {T((A→ B)→ C), T(¬A→ B)};
C5 = {Fc(A→ B), Fc(¬A)};
C6 = {Fc(A ∧ B)}.
We call Ci-swffs (i = 1, . . . , 6) the swffs of the group Ci and Ci-rules the rules related to Ci-swffs. The intuition behind
these groups is related to the fact that, in order to reduce search space, it is convenient to apply invertible rules before the
non-invertible ones. Moreover, to reduce the number of nodes in the tableau proofs, the rules with one set of formulas in the
conclusion are applied first. Thus, the rules of group C1 are invertible and contain exactly one set of swffs in the conclusion,
the rules of group C2 are invertible and contain exactly two sets of swffs in the conclusion, the rules of group C3 are non-
invertible and contain exactly one set of swffs in the conclusion and the rules of group C4 are non-invertible and contain
exactly two sets of swffs in the conclusion. The rules of groups C5 and C6 are non-invertible but they are not in C3 and C4
because, as we prove in the Completeness Lemma (Lemma 7), we do not lose completeness if C5 and C6-rules are applied
only when no other rule applies. Under this condition the application of C5 and C6-rules is invertible and no backtracking is
required. On the other hand, to get completeness, backtracking is in general unavoidable when C3 and C4-rules are applied.
Backtracking is avoidable when C3 or C4-rules apply to S ∪ {H} taking H main swff and S does not contain F-swffs. By
inspecting the conclusion of C3 and C4-rules it is easy to check that in this case Sc coincides with S. This strategy can be seen
as a basic optimization bounding both branching and backtracking.

Function Basic Tab (S)
1. If S is a closed set, then, by definition, S is a closed proof table and Basic Tab returns S;
2. If S contains a C1-swff H , then apply Rule(H) to S and let S ′ be the result. If π = Basic Tab(S ′) is a proof, then S

π
Rule(H) is a

proof for S, otherwise there is no proof for S and Basic Tab returns NULL;
3. If S contains a C2-swff H , then apply Rule(H) to S and let S1 and S2 be the result. If both π1 = Basic Tab(S1) and
π2 = Basic Tab(S2) are proofs, then S

π1 | π2
Rule(H) is a proof for S, otherwise Basic Tab returns NULL;

4. If S contains a C3 or C4-swff, then:
4.1. if S contains exactly one F-swffH andH is aC3-swff, then apply Rule(H) to S and let S ′ be the result. Ifπ = Basic Tab(S ′)
is a proof, then S

π
Rule(H) is a proof for S, otherwise there is no proof for S and Basic Tab returns NULL.

4.2. If S does not contain any F-swff, then let H be any C4-swff, apply Rule(H) to S and let S1 and S2 be the result. If both
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π1 = Basic Tab(S1) and π2 = Basic Tab(S2) are proofs, then S
π1 | π2

Rule(H) is a proof for S, otherwise Basic Tab returns NULL.
4.3. If S contains a C3-swff H such that S ′ is the result of applying Rule(H) to S and π = Basic Tab(S ′) is a proof, then S

π
Rule(H)

is a proof for S;
4.4. If S contains a C4-swff such that the sets S1 and S2 are the result of applying Rule(H) to S and both π1 = Basic Tab(S1)
and π2 = Basic Tab(S2) are proofs, then S

π1 | π2
Rule(H) is a proof for S;

If in Points 4.3 and 4.4 no proof for S is found, then Basic Tab returns NULL;
5. If S contains a C5-swff H , then apply Rule(H) to S and let S ′ be the result. If π = Basic Tab(S ′) is a proof, then S

π
Rule(H) is a

proof for S, otherwise Basic Tab returns NULL;
6. If S contains a C6-swff H , then apply Rule(H) to S and let S1 and S2 be the result. If both π1 = Basic Tab(S1) and
π2 = Basic Tab(S2) are proofs, then S

π1 | π2
Rule(H) is a proof for S, otherwise Basic Tab returns NULL;

7. If none of the previous points apply, then Basic Tab returns NULL.

end function Basic Tab.
Starting from Basic Tab we have developed some optimizations to reduce both branching and backtracking. In the

following, each optimization is described and the necessary proofs are provided. At the end of the section we describe Tab,
the algorithm obtained by inserting in Basic Tab all the optimizations.

3.1. Adapting simplification to intuitionistic logic

Simplification is an optimization technique, which allows us to bound both branching and backtracking. Simplification
is described in [20], where it is applied to classical and modal logics. Here we discuss Simplification for intuitionistic logic.
Following [20] we describe Simplification as a set of new rules to be added to those of the calculus in Fig. 1. In the calculus
we introduce rules to replace formulas with> and⊥ and some suitable replacements to simplify> and⊥ in the context of
intuitionistic logic. Formally, we add the following rules to those given in Fig. 1:

S, TA

S[A/>], TA
Repl T

S, FcA

S[A/⊥], FcA
Repl Fc

where S[A/>] (respectively S[A/⊥]) is the set of swffs resulting from the replacement in S of every occurrence of the wff A
with> (respectively with⊥).
Here, the meaning of the rules is the same as in the case of classical logic. Let K = 〈P,≤, ρ,〉 be a Kripke model, α ∈ P

and A a formula. If α  A, then in every subsequent world β ≥ α, β  A. Thus starting from α the forcing of A coincides
with the forcing of>. Similarly for Fc, where we recall FcA is a synonym of (or can be restated as) T¬A. Now, what can we
say about a formula FA? From a semantical point of view, if α B FA, we know that α 1 A. We cannot say anything about its
equivalence with> or⊥. However, by analyzing the semantical meaning of the connectives, we discover that ∧ and ∨ are
‘‘classical connectives’’, that is, the forcing in α of a conjunction X ∧ Y (resp. of a disjunction X ∨ Y ) only depends on the
forcing in α of the subformulas X and Y . This means that by knowing that α 1 A holds, we can conclude α 1 A ∧ B holds
and α  A ∨ B holds iff α  B holds. To summarize, the forcing of conjunctive or disjunctive formulas in a world α depends
on the forcing in α of their subformulas. If α 1 A holds, then given a formula X , we can replace an occurrence of A in X with
⊥, provided that the occurrence of A we replace is not under the scope of a negation or an implication. As a result of these
considerations we can introduce the following rule

S, FA

S{A/⊥}, FA
Repl F

where in this case, the replacement S{A/⊥} applies to every formula B occurring in S, provided that its sign is T or F, as
follows:

• ⊥, if B is A;
• B if B is of the kind ¬C or C → D or B is a propositional variable different from A;
• C{A/⊥} ∧ D{A/⊥}, if B is of the kind C ∧ D;
• C{A/⊥} ∨ D{A/⊥}, if B is of the kind C ∨ D;

This means that the replacement in curly brackets is different from the replacement in square brackets: replacement in
curly brackets proceeds recursively and stops when a connective→ or¬ is found. For instance, X → Y [Y/⊥] produces the
wff X → ⊥, whereas X → Y {Y/⊥} produces the wff X → Y . We recall that Fc is a synonym of T¬, thus every subformula
of a Fc-formula is under the scope of the outer negation and the replacement FcB{A/⊥} leaves FcB unchanged. This explains
why the rule Repl F does not apply the replacement S{A/⊥} to the Fc-formulas occurring in S.
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The simplification rules for the connectives∧ and∨ are the boolean ones given in Appendix C. For the connectives→ and
¬, whose intuitionistic semantics differs from classical semantics, the simplification rules are given below as replacement
rules:

S
S[> → A/A]

Simp>→
S

S[A→>/>]
Simp→>

S
S[¬>/⊥]

Simp¬>
S

S[¬⊥/>]
Simp¬⊥

S
S[A→⊥/¬A]

Simp→⊥
S

S[⊥ → A/>]
Simp⊥→

where the conclusion S[a/b] of a rule of the kind S
S[a/b] applied to the premise S is obtained by replacing (in S) every

occurrence of the (sub)formula awith b. By using the semanticalmeaning of> and⊥ it is easy to prove that the replacements
affect neither the correctness nor the completeness, thus these replacements rules can be applied in any step of a tableau
proof:
Proposition 3. Let S be a set of swffs. For every substitution S[a/b] given above, the formula (a → b) ∧ (b → a) is
intuitionistically valid.
The proposition is proved in Appendix B.
In the following, we give an example of proof exploiting Simplification. We prove that the formula
((¬¬A→ A)→ (¬A ∨ A))→ (¬A ∨ ¬¬A)

is not valid. In the following proof tables, when some confusion could arise, besides the rule name we indicate the main
swff.

F(((¬¬A→ A)→ (¬A ∨ A))→ (¬A ∨ ¬¬A))

T((¬¬A→ A)→ (¬A ∨ A)), F(¬A ∨ ¬¬A)
T((¬¬A→ A)→ (¬A ∨ A)), F(¬A), F(¬¬A)

F∨

F→

Let S be {T((¬¬A→ A)→ (¬A∨ A)), F(¬A), F(¬¬A)}. Now, by applying F¬ to S taking F(¬A) as main swff we get the
following open tableau:

T((¬¬A→ A)→ (¬A ∨ A)), TA

T((¬¬> → >)→ (¬> ∨>)), TA

T((¬¬> → >)→>), TA
T>, TA

Simp→>

Bool Simplif

Repl T, TA

where with ‘‘Bool Simplif’’ we mean the well-known simplifications performed on the connectives ∨ and ∧ given in
Appendix C. By applying F¬ to S taking F(¬¬A) as main swff we get the following open tableau:

T((¬¬A→ A)→ (¬A ∨ A)), T(¬A)

T((¬> → A)→ (>∨ A)), T(¬A)

T((¬> → A)→>), T(¬A)

T>, T(¬A)
T>, FcA

T¬

Simp→>

Bool Simplif

Repl T, T(¬A)

Finally, by applying T→→ to S taking T((¬¬A→ A)→ (¬A ∨ A)) as main swff we get the sets

{T(¬¬A), Fp, T(A→ p), T(p→ (¬A ∨ A))}
and

{T(¬A ∨ A), F(¬A), F(¬¬A)}
respectively the left and the right conclusion of T→→. The right conclusion of T→→ has a closed proof table:

T(¬A ∨ A), F(¬A), F(¬¬A)

T(⊥∨ A), F(¬A), F(¬¬A)

TA, F(¬A), F(¬¬A)

TA, F(¬>), F(¬¬>),

TA, F⊥, F(¬⊥)
TA, F⊥, F>

Simp¬⊥

Simp¬>

Repl T, TA

Bool Simplif

Repl F, F(¬A)
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On the other hand, the left conclusion of T→→ has no closed proof table:

T(¬¬A), Fp, T(A→ p), T(p→ (¬A ∨ A))

Fc(¬A), Fp, T(A→ p), T(p→ (¬A ∨ A))

Fc(¬A), Fp, T(A→ p), T(p→ (⊥∨ A))

Fc(¬A), Fp, T(A→ p), T(p→ A)

TA, T(A→ p), T(p→ A)

TA, T(>→ p), T(p→>)

TA, T(>→ p), T>
TA, Tp, T>

Simp>→

Simp→>

Repl T, TA

Fc¬

Bool Simplif

Repl Fc, Fc(¬A)

T¬

Weemphasize that Simplification applied to the example above reduces both the number of branching in tableau proofs and
avoids backtracking. The proofs where Simplification is applied do not contain branches and backtracking is not necessary.
Without this optimization branching and backtracking would be necessary.

Remark 4. To reduce branching we could adopt the KE-style tableau rules [9,10], where, for instance, the T∨ rule of Fig. 1
would be replaced by the rules

S, T(A ∨ B), FA
S, TB, FA

KE-T∨1
S, T(A ∨ B), FB
S, TA, FB

KE-T∨2

As remarked in [20] these rules are a restricted form of Simplification. For instance, if we apply the KE-T∨1 to the set
{T(A∨B), FA}wederive the set {TB, FA}. On the other hand, by applying the Simplification technique to the set {T(A∨B), FA}
we obtain the set {T(B{A/⊥}), FA}. Thus, while KE-rule derives TB, Simplification derives T(B{A/⊥})whose length is shorter
than TB if A occurs in B and this, in the general case, should reduce the length of the proof. Thus, an alternative presentation
of our calculus with the simplification rules consists in inserting the bivalence rule

S
S, TA|S, FA

and removing the rules T∨ and F∧. We cannot replace T → and T¬ since classical and intuitionistic logic give different
meaning to implication and negation. Finally, we observe that the rule T→ Atom is derivable by the Simplification rules,
thus it could be removed from the tableau rules without losing the completeness.

3.2. Exploiting the symmetry of the formulas to avoid backtracking

We present a technique which allows us to reduce backtracking. Such a technique is based on the fact that sometimes
in a set two (or more) formulas H and H ′ occur having the same occurrence of the same connective in the same place. As
an example the formulas (A→ (B ∨ C))→ (B ∨ C) and (C → (B ∨ A))→ (B ∨ A) have this property. Roughly speaking,
if we can turn the former formula into the latter by a permutation τ on propositional variables, then from the information
about the satisfiability of the latter we also get information about the satisfiability of the former without performing any
further proof step. In our example by using the permutation τ defined as τ(A) = C , τ(B) = B, τ(C) = A, we can turn
the former formula into the second. Since the aim of our technique is to bound backtracking, before going into detail we
describe the ideas to bound backtracking presented in [31]. To bound the search space, [31] describes a decision procedure in
which backtracking is boundedby a semantical technique inspired by the completeness theorem. The completeness theorem
proves the satisfiability (realizability in our context) of a set S under the hypothesis that S does not have any closed proof
table. As an example, let

S = {F(A→ B), T((A→ B)→ C), FC, TD}.

From S we can define the Kripke model K(S) = 〈P,≤, ρ,〉 such that P = {ρ} and ρ  D (see Fig. 2(a)). Note that K(S)
realizes TD but K(S) does not realize S. To prove the realizability of S, the realizability of

S1 = {TA, FB, T((A→ B)→ C), TD}

and one between

S2 = {TA, Fp, T(B→ p), T(p→ C), TD}

and

S3 = {F(A→ B), TC, FC, TD}

have to be proved. Since S3 is not realizable because TC, FC ∈ S3, the realizability of S1 and S2 must be proved. From S1 we
define the Kripke model K(S1) = 〈{α},≤, α,〉, where α ≤ α, α  D and α  A such that K(S1)B S1. If we glue K(S1) above
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Fig. 2. Counter model for S = {F(A→ B), T((A→ B)→ C), FC, TD}.

Fig. 3. Counter model for S = {F(A→ B), F(C → D)}.

K(S)we get a new Kripke model K = 〈{ρ, α},≤, ρ,〉where ρ ≤ ρ, ρ ≤ α, α ≤ α, ρ  D,α  D and α  A (see Fig. 2(b)).
Since K B S, we do not need to apply T→→ to S in order to obtain S2 and the Kripke model of Fig. 2(c). In this case the work
on S2 is spared.
In the general case, that is when S contains a set of the kind

F(A1 → B1), . . . , F(An → Bn), T((C1 → D1)→ E1), . . . , T((Cm → Dm)→ Em)

withm+ n > 1, the information collected from non-closed proof tables built from a set S is used to build a Kripke model K .
The procedure described in [31] prunes the search space, since in S not all the swffs requiring backtracking are considered,
but only the swffs which, when checked, are not realized from the Kripke model at hand.
Now consider an example where the technique of [31] does not work. Let

S = {F(A→ B), F(C → D)}.

From S we can define the Kripke model K(S) = 〈P,≤, ρ,〉 such that P = {ρ} and  is the empty set (see Fig. 3(a)). K(S)
does not realize S. By applying F→ to S with F(A→ B) as the main formula we get

S1 = {TA, FB}.

The underlying model is K(S1) = 〈{α},≤, α,〉 with α  A. K(S1) glued above K(S) gives rise to a model that does not
realize F(C → D) (see Fig. 3(b)). Thus we must backtrack. We apply F→ to S with F(C → D) as the main formula. We get

S2 = {TC, FD}.

The underlying model is K(S2) = 〈{β},≤, β ,〉 such that β ≤ β and β  C realizes S2. By gluing K(S1) and K(S2) above
K(S) the resulting model K = 〈{ρ, α, β},≤, ρ,〉 such that

ρ ≤ α, ρ ≤ β, ρ ≤ ρ, α ≤ α, β ≤ β, α  A and β  C (1)

realizes S (see Fig. 3(c)). To avoid backtrackingwepropose a technique based on the observation that there exists a symmetry
between S1 and S2. As a matter of fact, we can define a permutation τ : PV → PV such that τ(C) = A and τ(D) = B. By
the definition of τ , it is easy to check that τ(S2) = S1 holds.2 Moreover, the Kripke model K(S2) = 〈{α},≤, α,′〉 such that
α ′ p iff α  τ(p), realizes S2. As a matter of fact it is easy to prove the following

Proposition 5. Let τ be a permutation on PV and let K 1 = 〈P,≤, ρ,〉 and K 2 = 〈P,≤, ρ,
′
〉 be Kripke models. If, for every

α ∈ P and for every p ∈ PV , α  p iff α ′ τ(p), then, for every α ∈ P and for every wff A, α  A iff α ′ τ(A).

Now continuing with the example we get the resulting Kripke model K by means of the following two steps:

2 Given a swff H , a set of swffs S and a proof T , τ(H), τ(S) and τ(T )mean, respectively, the swff, the set of swffs and the proof obtained by applying τ
in the obvious way. For instance, if H = T(q→ p) and the permutation τ is such that τ(q) = a and τ(p) = b, then τ(H) = T(a→ b).
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Fig. 4. Counter model for the axiom schema characterizing the logic of binary trees.

(1) We rename the worlds of K(S2) in such a way that these newworlds are disjointed from those of K(S1). We denote with
K ′(S2) the Kripke model obtained from K(S2) by renaming its worlds and defining the forcing relation accordingly. In
our example K ′(S2) = 〈{β},≤, β,′′〉where for every p ∈ PV , β ′′ p iff α ′ p.

(2) The Kripke model K = 〈{ρ, α, β},≤, ρ,〉 is obtained by gluing K(S1) and K ′(S2) above K(S) and is defined as (1) (see
Fig. 3(c)).

As another example, consider

S = {T((A→ (B ∨ C))→ (B ∨ C)), T((C → (B ∨ A))→ (B ∨ A)),
T((B→ (C ∨ A))→ (C ∨ A)), F(B ∨ (C ∨ A))},

where only a few steps are needed to obtain S starting from {FH}, where H is the axiom schema
2∧
i=0

((
Pi →

∨
j6=i

Pj

)
→

∨
j6=i

Pj

)
→

2∨
i=0

Pi

characterizing the logic of binary trees (a logic in the family of k-ary trees logics, [7], also known as Gabbay-de Jongh logics).
From S we can define the model K(S) = 〈P,≤, ρ,〉 such that P = {ρ} and  is the empty set (see Fig. 4(a)). K(S) does not
realize S. By applying T→→ to S with H = T(((A→ (B ∨ C))→ (B ∨ C)))we get

S1 = {T(B ∨ C), T((C → (B ∨ A))→ (B ∨ A)),
T((B→ (C ∨ A))→ (C ∨ A)), F(B ∨ (C ∨ A))}

and

S2 = {T((C → (B ∨ A))→ (B ∨ A)), T((B→ (C ∨ A))→ (C ∨ A)),
TA, Fp, T((B ∨ C)→ p), T(p→ (B ∨ C))}.

Since S1 is not realizable, that is, S1 has a closed proof table, to prove the realizability of S we have to prove the realizability
of S2. The set S2 defines the Kripke model K(S2) = 〈{α},≤, α,〉, where α ≤ α and α  A. Thus K(S2)B S2 holds. Now, if we
glue K(S2) above K(S)we get a newmodel K ′(S) = 〈{ρ, α},≤, ρ,〉, where ρ ≤ ρ, ρ ≤ α, α ≤ α and α  A (see Fig. 4(b)).
K ′(S) does not realize S. Thus we must backtrack twice:

(i) By applying T→→ to S with H = T((C → (B ∨ A))→ (B ∨ A))we get,

S3 = {T((A→ (B ∨ C))→ (B ∨ C)),
T((B→ (C ∨ A))→ (C ∨ A)),
TC, Fq, T((B ∨ A)→ q), T(q→ (B ∨ A))}

and

S4 = {T((A→ (B ∨ C))→ (B ∨ C)), T(B ∨ A),
T((B→ (C ∨ A))→ (C ∨ A)), F(B ∨ (C ∨ A))}.

(ii) By applying T→→ to S with H = T((B→ (C ∨ A))→ (C ∨ A))we get

S5 = {T((A→ (B ∨ C))→ (B ∨ C)),
T((C → (B ∨ A))→ (B ∨ A)),
TB, Fr, T((C ∨ A)→ r), T(r → (C ∨ A))}

and

S6 = {T((A→ (B ∨ C))→ (B ∨ C)),
T((C → (B ∨ A))→ (B ∨ A)),
T(C ∨ A), F(B ∨ (C ∨ A))}
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In a few steps we find that S4 and S5 are not realizable, hence they have closed tableau. From S3 we define the Kripke model
K(S3) = 〈{β},≤, β ,〉 where β ≤ β and β  C . K(S3) B S3. From S6 we define the Kripke model K(S6) = 〈{γ },≤, γ ,〉
where γ ≤ γ and γ  B. K(S6) B S6. Thus by gluing K(S2), K(S3) and K(S6) above K(S) we get a model K realizing S (see
Fig. 4(c)). Since we can define the permutations τ1 and τ2 such that τ1(S3) = S2 and τ2(S6) = S2 we can avoid backtracking.
Thus no proof of realizability of S3 or S6 is needed and the Kripke models realizing S3 and S6 can be obtained by applying the
permutations on the forcing relation of the Kripke model for S2.
The optimization we are discussing is based on the fact that the realizability of a swff H can be established by knowing

that a swff H ′ is realizable and there exists a function τ on propositional variables that applied to H transforms H into H ′,
that is τ(H) is syntactically equal to H ′. Such a function τ also allows us to transform the Kripke model K ′ for H ′ in a Kripke
model K for H . Thus, the problem is to find a permutation τ on propositional variables such that, given a realizable formula
H ′ and a formulaH , τ(H) = H ′. This implies thatH is realizable too and given a Kripkemodel realizingH ′ we have a way, via
τ , to build the Kripke model realizing H . The problem of finding such a τ is linear in the length of H and H ′ (as one can easily
prove analyzing the function Build Perm described below). The constraint that τ(H) is syntactically equal to H ′ could be
relaxed by considering the commutative properties of the disjunctions and conjunctions. But in this case, the search for such
a τ is exponential in the length of the formulas. To summarize, we build a permutation τ giving syntactical identity between
H and H ′ where τ is defined on the propositional variables occurring in H and H ′. Thus, in our search for a permutation τ
we disregard the commutativity of the disjunctions and conjunctions.
To avoid backtracking, Tab builds a permutation τ and uses it as follows. Let S be a set of swffs, let H and H ′ be C3-swffs

of S and let us suppose that U ′ = (S \ {H ′})c ∪R1(H ′) is realized by a Kripke model K ′. Before applying Rule(H), Tab checks
if there exists a permutation τ fromPV(S) toPV(S) such that for every V ∈ U , τ(V ) ∈ U ′, where U = (S \ {H})c ∪R1(H).
We already know that the set U ′ is realizable by the Kripke model K ′. Since we have a permutation τ , then the set U is
realized by the Kripkemodel K having the same poset as K ′ and such that for every world α and every propositional variable
p, α K ′ p iff α K τ(p). Note that, although K ′ B U ′ and there exists a permutation τ such that for every V ∈ U , τ(V ) ∈ U ′,
this does not imply that K ′ B U . Thus, we have taken a different route with respect to [31], where the realizability of U is
checked on K ′ that realizes U ′ and the two methods work in different situations.
The construction of such a τ is described below.When Build Perm is called the actual parameter τ is the empty function.

Build Perm returns a permutation or FAIL (if Build Perm does not build the permutation):
Function Build Perm (H , H ′, τ )
1. IfH andH ′ are propositional variables then if τ(H) and τ(H ′) are not defined, then Build Perm sets τ(H) = H ′, τ(H ′) = H
and returns τ ; otherwise Build Perm returns FAIL;
2. If H and H ′ are respectively of the kind¬U and¬U ′, then Build Perm returns the result of the call Build Perm (U , U ′, τ );
3. If H and H ′ are respectively of the kind UL � UR and U ′L � U

′

R, with� ∈ {→,∧,∨}, then let τ = Build Perm(UL,UR, τ ). If
τ is not FAIL, then Build Perm returns the result of the call Build Perm(UR,U ′R, τ ). In the other cases Build Perm returns
FAIL.
End Function Build Perm
If Build Perm returns a permutation, then if for every V ∈ U , τ(V ) ∈ U ′, then τ is used. Otherwise if Build Perm

does not return a permutation or the previous check fails, then PITP considers that no permutation exists and solves U .
Analogously for C4-swffs. Since our search for a permutation is narrow, many of them are disregarded. Thus at present this
optimization gives advantages only in relation to the SYJ209 family formulas of ILTP v1.1.2. library (see Figs. 8 and 9, where
this optimization is referred to Perm). Build Perm treats every component (connective or variable) ofH andH ′ atmost once,
it is easy to see that Build Perm executes in linear time in the length of the input formulas.

Remark 6. We could also define a permutation to prove that a set is not realizable. As a matter of fact, if S is not realizable
and there exists a permutation τ such that τ(S) = S ′, then S ′ is not realizable. Thus, given a set S and a C2 or C6-swff H ∈ S,
if (S \ {H}) ∪R1(H) is closed and there exists a permutation τ such that τ((S \ {H}) ∪R1(H)) = (S \ {H}) ∪R2(H), then
(S \ {H}) ∪R2(H) is not realizable and the tableau proof for (S \ {H}) ∪R1(H) can be translated via τ into a tableau proof
for (S \ {H}) ∪R2(H) (see Points 4 and 7 of Tab). As a trivial application, consider a valid wff H(p), where p = {p1, . . . , pn}
are all the propositional variables occurring in H . To prove that {F(H(p) ∧ H(q))} is closed, it is sufficient to prove, by an
application of F∧, that {FH(p)} is closed and that there exists a permutation for which {FH(p)} = τ({FH(q)}).

3.3. Further optimizations

The notions given in the following are used to formalize the two optimizations described in this section. The idea behind
both the optimizations is that if the information in a set of swffs S allows us to define a classical interpretation fulfilling the
formulas in S, then the set S is also intuitionistically satisfiable.
Now, our aim is to define a classical interpretation based on the swffs of a set S. Given a set of swffs S, the signed atoms of S

are the elements of the set δS = {H|H ∈ S andH is a signed atom}. Given δS , we denotewith σδS the (classical) interpretation
defined as follows: if Tp ∈ δS , then σδS (p) = true, σδS (p) = false otherwise. Given a classical interpretation σ , (i) σ B TA iff
σ |= A; (ii) σ B FA and σ B FcA iff σ 6|= A. Moreover, given a set of swffs S, σ B S iff for every H ∈ S, σ B H .
In order to bound branching, Tab treats in a particular way the non-atomic formulas where intuitionistic and classical

interpretation coincide (by the Kripke semantics, these formulas are those containing only conjunctions and disjunctions).
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We say that a wff or a swff can be classically evaluated (cle-wff and cle-swff for short) iff conjunctions and disjunctions are
the only connectives occurring in it.
Let S be a set of swffs such that every possible Simplification rule has been applied to it. In this case the only propositional

variables occurring in a cle-swff are those that do not occur as swffs in S. Thuswe can conclude that the F-cle-swffs occurring
in S are realized by σδS . On the other hand, σδS does not realize the T-cle-swffs and when a related rule is applied to a T-cle-
swff H , the non-atomic swffs inRi(H) (i ∈ {1, 2}) are not realized by the new underlying model.
The above considerations about cle-swffs imply that completeness is not lost ifwedisregard the cle-swffs that are realized

by the model underlying S (see Point 4 of the function Tab and the Completeness Lemma for the details). As an example,
consider the set of swffs

S = {T((B→ A)→ (A ∧ (B ∧ C))),
T((B→ C)→ ((C → B)→ (A ∧ (B ∧ C)))),
T((C → A)→ ((A→ C)→ (A ∧ (B ∧ C)))),
F(A ∧ (B ∧ C))}.

The swff F(A ∧ (B ∧ C)) is realized by σδS , thus Tab disregards such a swff and chooses one of other swffs in S. Note that
Basic Tabwould consider F(A∧(B∧C)), thus giving rise to a bigger proof table. This technique is our adaptation of regularity
[17], a technique well known to people engaged in classical tableaux theorem proving.
Now we come to the last optimization. When neither a C1 nor a C2-rule apply to a set of formulas S, Tab checks if the

Kripke model coinciding with the classical interpretation σδS realizes S (formally, Tab checks if σδS B S holds). In this case,
since S is realizable, Tab does not need to go on with a useless search for a closed proof table (in Section 5 this optimization
is referred to as noInv).
The following algorithm Tab is obtained from Basic Tab by inserting all the optimizations given above. Given a set S of

swffs, Tab(S) returns either a closed proof table for S or NULL (if there exists a Kripke model realizing S). Some instructions
‘‘return NULL’’ are labelled with r1, . . . , r6. In the Completeness Lemma we refer to such instructions by means of these
labels.
Function Tab (S)
1. If S is a closed set, then Tab returns the proof S;
2. Let S ′ =Simplification(S). If S ′ 6= S, then let π = Tab(S ′). If π is a proof, then Tab returns S

π
Simp, otherwise Tab returns

NULL;

3. If a C1-rule applies to S, then let H be a C1-swff. If Tab((S \ {H}) ∪R1(H)) returns a proof π , then Tab returns the proof
S
π
Rule(H), otherwise Tab returns NULL (r1);

4. If a C2-swff H different from a F-cle-swff belongs to S, then let π1 = Tab(S \ {H} ∪R1(H)). If π1 is NULL, then Tab returns
NULL. Otherwise, let π2 = Tab(S \ {H} ∪ R2(H)). If π2 is a proof, then Tab returns the proof S

π1 | π2
Rule(H), otherwise (π2 is

NULL) Tab returns NULL;

5. If a C3 or C4-rule applies to S, then Tab proceeds as follows:
5.0. If σδS B S, then Tab returns NULL (r2).
5.1. If S contains exactly one F-swff H and H is a C3-swff, then if Tab((S \ {H})∪R1(H)) returns a proof π , then Tab returns
the proof S

π
Rule(H), otherwise Tab returns NULL;

5.2. If S does not contain any F-swff, then let H be any C4-swff and let π1 = Tab(S \ {H} ∪R1(H)). If π1 is NULL, then Tab
returns NULL. Otherwise, let π2 = Tab(S \ {H} ∪R2(H)). If π2 is a proof, then Tab returns the proof S

π1 | π2
Rule(H), otherwise

(π2 is NULL) Tab returns NULL;

5.3. Let {H1, . . . ,Hn} be all the C3-swffs in S. For i = 1, . . . , n, the following instructions are iterated: if for every swff
Hj (j ∈ {1, . . . , i − 1}) there is no permutation τ such that (S \ {Hj})c ∪ R1(Hj) = τ((S \ {Hi})c ∪ R1(Hi)), then let
π = Tab((S \ {Hi})c ∪R1(Hi)). If π is a proof, then Tab returns the proof Sπ Rule(Hi);
5.4. Let {H1, . . . ,Hn} be all the C4-swffs in S. For i = 1, . . . , n, the following Points (5.4.1) and (5.4.2) are iterated.
(5.4.1) If for every swffHj (j ∈ {1, . . . , i−1}) there is no permutation τ such that (S \{Hj})∪R2(Hj) = τ((S \{Hi})∪R2(Hi)),
then letπ2,i = Tab((S \{Hi})∪R2(Hi)). Ifπ2,i is NULL, then Tab returns NULL (r3). If for every swffHj, with j ∈ {1, . . . , i−1},
there is no permutation τ such that (S \ {Hj})c ∪R1(Hj) = τ((S \ {Hi})c ∪R1(Hi)), then if Tab((S \ {Hi})c ∪R1(Hi)) returns
a proof π1, Tab returns the proof S

π1 | π2,i
Rule(Hi).

(5.4.2) If Point (5.4.1) does not hold, then there exists a permutation τ and a swff Hj (j ∈ {1, . . . , i − 1}) such that
(S \ {Hj}) ∪ R2(Hj) = τ((S \ {Hi}) ∪ R2(Hi)). If for every swff Hu, with u ∈ {1, . . . , i − 1}, there is no permutation τ
such that (S \ {Hu})c ∪R1(Hu) = τ((S \ {Hi})c ∪R1(Hi)), then if Tab((S \ {Hi})c ∪R1(Hi)) returns a proof π1, Tab returns
the proof S

π1 | τ−1(π2,j)
Rule(Hi).

If in Points (5.3) and (5.4) Tab does not find any closed proof table, then Tab returns NULL (r4).
6. If a C5-rule applies to S, then let H be a C5-swff. If Tab((S \ {H})c ∪R1(H)) returns a proof π , then Tab returns the proof
S
π
Rule(H), otherwise Tab returns NULL;
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Fig. 5. ft Prolog, ft C, LJT, STRIP and PITP on ILTP v1.1.2 formulas.

7. If a C6-rule applies to S, then let H be a C6-swff. Let π1 = Tab((S \ {H})c ∪R1(H)). If π1 is NULL, then Tab returns NULL.
Otherwise, let π2 = Tab((S \ {H})c ∪ R2(H)). If π2 is a proof, then Tab returns S

π1 | π2
Rule(H), otherwise (π2 is NULL) Tab

returns NULL (r5);
8. If none of the previous points apply, then Tab returns NULL (r6).
end function Tab.
PITP implements function Tab. Regarding the strategy devised above one canwonder if performance improveswhen the

order of Points 5.4.1 and 5.4.2 is swapped (this corresponds to visiting the non-invertible branch first). Since the invertible
rules are applied before the non-invertible ones, there are clues that the choice made by function Tab is wise. Besides PITP,
we have developed PITPINV a variant of PITP that visits the non-invertible branch of the C4-rules first. Despite the fact that
PITPINV outperforms the provers on the formulas of the ILTP v1.1.2 library (see Fig. 5), on randomly generated formulas its
performance is poor. Thus we focus mainly on PITP.

4. Completeness

In order to prove the completeness of Tab, we prove that given a set of swffs S, if the call Tab(S) returns NULL, then we
have enough information to build a model K = 〈P,≤, ρ,〉 such that ρ B S. To prove the proposition we need to introduce
the functions ]→ and deg defined as follows:

• if p is an atom, then ]→(p) = 0;
• ]→(A ◦ B) = ]→(A)+ ]→(B)with ◦ ∈ {∧,∨};
• ]→(¬A) = ]→(A);
• ]→(A→ B) = ]→(A)+ ]→(B)+ 7;

• deg(⊥) = 1 and deg(>) = 1;
• if p is a propositional variable, then deg(p) = 2;
• deg(A ∧ B) = deg(A)+ deg(B)+ 2;
• deg(A ∨ B) = deg(A)+ deg(B)+ 9;
• deg(A→ B) = deg(A)+ deg(B)+ ]→(A)+ 1;
• deg(¬A) = deg(A)+ 1;
• deg(S) =

∑
H∈S deg(H).

It is easy to show that if S ′ is obtained from a set of swffs S by a recursive call of Tab (S), then deg(S ′) < deg(S).

Lemma 7 (Completeness). Let S be a set of swffs and suppose that Tab(S) returns the NULL value. Then, there is a Kripke model
K = 〈P,≤, ρ ,〉 such that ρ B S.

Proof. The proof is by induction on the complexity, deg(S), of S.
Basis: if deg(S) = 0, then S contains atomic swffs only. Tab(S) carries out the instruction labeled (r6). Moreover, S does
not contain sets of the kind {Tp, Fp}, {Tp, Fcp}, {T⊥}, {F>} and {Fc>}. Let K = 〈P,≤, ρ,〉 be the Kripke model such that
P = {ρ} and ρ  p iff Tp ∈ S. It is easy to show that ρ B S.
Step: Let us assume by induction hypothesis that the proposition holds for all sets S ′ such that deg(S ′) < deg(S). We prove
that the proposition holds for S by inspecting all the possible cases where the procedure returns the NULL value. We prove
some cases.
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Case 1: the instruction labeled r1 has been performed. By induction hypothesis there exists a Kripke model K = 〈P,≤, ρ,〉
such that ρ B (S \ {H})∪R1(H), with H ∈ C1. We prove ρ B H by proceeding according to the cases of H . If H is of the kind
T(A∧B), then by induction hypothesis ρB {TA, TB}, thus ρ  A and ρ  B, and therefore ρ  A∧B. This implies ρBT(A∧B).
The other cases for H ∈ C1 are similar.
Case 2: the instruction labeled r2 has been performed. Thus σδS B S holds. We use σδS to define a Kripke model K with a single
world ρ such that ρ  p iff σ(p) = true. Since ρ behaves as a classical interpretation, ρ B S holds.
Case 3: the instruction labeled r3 has been performed. By induction hypothesis there exists a model K such that ρB (S \{Hi})∪
R2(Hi), where Hi ∈ C4. Let us suppose that H is of the kind T((A→ B)→ C), thus ρ B TC and this implies ρ BHi. The proof
goes similarly if Hi is of the kind T(¬A→ B).
Case 4: the instruction labeled r4 has been performed. This implies that for every H ∈ S ∩ Ci (i ∈ {3, 4}), we have two cases:
(a) Tab((S \ {H})c ∪R1(H)) = NULL, thus by induction hypothesis there exists a Kripke model KH = 〈PH ,≤H , ρH ,H〉 such
that ρH B (S \ {H})c ∪ R1(H); (b) there exists a permutation τ from PV(S) to PV(S) and a swff H ′ ∈ S ∩ Ci such that
Tab((S \ {H ′})c ∪ R1(H ′)) = NULL and (S \ {H ′})c ∪ R1(H ′) = τ((S \ {H})c ∪ R1(H)). Thus by Point (a) applied to H ′,
there exists a Kripke model KH ′ = 〈PH ′ ,≤H ′ , ρH ′ , H ′〉 such that ρH ′ B (S \ {H

′
})c ∪R1(H ′). By using τ we can translate KH ′

into a model KH = 〈PH ,≤H , ρH ,H〉, where PH = PH ′ , ≤H=≤H ′ , ρH = ρH ′ and for every world α ∈ PH , if p ∈ PV(S), then
α H τ(p) iff α H ′ p. By definition of KH , it follows KH B (S \ {H})c ∪R1(H));

Let K = 〈P,≤, ρ,〉 be a Kripke model defined as follows:

P =
⋃

H∈S∩(C3
⋃

C4)

PH ∪ {ρ};

≤ =

⋃
H∈S∩(C3

⋃
C4)

≤H ∪{(ρ, α)|α ∈ P};

 =
⋃

H∈S∩(C3
⋃

C4)

H ∪{(ρ, p)|Tp ∈ S}.

By construction of K , ρ B S.
Case 5: the instruction labeled r5 has been performed. We point out that S ∩C1 = S ∩C2 = S ∩C3 = S ∩C4 = S ∩C5 = ∅. By
induction hypothesis there exists amodel KH = 〈PH ,≤H , ρH ,H〉 such thatρHB(S\{H})c∪R2(H), whereH = Fc(A∧B). Let
K = 〈P,≤, ρ,〉 be a Kripke model defined as follows: P = PH ∪ {ρ},≤ = ≤H ∪{(ρ, α)|α ∈ P}, =H ∪{(ρ, p)|Tp ∈ S}.
By the construction of K , ρ B S, in particular, by induction hypothesis ρH  ¬B and therefore ρH  ¬(A ∧ B). This implies
ρ B Fc(A ∧ B).
Case 6: the instruction r6 has been carried out. In this case S contains atomic swffs, swffs of the kind T(p→ A) with Tp /∈ S
and F-cle-swffs. Let K = 〈P,≤, ρ,〉 be the Kripke model such that P = {ρ} and ρ  p iff Tp ∈ S. It is easy to show that
ρ B S. As a matter of fact, if T(p → A) ∈ S, since Tp /∈ S, ρ 1 p then ρ  p → A. Note that all the propositional variables
occurring in the F-cle-swffs do not occur in S as swffs. This implies that every propositional variable occurring in a F-cle-swff
is not forced in ρ. Since cle-swffs contain conjunctions and disjunctions only, it immediately follows that ρ realizes all the
F-cle-swffs occurring in S. �

By Lemma 7 we immediately get the completeness of Tab.

Theorem 8 (Completeness). If A ∈ Int, then Tab({FA}) returns a closed proof table starting from FA.

5. Implementation and results

We have implemented Tab as an iterative procedure in C++. In the following we emphasize some issues of the
implementation of PITP. The procedure Simplification is implemented as an iterative procedure. Differently from the
description given in Section 3, the procedure Simplification is called after the application of a rule. The actual parameters
of Simplification are two sets of swffs: the former, we call it S, is (one of) the conclusion(s) of the rule. The latter, we call it
New, contains the new swffs introduced in S by the application of the rule. For every swff H in New, Simplification applies
the related replacement rule to S. If H can be replaced in S, then after the replacement the simplifications are performed. If
new swffs are obtained, then they are added to the set New. Simplification stops when all swffs in the set New have been
considered for replacement. We do not go into the details of the data structures we have introduced in order to minimize
the time required to perform replacements and simplifications. We only emphasize that our formulas are implemented as
graphs, inwhich if a formula A occurs as subformula of B two ormore times, then B has two ormore pointers towards A (thus
we represent more occurrences of the same (sub)formula only once). Moreover every (sub)formula A has pointers towards
all the formulas B having A as subformula. This helps when a formula A has to be replaced in a set a swffs. As a matter of
fact, the replacement of a T and Fc-swff is immediate. This organization of the data structures implies that the simplification
rules are implemented in a bottom-up fashion, visiting the graph in an upward motion.
Our main source regarding the results is the site of ILTP library. Fig. 5 is built taking the detailed results related to

each prover available from http://www.cs.uni-potsdam.de/ti/iltp/results.html. The results show that PITP and PITPINV

http://www.cs.uni-potsdam.de/ti/iltp/results.html
http://www.cs.uni-potsdam.de/ti/iltp/results.html
http://www.cs.uni-potsdam.de/ti/iltp/results.html
http://www.cs.uni-potsdam.de/ti/iltp/results.html
http://www.cs.uni-potsdam.de/ti/iltp/results.html
http://www.cs.uni-potsdam.de/ti/iltp/results.html
http://www.cs.uni-potsdam.de/ti/iltp/results.html
http://www.cs.uni-potsdam.de/ti/iltp/results.html
http://www.cs.uni-potsdam.de/ti/iltp/results.html
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Fig. 6. Provable ILTP v1.1.2 SYJ-formulas solved by classes.

Fig. 7. Refutable ILTP v1.1.2 SYJ-formulas solved by classes.

outperform the known theorem provers on ILTP v1.1.2 library. Within 10 min PITP decides 238 out of 274 formulas and
PITPINV decides 262 out of 274 formulas of ILTP v1.1.2.3
The library divides the formulas into several families. Every family contains formulas sharing the same pattern of

increasing complexity. In Figs. 6 and 7 for every family we report the index of the largest formula which every prover is
able to decide within 600s CPU time and in parenthesis the CPU time necessary to solve such a formula (some families of
ILTP v1.1.2 are missing because they are decided within 1s by all provers). PITPINV solves all the formulas in all families
except the formulas in SYJ202 + 1 family (the pigeon formulas). PITP solves all the formulas in five families, ft-C solves all
the formulas of SYJ212 + 1 and it is the best prover in this family, LJT solves all the formulas of SYJ205 + 1 and it is the
best prover in this family (ex aequo with PITP); finally, STRIP solves all the formulas in two families but in no class is it
the best prover. PITP and PITPINV are the best provers of ILTP v1.1.2 library. Although PITPINV outperforms PITP on the ILTP
v1.1.2 formulas, some experiments on randomly generated formulas show that PITP has the best performance. This suggests
that the strategy given by the completeness theorem, where the invertible branch is explored first (PITP strategy), is, in the
general case, better than the one where the non-invertible branch is explored first (PITPINV strategy). For this reason, we
will consider PITP as our main prover and hereafter we refer to its performance.
In Figs. 10 and 11 we compare the number and, in parenthesis, the percentage of randomly generated formulas decided

by PITP and STRIP within ten minutes CPU time (since the performance of ft-C was much worse than STRIP and PITP, the
results of ft-C have been omitted; the results of LJT have been omitted since run-time errors ranged, depending on the type of
simulation, from 7% to 33%). All the results refer to randomly generated formulas containing one thousand connectives and
decided on an Intel(R) Xeon(TM) CPU 3.00 GHz, 2048 kB cache size and 2 GB RAM. Fig. 10 is related to formulas containing
respectively one, ten and one hundred variables. Fig. 11 is related to formulas of the implicative fragment. We point out that
the performances of PITP on the formulas of the implicative fragment containing one (respectively one hundred) variable(s)
are comparable with the performances on the propositional formulas containing one (respectively one hundred) variable(s).
In Figs. 8 and 9 we compare different optimizations and give the results of their effectiveness on some classes of ILTP

v1.1.2 formulas (in Fig. 8 in brackets we give the CPU time, whereas in Fig. 9 in square brackets we give the number of sets
of swffs built by our provers in order to solve the formula). We run PITP on a Xeon 3.2 GHz machine with 2 MB cache and
2 GB Ram (note that our computer is different from the one used to obtain the results in http://www.cs.uni-potsdam.de/ti/
iltp/results.html, thus the results in Figs. 6 and 7 should not be compared with the ones of Figs. 8 and 9).
Among the optimizations the most effective is Simp. When Simp is not active (see the column on the far right) the

performances dramatically decrease in many families. With regard to the other optimizations, there are some advantages

3 The line errors refers to run-time errors. PITP and PITPINV give one error parsing a 4.98 GB formula.

http://www.cs.uni-potsdam.de/ti/iltp/results.html
http://www.cs.uni-potsdam.de/ti/iltp/results.html
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Fig. 8. Time comparison between PITP optimizations on ILTP v1.1.2 SYJ-formulas.

Fig. 9. Generated set of swffs comparison between PITP optimizations on ILTP v1.1.2 SYJ-formulas.

in some classes and disadvantages in others. The optimization Perm gives advantages only on the SYJ209 family formulas
of ILTP. We remark that Perm gives advantages also on formulas characterizing finite k-ary trees quoted in the previous
Section 3.2. The optimization noInv does not provide benefits when applied to ILTP formulas. Experiments on random
formulas show that Simp reduces the cases where noInv is applied but does not substitute it. As a matter of fact, if we
consider the set S = {T(A → B)}, where A is an implicative formula which is not realized by the classical interpretation
giving false value to every propositional variable and B is a classical contradiction, then if noInv is used we can immediately
conclude that S is realizable. Without noInvwe have to apply the rule T→→ and develop both the sets in its conclusion. A
simulation on five thousand formulas containing two thousand connectives and one hundred variables gave the following
results: PITP with noInv not active did not decide 88 formulas within ten minutes CPU time, whereas PITP with noInv
active did not decide 68 formulas. On the 4912 formulas decided in both cases, PITP with noInv not active took 11324 s,
whereas PITP with noInv active took 9238 s. Finally a simulation on five thousand formulas of the implicative fragment
containing two thousand connectives and one hundred variables gave the following results: PITP with noInv not active
did not decide 120 formulas within ten minutes CPU time, whereas PITP with noInv active did not decide 112. On the
4480 formulas decided in both cases, PITP with noInv not active took 5665 s, whereas PITP with noInv active took
3115 s.
The memory usage can be summarized as follows: formula SYJ208 + 1.020 requires 700 MB and the increasing factor

between two subsequent formulas of the family is 1.3; formula SYJ212 + 1.020 requires 133 MB and the increasing factor
between two subsequent formulas of the family is 1.98; formula SYJ206+ 1.020 requires 110 MB and the increasing factor
between two subsequent formulas of the family is two. In all other cases memory consumption is under 25 MB with an
increasing factor less than 1.55. Moreover, we remark that PITP never went out of memory during the experiments on
random formulas.
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Fig. 10. PITP and STRIP on random formulas.

Fig. 11. PITP and STRIP on implicative random formulas.

6. Conclusions

PITP and PITPINV are the fastest among the theorem provers for propositional intuitionistic logic in the ILTP Library.
The optimizations implemented in PITP are of paramount importance in order to achieve the performances described in
this paper. As a matter of fact, in an earlier version PITP only decided 202 formulas of the ILTP Library; later the version
described in [4] decided 215 formulas. Besides PITP, here we describe a variant called PITPINV. Both PITP and PITPINV
implement the same optimizations and differ on the strategy employed in the application of the rules. PITP decides 238
formulas and implements the search strategy that visits the invertible branch of T→→ and T→ ¬ first. PITPINV decides
262 formulas and implements a search strategy which visits the non-invertible branch of T→→ and T→ ¬ first. Despite
the result on the formulas on the ILTP Library, the performances of PITPINV are worse than the performances of PITP on
randomly generated formulas.
As regards the optimizations the most effective is Simplification. This optimization is an adaptation of the one described

in [20] for classical and modal logics. As it is in the tradition of our group (see e.g. [24,26]), we stressed the classical content
of intuitionistic logic in order to simplify as much as possible its proof theoretic treatment. Our adaptation to intuitionistic
logic is related to the semantical meaning of the F signed formulas since, unlike classical logic, in the intuitionistic case F
signed formulas are not equivalent to⊥.
Also, we remark that the analysis of the optimizations are developed by means of model theoretic techniques based on

the Kripke semantics of propositional intuitionistic logic.
In the future we plan to apply all the optimizations of PITP to IPTP, a parallel version of PITP where we use the technique

of threads to manage parallel computation on a 128 CPU machine; extensions to other intermediate propositional logics
should not present particular difficulties (see e.g. [3]). Finally, first-order extension will require, in our opinion, much work
including suitable adaptations of well-established first-order classical techniques.
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Appendix A. Proof of Proposition 1

If S is closed because the first condition holds, then for some formula A, {TA, FA} ⊆ S or {TA, FcA} ⊆ S holds. By the
meaning of the signs and the definition of the forcing relation in Kripke models, the claim immediately follows. If S is closed
because the second condition holds, then by definition of forcing of> and⊥ the claim immediately follows. �

Appendix B. Proof of Proposition 3

We prove only some meaningful cases. Let α be a world of a Kripke model.
Case > → A/A. We prove ((> → A) → A) ∧ (A → (> → A)) is valid. Let α  > → A. Since in every world β of every
Kripke model β  > holds, immediately α  A follows. The case α  A→ (>→ A) is immediate.
Case S[¬⊥/>]. We prove (¬⊥ → >)∧ (>→ ¬⊥) is valid. The only interesting case is>→ ¬⊥. Since there is no world
forcing⊥, we immediately deduce that in every world of every Kripke model ¬⊥ is forced (please note that the result can
be also obtained by noting that¬⊥ is equivalent to⊥→ ⊥which is an intuitionistic formula)
Case S[⊥ → A/>]. We prove ((⊥ → A) → >) ∧ (> → (⊥ → A)) is valid. The only interesting case is > → (⊥ → A).
Since ⊥ is not forced in any Kripke world, we immediately deduce that ⊥ → A is forced in every world of every Kripke
model and then>→ (⊥→ A) is valid. �

Appendix C. Boolean simplification rules

Below we give the Boolean simplification rules that in the previous examples are denoted by Bool Simplif.

S
S[A ∨⊥/A]

S
S[⊥ ∨ A/A]

S
S[A ∨>/>]

S
S[> ∨ A/>]

S
S[A ∧⊥/⊥]

S
S[⊥ ∧ A/⊥]

S
S[A ∧>/A]

S
S[> ∧ A/A]
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