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Abstract

In this thesis we investigate the applicability of proof planning to automate the veri-
fication of hardware systems. Proof planning is a meta-level reasoning technique
which captures patterns of proof common to a family of theorems. It contributes
to the automation of proof by incorporating and extending heuristics found in the
Ngthm theorem prover and using them to guide a tactic-based theorem prover in
the search for a proof. We have addressed the automation of proof for hardware
verification from a proof planning perspective, and have applied the strategies and
search control mechanisms of proof planning to generate automatically customised

tactics which prove conjectures about the correctness of many types of circuits.

The contributions of this research can be summarised as follows: (1) we show by
experimentation the applicability of the proof planning ideas to verify automatic-
ally hardware designs; (2) we develop and use a methodology based on the concept
of proof engineering using proof planning to verify various combinational and se-
quential circuits which include: arithmetic circuits (adders, subtracters, multipli-
ers, dividers, factorials), data-path components (arithmetic logic units, shifters,
processing units), and a simple microprocessor system; and (3) we contribute to
the profiling of the Clam proof planning system by improving its robustness and

efficiency in handling large terms and proofs.

In verifying hardware, the user formalises a problem by writing the specific-
ation, the implementation and the conjecture, using a logic language, and asks
Clam to compose a tactic to prove the conjecture. This tactic is then executed
by the Oyster prover. To compose a tactic, Clam uses a set of methods which
implement heuristics that specify general-purpose tactics, and Al planning mech-
anisms. Search is controlled by a type of annotated rewriting called rippling, which
controls the selective application of rewrites called wave rules. We have extended
some of the Clam’s methods to verify circuits. The size of the proofs were orders
of magnitude larger than the proofs that had been attempted before with proof
planning, and are comparable with similar verification proofs obtained by other

systems, but using fewer lemmas and less interaction.

Proof engineering refers to the application of formal proof for system design
and verification. We propose a proot engineering methodology which consists of
partitioning the automation of formal proof into three different kind of tasks:
user, proof and systems tasks. User tasks have to do with formalising a particular
verification problem and using a formal tool to obtain a proof. Proof tasks refer
to the tuning of proof techniques (e.g. methods and tactics) to help obtain a
proof. Systems tasks have to do with the modification of a formal tool system.

By making this distinction explicit, proof development is more manageable. We



i

conjecture that our approach is widely applicable and can be integrated into formal
verification environments to improve automation facilities, and be utilised to verify

commercial and safety-critical hardware systems in industrial settings.
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Chapter 1

Introduction

1.1 Overview

This thesis is about the application of proof planning to the automation of formal
verification in the hardware domain. Given an implementation of a circuit and a
specification of its behaviour, formal verification shows that the implementation
meets the specification. The specification and the implementation are expressed
as formulae in a formal system, the relationship between the specification and the
implementation is stated by a conjecture and the proof that the implementation
meets the specification is obtained by using a calculus associated to the formal

system.

Proof planning is a meta-level reasoning technique for the global control of
search in automatic theorem proving. A proof plan captures common patterns
of reasoning in a family of similar proofs and is used to guide the search for
new proofs in the family. Proof planning combines two standard approaches to
automated reasoning: the use of tactics and the use of meta-level control. The
meta-level control is used to build large complex tactics from simpler ones and
also abstracts the proof, highlighting its structure and the key steps. The main
component of proof planning is a collection of methods. A method is a specification

of a tactic. A tacticis a program that applies one or more rules of inference during
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a proof. A method consists of an input formula (a sequent), preconditions, output
formulae, postconditions, and a tactic. A method is applicable if the goal to be
proved matches the input formula of the method and the method’s preconditions
hold. The preconditions, formulated in a meta-logic, specify syntactic properties
of the input formula and contain heuristics to constrain search. Using the input
formula and preconditions of a method, proof planning can predict if a particular
tactic will be applicable without actually running it. The output formulae (there
may be none) determine the new subgoals generated by the method and give a
schematic description of the formulae resulting from the tactic application. The
postconditions specify further syntactic properties of these formulae. For each
method there is a corresponding general-purpose tactic associated to that method.
Methods can be combined at the meta-level in the same way tactics are combined
using tacticals. The process of reasoning about and combining methods is called
proof planning. When planning is successtul it produces a tree of methods, called a
proof plan. A proof plan yields a composite tactic, which is built from the tactics
associated with each method, custom designed to prove the current conjecture.
Proof plan construction involves search. However, the planning search space is
typically many orders of magnitude smaller than the object-level search space. One
reason is that the heuristics represented in the preconditions of the methods ensure
that backtracking during planning is rare. Another reason is that the particular
methods used have preconditions which strongly restrict search, though in certain
domains they are very successful in constructing proofs. There is of course a
price to pay: the planning system is incomplete. However, this has not proved a
serious limitation of the proof planning approach in general [Bundy et al 91] nor
in our work where proof plans were found for all experiments we tried. The plan
formation system upon which our work is built is called Clam. Methods in Clam
specify tactics which build proofs for a theorem proving system called Oyster,

which implements a type theory similar to Nuprl’s [Bundy et al 90].

A number of methods have been developed in Clam for inductive theorem
proving and we used these extensively to prove theorems about parameterised

hardware designs. Induction is particularly difficult to automate as there are a
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number of search control problems including selection of an induction rule, de-
ciding a case split, possible generalisations and lemma speculation, etc. It turns
out, though, that many induction proofs have a similar shape and a few tactics
can collectively prove a large number of the standard inductive theorems. The
induction strategy ind_strat is a method for applying induction and handling
subsequent cases. After the application of induction, the proof is split into one or
more base and step cases. The sym_eval method attempts to solve the base case
using simplification and propositional reasoning. If necessary, another induction
may be applied. The step_case method consists of two parts: rippling and fertil-
isation. The first part is implemented by the ripple method. Rippling is a kind
of annotated rewriting where annotations are used to mark differences between
the induction hypothesis and conclusion. Rippling applies annotated rewrite rules
(called wave-rules which are applied with the wave method) which minimise these
differences. Rippling is goal directed and manipulates just the differences between
the induction conclusion and hypothesis while leaving their common structure pre-
served; this is in contrast to rewriting based on normalisation, which is used in
other inductive theorem provers such as Ngthm [Boyer & Moore 79]. Rippling also
involves little search, since annotations severely restrict rewriting. The second part
of the step case, fertilisation, can apply when rippling has succeeded (e.g. when
the annotated differences are removed or moved ‘out of the way’, for example, to
the root of the term). The fertilise method then uses the induction hypothesis

to simplify the conclusion.

The research reported in this thesis investigates how all these features of proof
planning can be transported and extended to deal with the multiple problems that

arise in automating hardware verification.
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1.2 Motivation

Fabrication of hardware systems has become an increasingly difficult activity due
to the growing complexity of the tasks the systems perform. Detecting errors after
a commercial circuit has been fabricated may represent important economic losses
for a hardware company. A recent example of this situation is the design error in
the division algorithm of Intel’s Pentium microprocessor that was detected after
fabrication and when the product was in the market. Simulation, the traditional
technique used to test circuit designs cannot validate all of the enormous amount
of inputs that exist in an typical circuit because of the combinatorial explosion of
the search space. Formal methods promise to overcome this problem by developing
mathematical proofs of correctness which are independent of the size of the circuit,
increasing in this way the confidence in the correctness of the hardware designs.
For instance, formal verification has been used post hoc to detect the error in the
division algorithm of the Pentium microprocessor [Moore et al 96,Ruef et al 96].
Although mathematical proof is a desirable feature, formal methods face their own
difficulties which prevent them from being widely accepted and used by industry
in a regular way [Saiedian 96]. Interest of industry in formal methods has centred
mainly on ‘push-button’ systems based on model checking where weak decidable
logics and efficient algorithms are used for problem specification and verification,
but these systems are limited and cannot be applied to many important classes of
problems such as those requiring hierarchical representations. On the other hand,
systems based on more expressive logics are often resisted because translating the
specification and the implementation requires expertise in logic, proof construction
is not automated, and most companies are not willing to invest time and money in
technologies which are still in an embrionic stage as in the case interactive theorem

proving.

To increase the acceptance of formal methods in domains with undecidable
verification problems, we must automate proof construction as much as is prac-

tically possible [Rushby 96]. One of the main problems to overcome is the large



Chapter 1. Introduction 5

search space for proofs. Even when semi-decision procedures like resolution are
available, completely automated theorem proving is not viable because such tech-
niques are too general and cannot exploit structure in the problem domain to
restrict search. Heuristics, combined with user interaction to overcome incom-
pleteness have become a useful resource. One example of this is the system
NQTHM [Boyer & Moore 88], which uses a fixed set of heuristics to automate
the construction of proofs by induction. Proof construction is automated but
sometimes the user must interrupt the prover and suggest lemmas to stop it from
exploring an unsuccessful branch. A second example is embodied by tactic-based
proof development systems like HOL, LAMBDA, PVS, and NUPRL (described
in section 2.4), where users themselves raise the level of automation by writing
tactics for particular problem domains. Incompletenessis addressed by interactive
proof construction, whereby, instead of writing a ’super-tactic’ which works in all
cases, users interactively combine tactics to solve the problem at hand and directly

provide heuristics.

Our motivation comes from the desire to combine the best of these two ap-
proaches, providing automation comparable to systems like NQTHM and offering
increased flexibility by supplying heuristics and new domain specific proof proced-
ures like in the tactic approach. Proof planning attempts to automate decisions like
the choice of induction scheme and variables, case splits, generalisations, lemma
speculation, and the like, which are usually specified by the user when writing
tactics, as well as the process of assembling a particular tactic for a given conjec-
ture by using Al planning techniques. We will explore how these features of proof
planning can be utilised to guide Oyster, a theorem prover similar to NUPRL, in

verifying hardware.
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1.3 Contributions

The main contribution of this thesis is in the area of proof automation for the hard-
ware verification domain in a tactic-based setting: we demonstrate by experiment-
ation the viability of using proof planning for guiding the automatic construction
of customised tactics for the verification of hardware designs of small and medium
size scale, and conjecture that proof planning can be scaled-up to verify more com-
plex circuits of the type typically found in modern commercial applications. We
develop a proof engineering methodology using proof planning to verify various
combinational and sequential circuits which include: arithmetic circuits (adders,
subtracters, multipliers, dividers), data-path components (arithmetic logic units,
shifters, processing units), and a simple microprocessor system, using few lemmas
compared to other systems. We also contribute to the profiling of the Clam proof
planning system to improve its robustness and efficiency in handling large terms

and proofs.

1.4 Organisation

The thesis is organised as follows: chapter 2 presents the background and a survey
on formal methods for hardware verification; chapter 3 presents an overview of
proof planning and its application to inductive theorem proving; chapter 4 uses
two examples to introduce the basic ideas of proof planning for hardware verifica-
tion; chapter 5 describes a methodology for hardware verification based on proof
planning and the concept of proof engineering; chapter 6 describes the extensions
to proof planning for veritfying hardware; chapter 7 presents experiments for hard-
ware verification, statistics of the experiments and an analysis of the statistics as
well as a description of the experiments; chapter 8 describes related and future

work; and chapter 9 presents conclusions.
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Appendix A describes some basic elements for hardware verification: types,
operations on types, conversion functions and conditional functions. The rest of
the appendices describe the main experiments in verifying hardware with proof
planning: appendix B describes non-recursive combinational circuits; appendix C
explains a bit incrementer; appendix D describes a multiplier; appendix E describes
the Gordon computer; and appendix F describes other circuits. Finally, appendix

G displays the main methods used in the proofs.



Chapter 2

Background

Formal methods for hardware verification is an active area of research and efforts
are being made to transfer its techniques to solve problems of industrial scale. In
this chapter we present a summary of basic concepts and a brief survey of formal
methods for hardware verification. More comprehensive and extended surveys are
presented in [Yoeli 90] and [Gupta 91]. Section 2.1 describes formal verification;
section 2.2 characterises the components of the verification problem; section 2.3
describes the approaches to formal hardware verification; section 2.4 describes the
main hardware verification environments and the work done in them; and section

2.5 presents a summary of the chapter.

2.1 Verification

Verification consists of establishing a formal relationship between a specification

and an implementation of a system. That is, showing that:
Vaoy:m...Va, i 7. Cond — S(xq...xn) RI(21...2y)

where x1 ...x, are variables of type 7y ... 7, respectively which represent inputs or
outputs to the system. R is some mathematical relation like equivalence, implic-
ation or equality and some others. Cond represent some conditions, S(xy ... x,)

represents the specification and Z(xy...x,) the implementation. This is known
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as the verification problem. Formal here means the use of a mathematical frame-
work for describing and solving the problem. A formal system is a mathematical
framework for reasoning about a problem and its possible solutions. It provides
a mathematical description language, and a calculus (or proof system) for prov-
ing conjectures in the theory associated with the formal system. The verification
problem is given as a conjecture where the specification S, the implementation Z,
and the relationship R between § and 7 are expressed using the language of the
formal system, and the calculus is used to prove that the implementation and the
specification satisfy the relationship. Two important aspects of the mathematical
language are its syntax and its semantics. The former has to do with the rules for
writing valid formulae, the latter is concerned with the meaning of formulae. A
deductive calculus formed by a set of axioms and a set of inference rules, is the
best well-known technique for proving conjectures in the formal system and has

been widely applied to the verification problem.

2.1.1 Hierarchical Verification

System complexity is frequently dealt with by recursively decomposing the system
into simpler interrelated systems yielding a hierarchy of components at different
levels of abstraction. A specification and implementation of the system is given for
each level. In this hierarchy, a system implementation at a certain level serves as
the specification of the system at the next level in the hierarchy. The verifications
of the system at two consecutive levels in the hierarchy can then be composed to
give a verification of a system implementation with respect to a more abstract spe-
cification. This procedure can be extended to other levels to achieve a verification
of the bottom level implementation with respect to the top level specification. In
[Moore 89], J Moore presents such a methodology for the hierarchical verification

of systems specified in the Boyer-Moore logic.
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2.2 Components

There are three components of the verification problem: the specification, the
implementation and the relationship between them. In this section we characterise

each of these components.

2.2.1 Specification

The specification of a system describes what the system should do. It is an ab-
stract description of its external behaviour. Details about the internal working
of the system are ignored by the specification and left to the implementation.
The specification must include external inputs and outputs which are relevant to
the designer, and a relation between inputs and outputs. The following aspects
which help the designer in understanding the specification will now be discussed:
abstraction mechanisms, properties, verifiable specifications, executable specifica-

tions, and representation formalisms.

Abstraction

Abstraction mechanisms for hardware verification were first identified by Melham

and are described in [Melham 88]. These include the following:

o Structural. This type of abstraction consists of hiding internal connections

and components of a system, displaying just the external aspects;

o Behavioural. This type of abstraction allows the designer to write partial
specifications of a system. This means that there are inputs of the system

which are left undefined and treated as “don’t cares”;

o Data. This type of abstraction allows the designer to map one data type

(e.g. binary numbers) into another data type (e.g. decimal numbers)
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o Temporal. This type of abstraction allows the designer to map a time-scale
(e.g. micro-operations time scale) into another time scale (e.g. programming

instruction time scale)

System properties

The specification of a system describes properties of the system which are of par-
ticular interest. This includes safety properties, e.g. two devices cannot access
simultaneously their bus; liveness properties, e.g. a device will eventually be al-
lowed to access its bus; and timing properties, e.g. a device will access its bus
within 5 seconds. These properties are modelled using logics to reason about time

and events.

Verifiable specifications

A specification can either be assumed correct or can be verified with respect to
given criteria. This defines a hierarchy of specifications, as these criteria can in
turn be verified with respect to more abstract criteria, until we reach a criterion

which is assumed correct.

Expressive specifications

Expressiveness is determined by the kind of formalism employed to write the spe-
cification. With some formal languages, we can express more facts than we can
with others. As we will see in section 2.3, higher-order logic is more expressive
than first-order logic, which is more expressive than propositional logic. High ex-
pressivity is an important feature, because it allows the designer to write compact
and broad definitions, facilitating in this way the formalisation task from the user

point of view, although transferring the verification effort to the machine.
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Executable specifications

A specification can be described in a language which is executable, and tested on
concrete input data, e.g. a set of definitions given in Lisp. This feature helps the
designer in writing and debugging the specifications. But there is a trade-off since,
in general, executable specifications tend to be less expressive than non-executable

specifications.

Representation formalisms

Many representation formalisms exist for describing specifications. Among the
most common are logical formulae (functional or relational), finite-state machines
(either automata or state-transition graphs), and trace structures [Yoeli 90]. Which
formalism is used determines the type of proof methods that can be used to reason

about the specification.

2.2.2 Implementation

The implementation of a system indicates how the system does what it should do.
For a hardware system this may be a design displaying its components, inputs and
outputs, and connections between the components. Hierarchical layers, timing,
and synchronicity among devices (that is, when to send or receive data from other

device) are aspects of interest to the designer, and will now be discussed.

Hierarchical implementations

As we mentioned above, system complexity is usually tackled by decomposing the
system into simpler components organised in hierarchical levels, treating each level
separately, and composing the solutions of each layer into an integrated solution.
This is commonly done for hardware systems. Layers spread from the modelling
of physical characteristics of components, such as speed, capacitance, voltage,
current, etc., all the way up to the program level. The following is a description

of the main layers:
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e Physical. The physical level deals with electrical properties (Current, voltage,

speed, delays ) of basic electronic components (transistors, resistors, diodes).

o Switch. The switch level uses the transistor as its basic element to build
electronic systems. Systems verified at this level are electronic circuits made
up of transistor, resistors, diodes and other components that implement some

type of device, such as boolean gates.

o (Glate. The gate level uses the gate as its basic element to build combin-
ational and sequential circuits. Systems verified at this level are circuits
which are made up of various kinds of gates (AND, OR, XOR, INVERTER,
etc). Among these circuits are several kinds of combinational and sequential
functions: adders, decoders, multiplexors, flip-flops, load-registers, counters,

etc.

o Register transfer. The register transfer level uses the register as its basic
element and micro-operations to process data in the registers. A register-
transfer logic provides a language to describe valid operations among re-
gisters. This level is used to describe the implementation of microprocessor

architectures.

o Assembly program. The assembly program level provides programming in-
structions to write assembly programs. A description of this level is given
in terms of the semantics of the individual programming instructions. Each
instruction is implemented by a set of micro-operations which are executed

at the register-transfer level.

Combinational or sequential

A circuit can be either combinational or sequential. In a combinational circuit all
the calculations are considered to occur instantly with no delays in data propaga-
tion. Combinational circuits use Boolean gates to compute Boolean functions.
Sequential circuits use storage elements which can be either flip-flops or registers,

combinational circuits which compute inputs to the flip-flops, and feedback loops.
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Synchronous or asynchronous

A sequential circuit can be either synchronous or asynchronous. In a synchronous
circuit signal processing is regulated by the pulses of a clock which is global to
circuit components. Time is usually considered discrete, and outputs at time
t 4+ 1 are calculated from the inputs at time £.In an asynchronous circuit signal

processing, transmission and storage can occur at any instant of time.

Representation issues

The following aspects of representation are relevant to the implementation: circuit
representation by functions or relations, word representation by lists or functions,
and parameterised representation of circuits. The first aspect is discussed in sub-

section 2.2.4.

o Parameterised representation. Hardware representations are sometimes para-
meterised by an attribute of the circuit. Word size is an example of an at-
tribute that is frequently used as a parameter in representations of various

hardware devices.

o Word representation. Words can be modelled using either lists or functions.
Lists are commonly used by many verification tools for representing and

manipulating words.

Hardware description languages

Hardware description languages (HDL) have been developed, standardised, and
utilised by the hardware industry to describe and simulate hardware designs
[IEEE 88]. These languages have become popular and are used by design en-
gineers in a regular basis. However formal reasoning about the designs is very
difficult because the semantics of the language is not clearly defined. Subsets of
HDLs with a well established semantics have been defined for formal reasoning in

verification environments, although their use remains limited [Gordon 95].
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2.2.3 Relationship

Type of relationship

The relationships between the specification and the implementation may include

the following:

o cquality. The implementation and the specification are represented by func-

tions: tmp = spec

o implication. The implementation and the specification are represented by
relations; the specification is a partial description of system behaviour, so the
implementation which contains more information, implies the specification:

Va imp(x) — spec(x)

o cquivalence. The implementation and the specification are represented as re-
lations; both contain the same amount of information, so the implementation

implies the specification and vice-versa: Yo tmp(x) = spec(x)

o subset. The language representing the implementation is a subset of the lan-
guage representing the specification. The language refers to the one accepted

by a finite-state machine: L(imp) C L(spec)

o logical implication The implementation provides a semantic model with re-

spect to which the specification is satisfied: imp [ spec

Proof methods

The proof methods used to establish the relationship may include: theorem prov-
ing, model checking, equivalence checking, and language containment. These

methods are further explained in section 2.3.
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2.2.4 Functional versus relational verification

The verification problem can be formalised using either a functional or a relational
description. A full account of system verification using functional and relational
representations is given in [Camilleri 88]. Here we present a summary of this topic
because it is relevant for the experiments with hardware verification that we will

present later.

Functional Verification

FPunctional verification is characterised as follows:

e circuit components are represented by total functions where the inputs of the
component are the arguments of the function and the value of the function

itself represents one of the possible outputs of the component.

e component interconnections also called internal wires as well as the overall
structure of the circuit are represented by function composition, where a

term is passed as an argument to another function.

Figure 2-1 describes these characteristics.

Figure 2—-1: Modelling the structure of a device

The functional representation of this device is as follows:

Crunla) = Brun(Agun(a))
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C'fun 1s the functional representation of the device with input a, output ¢, internal
components A and B. Ay, and By,, are functional representations of components

A and B. Value b is computed by A and passed to B.

To prove that implementation I meets specification S we must prove a theorem

of the form:

\V/il, ce ,in.AbSl(]fun(il, ce ,Zn)) == AbSQ(Sfun(AbS(ll, ce ,Zn)))

where Abs, Abs; and Absy are data abstraction functions. Abs is required to
convert data representations of the implementation to that of the specification.
Furthermore, the function definitions need not be equal for all valid data values
and so data abstractions Abs; and Abs, are also required to restrict and select the
data for which the specification and implementation descriptions can be shown
to be equal. The use of data abstractions to select and restrict the domain of
a function is analogous to defining partial specifications when using relations.
S'tun and Iy, are the specification and the implementation respectively given as

functions.

Relational Verification
The relational representation approach is characterised as follows:

e circuit components are represented by predicates where the inputs and out-
puts of the component are the arguments of the predicate. The predicate

constrains the values of these parameters so that the predicate is true.

e component interconnections also called internal wires are represented by

shared existentially quantified variables.

e the overall structure of the circuit is represented by the conjunction of the

predicates and shared variables.

Figure 2—-1 also illustrates this modelling technique. The relational represent-

ation of this device is as follows:
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Creala,c) = 3b.Arei(a, b) A Bra(b, ¢)

C'er 18 the relational representation of the device with input a, output ¢, internal
components A and B, and internal wire b. A,.; and B, are relational represent-

ations of components A and B. Value b is hidden by an existential quantifier.

To prove that implementation I meets specification S we must prove a theorem

of the form:

Vit e eyln, 01y ey O dret(P1y ooy in, 014« ooy 0) = Spet(Abs(i1, ... ln, 01,0 0m))

where again, Abs is required to convert data representations of the implement-
ation to that of the specification. S, is the specification given as a relation.

Similarly I,.; is the implementation given as a relation.

Functional representations in general carry more information than relational
representations, especially when the relational descriptions are partial or when ex-
tra information is required to specify the outputs in the functional case. Therefore,
in these cases it is not possible to prove the equivalence between both represent-
ations, except when both representations carry the same amount of information.

Otherwise, the following relationship will hold:

Vi1, esly, Olyeeny O

(01, -y0m) = Reppun(in, ... yin)) = Repre(t1, ..oy tn, 01, ..., 0m)

Here Repyy, and Rep,. mean functional and relational representations where
these representations can be either specifications or implementations. Camilleri

has shown this theorem in verifying various types of combinational hardware

[Camilleri 88].

The advantages and disadvantages of each representation can be summarised

as follows:
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e Relational representations allow the description of only the features of a

device which are of interest, thus forming a partial specification.

o Relational representations allow the definition of bidirectional devices by
merely defining relations between ports without distinguishing inputs from

outputs.

e Functional representations require the definition of total functions, although

in principle, partial functions could also be used but with more difficulty.
e Functional representations can be executed given a suitable interpreter.

e Functional representations are easier to reason about than their relational

counterparts (e.g. mathematical induction).

e Relational representations are more expressive, while functional representa-

tions are computationally more efficient for system verification.

2.3 Approaches to Formal Verification

In this section we describe the main approaches to formal verification. These
approaches are typically based on logic, and on other formalisms e.g. finite-state

machines and trace structures.

2.3.1 Logic

Logic studies the principles of reasoning, and is a science that has as a wide range
of applications in many disciplines which include computer science and artificial

intelligence [Gallier 86,Genesereth & Nilsson 87].

There are two aspects of logic: its syntax and its semantics. The syntax of logic
can be described in terms of a formal system where the language consists of a set

of well-formed formulae made of symbols from an alphabet (constants, variables,
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functions, predicates, connectives) and rules for constructing the formulae; and
the calculus (or proof system) associated to the formal system consists of a set of
axioms, and a set of rules of inference for deductive reasoning. A formula o which
is derived from the axioms by a sequence of inference rules applications is called a

theorem and is denoted by: F «. If a is derived from a set of formulae I' we write

I' F « which is read « is deduced from T'.

The semantics of classical logic assigns meaning to the formulae by means of
an interpretation. An interpretation consists of a domain and a mapping from
elements, functions, and relations of the domain to constant, variables, function
and predicate symbols in the formula. Constants, variables, and terms denote
elements of the domain. A formula can take the values true or false. A model M
is an interpretation that makes a formula « true and is denoted: M = «, which is
read “M satisfies a”. A formula « is valid if it is true for every interpretation, and
denoted by = . A formula is satisfiable if it has a model and is a contradiction if
it is false for every interpretation. A set of formulae I' is satisfiable if there is an
interpretation that satisfies every formula in I'. The fact that, every interpretation
that satisfies a set of formulae I' also satisfies a formula «, is denoted by I' E «

and read “I" logically implies o”.

Soundness and completeness are two attributes of a proof system with respect
to semantics. Soundness means that any theorem deduced by the proof system
is valid. Completeness means that any valid formula can be proved by the proof
system. The completeness theorem establishes the relationship between deduction

and logical implication:

l'EaeTlFa

which establishes the equivalence between |= and .

Theorem proving has to do with establishing that a formula is a theorem in a
formal system. Automatic theorem proving is concerned with the mechanisation
by computer of the deduction process. Theorem proving has been used to verify
hardware. The specification and the implementation are given as formulae in logic

and the relationship is either an implication or an equivalence. Alternatively, the
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specification and the implementation can be given as terms with the relationship
being an equality. Model checking has to do with establishing that an interpret-
ation is a model of a formula, and has also been used to verify hardware. The
specification is given as a formula, the implementation is given as an interpretation
and the relationship is a logical implication. Model checking tries to establish that

the implementation is a model of the specification.

Many types of logics can and have been derived, depending upon the con-
straints imposed on the syntax and semantics of the logic. Without being ex-
haustive, we survey some of the logics that have been used for hardware verific-
ation: propositional logic, first-order logic, higher-order logic, intuitionistic logic,

modal-temporal logic.

2.3.2 Propositional Logic

Propositional logic consists of a set of logical symbols with a fixed meaning (con-
nectives, parentheses), and a set of non-logical symbols with variable meaning
(predicate symbols of arity zero called propositions) with which well-formed for-
mulae (wffs) can be constructed. A truth assignment (or interrelation) assigns
wils one of the values true or false. Valid formulae are called tautologies. Propos-
itional logic was one of the first logics used to model digital systems and represent
Boolean functions, and is well known among design engineers. Propositional logic
is a convenient way of representing and reasoning about gate-level combinational
circuits but is inappropriate for modelling time and feedback loops. Propositional
logic is decidable and there are tautology checkers for establishing the validity of a
formula (e.g. truth tables). However, the problem of satisfiability for propositional
logic is known to be N P-complete. Finding a model which satisfies a formula is

known as the SAT problem [Gallier 86].

Binary Decision Diagrams

Binary decision diagrams (BDDs) are a data structure for the efficient manipula-

tion of Boolean functions which include testing for validity of formulae and equi-
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valence of functions. BDDs are represented by acyclic graphs which can represent
Boolean functions in a concise way [Akers 78]. R. Bryant introduced a restricted
form of BDDs called Ordered Binary Decision Diagrams (OBDDs), found a ca-
nonical representation of functions, and developed efficient algorithms for validity
and equivalence operations [Bryant 86]. Some theorem provers (e.g. PVS) and
model checkers (e.g SMV) have implemented a variation of BDDs for tautology
checking.

2.3.3 First-Order Logic

Universal and existential quantification runs just over elements of the domain
which can be any set. A term denotes an element of the domain, predicates can
take one of the values true or false. First-order logic is more expressive than
propositional logic and digital systems can be better described. Proof systems
for first-order logic have been developed which are sound and complete, although
when one introduces particular theories (e.g. lists, arithmetic), a proof system may
be incomplete. Proof systems in general are semi-decidable, which means that if
a formula is valid there are proof methods which will establish this fact, but if the
formula is not valid, these same methods may run forever without detecting this
fact. First-order logic has found many types of application including program and

hardware verification.

2.3.4 Boyer-Moore Computational Logic

The Boyer-Moore Computational Logic is a subset of first-order predicate logic
with implicit universal quantification, equality, and the inference rule for a type
of Noetherian induction, developed for reasoning about computations. The lo-
gic exploits the duality between inductive reasoning and recursive definitions. It
also includes the shell principle for introducing and axiomatising new inductively
defined types by defining a recogniser function, a constructor function, and an
accessor function for elements of the type. The principle of definition allows the

user to define new functions and avoid possible inconsistencies either by defin-
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ing non-recursive functions in terms of pre-defined functions or by making sure
that a well-founded order exists on a measure of the arguments that decreases on
each recursive call. The logic includes built-in shells that axiomatise the natural
numbers, integers, lists, and strings. The proof system associated with the logic
comprises a pre-defined proof strategy consisting of the consecutive application of

pre-defined basic proof techniques which are inference rules supported by powerful

heuristics [Boyer & Moore 79].

Mathematical induction is required for reasoning about object and events con-
taining repetition. Since repetition is ubiquitous in many application areas and
inductive reasoning is very difficult to automate, research has focussed on the auto-
mation of proof for mathematical induction. Inductive proofs are characterised by
the application of induction rules such as Peano induction and structural induc-
tion on lists and other data structures. All these forms of induction are subsumed
by a single, general schema of well-founded induction:

Ve:r. (Vy: 7.2 =y — Ply)) — P(x)
Va: 7. Plx)

where > is some well-founded relation on the type 7, i.e. there is no infinite
descending sequence: ay > ay > agz > .... The data-structure, control flow, time
step, etc., over which induction is to be applied, is represented by the type 7. The

inductive proof is formalised in a many-sorted or typed logical system.

Success in proving a conjecture, P, by well-founded induction is highly de-
pendent on the choice of z, 7 and >. For many types, 7, there is an infinite
variety of possible well-orderings, . Thus choosing an appropriate induction rule
to prove a conjecture is one of the most challenging search problems to be solved

in automating inductive inference.

The automation of inductive inference raises a number of unique difficulties in

search control:

Synthesis of induction rules: To prove a theorem by induction, one of the in-
finite number of possible induction rules must be synthesised and the induc-

tion variables chosen;
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Conjecturing lemmata: Sometimes a lemma required to complete the proof is

not already available and must be conjectured and then proved;

Generalisation of induction formulae: Sometimes a theorem cannot be proved

without first being generalised on one of its terms.

In addition to these special search problems all the standard problems also manifest
themselves, e.g. deciding when to make a case split, determining the witness for

an existential quantifier, etc.

2.3.5 Higher-Order Logic

In Higher-order logic (HOL) variables range over predicates and functions as well
as over individuals of the domain. This means that predicates and functions can
be quantified, given as arguments of other predicates or functions, and be out-
puts of other predicates and functions as well. This makes higher-order logic very
expressive, mathematically elegant, and permits a concise description of complex
problems. But this increased complexity makes reasoning more difficult as the
logic becomes undecidable, inconsistencies can be introduced, and proof systems
also become incomplete. To alleviate these problems, the domain is usually con-
strained to have decidable or semi-decidable sub-classes, a type discipline is used
to avoid inconsistencies (e.g. Russell’s paradox) by introducing hierarchies among
the elements of the domain, and heuristics are developed to cope with incomplete-
ness. With these amendments that retain its advantages, higher-order logic has

become very popular for describing and verifying hardware systems [Gordon 86].

One restricted higher-order logic is monadic second-order logic, a decidable
logic for reasoning about strings. It has been used for verifying parameterised

hardware, as well as generalising standard BDDs hardware verification capabilities

[Basin & Klarlund 95].
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2.3.6 Intuitionistic Logic

In intuitionistic logic the fact that a formula is either true or false does not hold
in general. To prove an existential conjecture it is not sufficient to negate the
conjecture and arrive at a contradiction, we need to construct explicitly an element
(witness) which satisfies the conjecture. This constructive approach has been
found very useful in program synthesis and has also been applied to the synthesis

of circuits [Basin 91].

2.3.7 Modal Logic

Modal logic extends the scope of predicate logic with the notion of change and
introduces new modal operators to express variability [Hughes & Cresswell 90]. In
propositional logic predicates (propositions) are either true or false; in predicate
logic the truth of a predicate depends on the elements of the domain within a static
world; in modal logic it is possible to change from a world into another world by
means of an accessibly relationship, where the truth of a predicate also depends
on the world in which it is applied. Worlds can be seen as states in which a system
can be. The accessibility relationship is characterised by modal operators which
describe properties which remain true when going from one state to another state.
The basic modal operators are the necessity operator OF which means that OP is
true in a state s if P is true in all states accessible from s; the possibility operator
&P which means that OP is true in a state s if P is true in some state accessible
from s; the next operator ()P which, for linear logics, means that ()P is true
in a state s if P is true in the next state from s; and the until operator P U @)
which means that P U () is true in a state s if either ) is true in s or it is true in
some other state accessible from s with P being true in every intermediate state

[Galton 87].

Temporal Logic

Temporal logic is a type of modal logic. It was developed for reasoning about time

in the verification of concurrent programs and has found a wide variety of applica-
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tions in studying time-dependent systems [Pnuelli 77]. The four modal operators
are referred as the Always, Sometimes, Next-time, and Until operators respectively
in temporal logic terminology. Correctness properties of time-dependent systems
can easily be expressed in temporal logic. These include Safety properties which
state that nothing bad happens |= OP (e.g. two devices do not access the bus
simultaneously); liveness properties which state that eventually something good
happens | P — &Q (e.g. a device will eventually access the bus); and precedence
properties which grants orders of events = PU Q) (e.g. two devices access the bus

in the order their requests are done).

Temporal logic can be seen from different perspectives yielding different types
of temporal logics. In one view the truth of a formula can be defined with respect
to the interval between two states or with respect to a state. In the first case,
we have interval temporal logic (ITL) [Moszkowski 85]. In the second case, time
can be seen from two different views. In one case, time is a linear sequence of
events which results in linear-time temporal logic (LTTL) [Manna & Pnuelli 81].
In the second case time has a branching structure of events which results in what
is called branching-time temporal logic (BTTL). Computation tree logic (CTL) is
a version of BTTL that has been applied extensively to the formal verification of

sequential circuits [Clarke & Emerson 81].

2.3.8 Mu Calculus

The Mu Calculus extends the expressiveness of propositional temporal logic by
adding operators for denoting fixed points of predicate transformers (i.e functions
from relations to relations). It was developed independently of temporal logic and
various versions have been studied in the context of program verification and has

also been applied to the hardware domain [Emerson & Lei 86].

2.3.9 Other Approaches to Hardware Verification

There are other approaches for hardware verification which traditionally are not

regarded as part of logic like finite-state machines, although they keep a close
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connection with logic. For instance, the notion of regularity which is observed in
certain types of parameterised circuits (e.g. adders, ALUs, counters) and which
have been formalised using automata for which decision procedures for a type of

second-order logic on strings exist.

Finite-state machines

An automaton is a mathematical structure for accepting or rejecting input se-
quences of symbols which correspond to words in a language. Starting at an initial
state, the automaton applies a transition for each symbol of the input sequence
giving new states. When the last input symbol is read, if the resulting state cor-
responds to a designated final state then the input sequence is accepted, otherwise
it is rejected. This assumes a finite automaton where the input sequence is finite.
Some concurrent /reactive systems may require automata over infinite sequences.
A finite-state machine is an automaton extended with an output alphabet to form
output sequences rather than just an accept/reject condition. Given a state, if a
transition produces a single new state, then the machine is deterministic, other-
wise it is non-deterministic. Moore and Mealy machines are commonly studied
in automata theory. In a Moore machine the output sequence is a function of
a state. In a Mealy machine the output is a function of the state and the in-
put [Hopcroft & Ullman 79]. Finite-state machines have been used to represent
both the specification and the implementation of the verification problem, and
several techniques have been developed to establish the relationship between the

two which include:

o Machine equivalence. Establishes the equivalence of two finite-state ma-
chines by composing a machine which accepts the exclusive-or of the two cor-
responding languages. If the composite language accepts just the empty lan-
guage then the two machines are equivalent. Since this algorithm is compu-
tationally expensive, other techniques based on extracting a state-transition
graph from each machine, composing the graphs, and developing efficient

algorithms for its manipulation have been attempted [Devadas et al 87].
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o Language containment. The relationship between the implementation and
the specification is that of language subset rather that equivalence. Here it
is shown that the language generated from the machine that describes the
implementation is contained in the language generated by the machine that

describes the specification [Kurshan 87]

o Trace theory. A trace is a sequence of transitions in a finite-state machine. A
trace structure consists of a set of input and output wires, a set of traces rep-
resenting a circuit’s behaviour on legal inputs, and a set of traces representing
a circuit’s behaviour on invalid inputs. Trace theory represents the beha-
viour of a system as a set of traces and has been used to model asynchronous
systems [Hoare 78], delay-insensitive circuits, and speed-independent circuits
[Dill 89]. The specification and the implementation of speed-independent cir-
cuits are described by trace structures, and the relationship corresponds to
the concept of safe substitution. An implementation is correct if it preserves
the correctness of a larger context when substituted for the specification in
that context. A context is an expression in trace theory containing a free
variable and is denoted by ¢[]. A trace structure 7 is said to conform to
another structure M, denoted by 7 < M, if for every context ¢[], if ¢[M] is
failure-free then so is ¢[7T]. A trace structure is failure-free if its failure set is
empty. Since it is not possible to test an infinite number of contexts, a worst-
case context called the merror of M can be defined, such that 7 < M holds
if and only if the composition of 7 and the mirror of M is failure-free. Thus,
the mirror of a trace structure represents the strictest environment condi-
tions under which the trace structure is expected to operate correctly. Then,
if an implementation operates correctly when composed with the mirror of

the specification, then it is a safe substitution under all environments.

The main advantage of trace structures is the ability to perform hierarchical
verification by using the same representation formalism (trace structures) of
specifications and implementations, and by defining hierarchical operations

on traces such as hiding, composition, and renaming. Its main disadvantage,
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is the need for the explicit construction of a state-transition graph associated

with the composite trace structure.

2.4 Verification Environments

In this section we present some of the environments used for hardware verification
and the type of systems they have been applied to. There are many ways in
which these environments could be classified, depending upon features of interest.
One such classification considers the type of proof construction method employed,
grouped into theorem proving, and model/equivalence checkers. This grouping
also reflects a current trend in the use of proof environments in both academic

and industrial organisations nowadays.

2.4.1 Theorem provers

There are many proof construction methods in the theorem proving arena. Three
popular approaches based on seminal works from the 60s and 70s are resolution
[Robinson 65], tactics [Gordon et al 79], as well as approaches that emphasise a
particular sort of inference, like mathematical induction [Boyer & Moore 79]. To
raise the level of automation of equational and tactic-based provers, meta-level
reasoning methods that reason about equations or tactic formation, have also

been developed [Bundy 88, Silver 85].

The NQTHM theorem prover is based on the Boyer&Moore computational lo-
gic to automate proof by mathematical induction [CLINC 96]. It uses a subset
of Lisp as the specification language of the designs, thus making the the specific-
ations executable. It uses a fixed set of proof techniques, namely, simplification,
destructor elimination, cross-fertilisation, generalisation, elimination of irrelevance
and induction. The techniques are tried in the order listed on each remaining for-
mula with hardly no backtracking, until all formulae have been proved or all the

techniques fail. Users can guide the prover by providing lemmas or suggesting sets
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of rewrite rules [Boyer & Moore 88]. NQTHM has been used to verify a net-list
implementation of the FM9001, a 32-bit general-purpose microprocessor which was
fabricated as a CMOS gate array by LSI Logic Inc., and which serves as the basis
of the CLINC stack [Bishop et al 95]. The elements of the stack which include a
simple applications program in a high-level language a compiler, an assembler, a
linker, and a simple multitasking operating system have also been verified using
NQTHM [Moore 89]. The system is a stack in the sense that each upper layer is
an abstract machine implemented on top of the lower layer. The stack is short
only by comparison to systems of practical interest. The ACL2 theorem prover
is an industrial-strength implementation of the Boyer-Moore logic and a descend-
ant of Ngthm that has been used to verify the correctness of the kernel of the
AM D5 86" floating-point division algorithm [Moore et al 96].

The OTTER theorem prover is designed to prove theorems stated in first-order
logic with equality. Otter’s inference rules are based on resolution and paramodu-
lation, and it includes facilities for term rewriting, term orderings, Knuth-Bendix
completion, weighting, and strategies for directing and restricting searches for
proofs. Otter can also be used as a symbolic calculator and has an embedded
equational programming system. Otter is a fourth-generation Argonne National
Laboratory deduction system whose ancestors (dating from the early 1960s) in-
clude the TP series, NIUTP, AURA, and ITP. Currently, the main application of
Otter is research in abstract algebra and formal logic. Otter and its predecessors
have been used to answer many open questions in the areas of finite semi-groups,

ternary Boolean algebra, logic calculi, combinatory logic, group theory, lattice

theory, and algebraic geometry [OTTER: 96].

Tactic-based theorem provers

Theorem provers like HOL, LAMBDA, VERITAS, ISABELLE , NUPRL and PVS
are representative of a family of systems that have derived from the LCF system

[Gordon et al 79].
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HOL is a tactic-based, interactive theorem prover based on classical higher-
order logic, developed by M. Gordon and his group at Cambridge University
[Gordon 88]. The logic is derived from Church’s Simple Type Theory with the
addition of polymorphism in types, and embedded in ML, a functional program-
ming language [Gordon 85]. Tactics and tacticals are derived from the Edinburgh
LCF system [Gordon 83]. A tactic is a program that applies a set of inference rules
in a single proof step. The HOL system has been extensively used for hardware
verification since the early 80s. Currently, it has a wide installed base in academic
and industrial institutions [HOL 96]. HOL has been used to verify microprocessors
with pipe-line architectures [Windley & Coe 94] and commercial circuits like VI-
PER, a commercially available microprocessor designed by the British Ministry of
Defence for use in life-critical applications. The formal verification of two layers
of the implementation of the VIPER’s design was done by Avra Cohn [Cohn 88].
Early work include the verification of the TAMARACK microprocessor [Joyce 90].

LAMBDA is the first commercial, formal methods-based, computer aided-
design tool, specially tailored to problems of synthesis and verification of hardware
designs [Mayger & Harris 91]. LAMBDA automatically applies formal verification
during the design process, so that each completed design is effectively correct by
construction, yet the user is isolated from much of the complexity of the under-
lying mathematical proof techniques involved [Fourman & Hexsel 91]. LAMBDA,
as well as other model/equivalence checking products have been developed and
commercialised by Abstract Hardware Limited. Clients of LAMBDA, which in-
clude Large Systems Integration, Avionics, Telecommunications and High Integ-
rity Systems, apply LAMBDA in the design and verification safety-critical systems
[LAMBDA 96]. The LAMBDA tool set includes the DIALOG design environment
[Mayger 91] , which enables the power of LAMBDA to be effectively utilised by
design engineers, the ANIMATOR, a behavioural simulator for effective specifica-
tion analysis, and the BROWSER, a friendly user interface to the theorem prover
core, which can be used effectively for proving properties of specifications and for
the development of new proofs by using graphics and menus based on schemat-

ics, extending the design automation capability. The theorem prover is based on
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classical higher-order logic, tactics and natural deduction. The library contains
hundreds of rules of inference and tactics. LAMBDA contains a powerful rewriting

system [Francis et al 92].

PVYSis a Prototype Verification System developed at Stanford Research Insti-
tute for system verification [Owre et al 94]. It is based on classical higher-order
logic, tactics, and uses efficient decision procedures for arithmetic reasoning. It has
been used for the verification of commercial circuits. PVS was used to verify some
aspects of the AAMPS5, a pipelined microprocessor built by Collins Commercial
Avionics, a division of Rockwell International, using almost half a million transist-
ors. An implementation of the microcode at the register-transfer level was verified
with respect to a representative subset of instructions [Srivas & Miller 95]. It has
been extended with model checking techniques and applied to the verification of

commercial systems [Havelund & Shankar 96].
Other tactic based provers include:

VERITAS, designed by Hanna and Daeche who first proposed the use of
higher-order logic for hardware verification [Hanna & Daeche 86] and proposed
a technique for the synthesis of circuits augmented with elements of type theory

[Hanna et al 89b,Hanna et al 89al;

ISABELLF, an interactive tactic-based theorem prover developed by Larry
Paulson and his group [ISABELLE 96]. Logics are encoded in a meta-logic by
declaring a theory, which consists of a signature and a set of axioms. ISABELLFEs
theory of higher-order logic extended with theories of sets, well founded recursion,
natural numbers and higher-order resolution and unification has been used for the

synthesis of circuits [Basin & Friedrich 96];

NUPRL, a proof development system developed by R.L. Constable and his
group [Constable et al 86]. NUPRL is based upon a constructive type theory,
similar to Martin-Lof’s polymorphic type theory and is intended as a foundation for
constructive mathematics. Mantissa Adjuster and Exponent Calculator (MAEC)
is an image processor developed by P. DelVecchio [DelVecchio 90] under contract
for NASA. MAEC is a section of a floating-point adder unit, and was partially
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formally verified by D. Basin and P. DelVecchio [Basin & DelVecchio 89] using
NUPRL.

A meta-level reasoning theorem prover

The Clam-Oyster system was developed by Alan Bundy and the Mathematical
Reasoning Group at the University of Edinburgh. Oyster is a Prolog implementa-
tion of the Nuprl system. Clam is a meta-level reasoning proof planner which sits
on top of the Oyster prover to guide it in the search for a proof. A more detailed

description of this tool is given in section 3.4.

2.4.2 Model/equivalence checkers

Model checking was first proposed by Clarke and Emerson [Clarke & Emerson 81]
as an efficient proof technique for CTL. One of its serious limitations is the use
of an explicit state-transition graph representation of the hardware to be verified,
which makes expressiveness limited (i.e. hierarchical or parameterised circuits
cannot be modelled) and the number of states increases exponentially with the
number of elements in the design, resulting in a state explosion problem. Symbolic
model checking is an extension to model checking that uses symbolic Boolean
representations for states and transitions functions of a sequential system, in order
to avoid building its global state-transition graph explicitly. Efficient symbolic
Boolean manipulation techniques are then used to evaluate the truth of temporal

logic formulae with respect to these models.

SMYV is a model checker developed by Kenneth McMillan for the CTL temporal
logic. It has been used to verify the cache coherence protocol described in the

IEEE Futurebus+ standard finding a number of previously undetected designs
errors [McMillan 92].

CheckOff-M is an AHL’s product which performs model checking to find errors
in a design and to verify critical properties, such as the absence of deadlocks and

whether the design performs specified functions. Given a set of logical properties
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which the design should possess, CheckOff-M determines if the design omits re-
quired behaviour or includes unwanted behaviour. For example, it can check that
mutually exclusive events cannot occur concurrently, and that a desired event will
occur at a specific time. CheckOff-M can model check both complex combinator-
ial and sequential designs, and can be used at all stages of the design flow as it
can check behavioural, register-transfer level and gate-level designs. CheckOff-M

works with designs made using hardware description languages like VHDL, EDIF
and Verilog [CHECKOFF-M 96].

CheckOff-FE is an AHL’s product which checks that two circuit designs are beha-
viourally identical. CheckOff-E reduces design times by replacing long simulation
runs for validation with much faster equivalence checking, and increases design
confidence by guaranteeing to find any differences between designs. CheckOff-
FE can compare both complex combinatorial and sequential designs, even if their
architectures or state encodings are different. CheckOff-E can also be used at
all stages of the design flow and is compatible with VHDL and EDIF designs
[CHECKOFF-E 96].

MONA is a tool developed by Nils Klarlund and his group at the University
of Aarhus, Denmark. MONA translates formulae into finite-state automata. The
formulas may express search patterns, temporal properties of reactive systems, or
parse tree constraints. MONA is based on weak monadic second-order logic of
the natural numbers, which is a decidable fragment of arithmetic. MONA has
been applied to the verification of combinational and sequential circuits exhibiting

regularities [Basin & Klarlund 95].

COSMOS is a symbolic simulator developed by Randy Bryant and co-workers
for modelling low-level circuit behaviour with a three-valued logic (adding don’t

care values X) [Bryant et al 87].

Other formal method tools include VERIFY [Barrow 84a], VOSS [Seger 93],
VIS [Brayton 96], CIRCAL [Milne 85], and LDS [Madre & Billon 88].



Chapter 2. Background 35

2.5 Summary

We have presented a summary and a survey of formal methods for hardware veri-
fication. Most of the approaches to formal verification are based on logic and
employ various types of proof methods to establish the verification relationship
between the specification and the implementation. Model-checking has developed
very efficient techniques for the automatic verification of complex circuits, but they
are difficult to use in hierarchical verification. Theorem proving seems more ap-
propriate for hierarchical verification, but its generality creates difficult problems
of search control. User interaction with a theorem prover is not always affordable
because this is a time-consuming task and demands experts in logic. Automation
is called for, and there, search control is the problem to overcome. Meta-level
reasoning techniques are a useful resource to control search and raise the level of

automation in tactic-based settings.
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Proot Planning

Proof planning uses methods to reason about tactics in searching for a proof. In this
chapter we explain proof planning as developed by the Mathematical Reasoning
Group (MRG) at the University of Edinburgh, and the way it has been used in
automating inductive theorem proving. Section 3.1 explains methods, the main
component of proof planning; section 3.2 describes inductive proof planning and its
main heuristics: rippling, rippling analysis, and fertilisation; section 3.3 presents
an example of proof planning and domains for which proof planning has been
applied; section 3.4 describes the Clam-Oyster system; and finally section 3.5

presents a summary of the chapter.

3.1 Methods

The Oyster proot development system reasons backwards from the conjecture to
be proved, using an intuitionistic higher-order logic and a sequent calculus proof
formalism. The search for a proof must be guided either by a user or by a tactic.
The Ogyster search space is very big even by theorem proving standards. There
is a big number of inference rules, and some rules like induction have an infinite
branching rate, therefore careful search is very important if a combinatorial explo-
sion is to be avoided. The intention of proof planning is to guide as much of the

search for a proof as possible, thus relieving the user of a tedious and error-prone

36
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burden. The core of proof planning is a set of heuristics to apply flexibly a set of
pre-defined general tactics to maximise the chances of proving a conjecture. The
tactics incorporate extensions to many of the heuristics embedded in Ngthm. Each
tactic is partially specified by a method, which is a description of the preconditions
and effects of the tactic. Artificial intelligence planning techniques (e.g. depth-
first, breadth-first, best-first, etc.) are used to construct a custom made proof plan
for the conjecture. This plan is then executed by Oyster to derive a proof for the
conjecture. A method describes important aspects of a tactic without representing
all of its details. A method is represented as a frame with 6 components: a name,
an input formula (a sequent), preconditions, output formulae, postconditions, and
a tactic. The preconditions and postconditions are expressed in a meta-logic where

a subset of Prolog is used as a meta-language. Figure 3—1 shows the components.

method(Name(...Args...),
H==>G,
[...Preconditions...],
[...Postconditions...],
[...Outputs...],
tactic(...Args...)
).

Figure 3-1: Method components

e the name component Name(...Args...) corresponds to the name and the

arguments of the method;

e the input component H==>G is a sequent with hypothesis H and goal G.
H must unify with the hypothesis list of the current goal, which is also a

sequent, and G must unify with the goal of the current goal;

e the preconditions component [...Preconditions...] is a list of formulae
that specify properties that the input sequent must meet. A method is

said to be applicable it the input formula unifies with the input sequent and
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the preconditions are satisfied. These preconditions specify heuristics that

constrain the search space of applicable methods;

e the postconditions component [...Postconditions...] is a list of prop-

erties that will hold after the method has been applied successtully;

e the output component [...0Outputs...] is a list of new subgoals generated
by the method which remain to be proved. If the list is empty then the
method is said to be terminating, otherwise it becomes a branching point
if it has more that one output formulae. Each output is represented by a

sequent formula;

o the tactic component tactic(...Args...) isthe name of a general-purpose
tactic with the same arguments as the method. Using the input formula and
preconditions of a method, proof planning can predict if this tactic will be

applicable without actually running it.

Methods can be composed at the meta-level in the same way tactics are com-
posed using tacticals. The operators that combine methods are called methodicals.
For instance, the methodical then in M1 then M2 combines sequentially the two
methods M1 and M2, by providing as input to M2 the output sequents of M1.
Methods can call other methods by a single invocation or by a repeated invoca-
tion of a sequence of methods. A method called by another method is called a
sub-method. A method can be both a method or a sub-method and the difference
is made explicit. The call is typically made from within the preconditions of the
calling method. The process of recursively composing methods at the meta-level
is called proof planning, and the resulting tree of methods is called a proof plan,
which is just a composite tactic customised for the current conjecture, built-out
of general-purpose tactics. Clam, the plan formation system, receives a conjec-
ture and looks for the first method which is applicable. Methods are stored in a
data-base and are tried one by one in the order in which they appear. If a method
fails to apply, then Clam tries the next one, until one is applicable. If no method

is applicable, then Clam reports failure, otherwise, the output of the applicable
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method yields the new subgoals. If two or more methods are applicable, they are
tried one by one. This process is applied recursively to each of the resulting sub-
goals until all the leaves of the tree contain terminating methods, that is, methods
that produce no subgoals. This means that Clam can backtrack from any node in

the tree, should a method failed to apply.

The standard data-base of methods in the Clam system is shown in figure 3-2.

A procedural interpretation of this set of methods is as follows:

Methods:
1. sym_eva simplifies symbolic expression
a. elementary applies simple propositional reasoning
b. equal applies an equality in the hypothesis
c. eval_def applies rewriting
d. existential handles existential quantification
2. generalise generalises common term in aformula
3. normalise normalises aformula
4. induction_strategy appliesinduction strategy
a. induction selects induction scheme and induction variables
b. sym_eva applies symbolic evaluation to the base case
C. step_case appliesripple and fertilise to the step case
i. ripple appliesrippling heuristic
- wave applies wave-rules
- casesplit unblocks rippling
- unblock does case split
ii. fertilize simplifies induction conclusion with induction hypothesis
- strong_fertilise appliesinduction hypothesis directly
- weak_fertilise rewrites induction conclusion with induction hypothesis

Figure 3-2: Data base of methods

e try to solve the conjecture by symbolic evaluation. If successful, finish, if

there are remaining subgoals, try the set of methods again;

e try to solve the conjecture by induction, generalising or normalising any
terms, if necessary. Solve the base case by applying symbolic evaluation and
solve the step case by applying rippling and fertilisation. In either case, if

there are remaining subgoals, try the set of methods again.

A brief description of these methods follows:
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sym_eval: this method simplifies a formula with symbolic evaluation which con-
sists of the repeated application of the sub-methods elementary, equal,

eval_def, and existential.

generalise: this method generalises a formula by substituting a variable for a
common sub-term. If the formula is an equation, and there is a common
sub-term on both sides of the equation, then this sub-term is replaced by a

variable.

normalise: this method applies various kinds of normalisation operations to
a formula like removing universal quantifiers, moving the antecedent of an
implication into the hypotheses, and replacing a conjunctive hypothesis by

its conjuncts.

ind_strat: this method defines a strategy for proof by mathematical induction.
It applies the induction sub-method, which yields two or more subgoals: the
base case and the step case. The base case is simplified by the sub-method
sym_eval. The step case is simplified by the step_case sub-method. The

induction strategy is further explained in section 3.2.

The sub-methods called by these methods are the following:

elementary: this sub-method removes universally quantified variables if there
are any, applies simple propositional reasoning to the goal, and solves simple

well-formedness goals.

equal: this sub-method checks if there is any equality among the hypotheses

and uses it to rewrite the goal.

eval_ def: this sub-method normalises the goal by the exhaustive application of

rewrite rules from a terminating rewrite system.

existential: this sub-method deals with existentially quantified variables in

equalities.
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induction: the preconditions of this sub-method implement a heuristic called
rippling analysis for suggesting an induction scheme and induction variables
by a look-ahead analysis into the rippling process. This heuristic is described
in subsection 3.2.1. The output of the method is a list of base cases and step

cases.

step_case: this sub-method repeatedly applies the sub-methods ripple and

fertilise.

ripple: this sub-method is used to reduce the difference between the induction
conclusion and the induction hypothesis by the repeated application of the
sub-methods wave, case-split, and unblock. The Rippling heuristic is

described in subsection 3.2.1.

wave: this sub-method repeatedly applies wave rules to the current goal. A wave
rule is a kind of rewrite with annotations that control search. Annotations
include boxes to wrap up terms called wave fronts, underlines to denote
terms called wave holes, and upwards and downwards arrows to indicate the
direction in which wave fronts are moved by wave rules. A precise meaning

of annotations is given in section 3.2.1.

casesplit: this sub-method introduces a case split in a proof, based on the

notion of complementary sets.

unblock: this sub-method unblocks rippling either by removing wave holes an-
notations, or by applying meta-rippling, which consists of the manipulation

of annotations with rewrite rules.

fertilise: this sub-method utilises the induction hypothesis to simplify the
induction conclusion. It applies the sub-methods strong fertilise or

weak fertilise. This heuristic is explained in subsection 3.2.2.

strong fertilise: this sub-method appeals to the induction hypothesis to

prove the rippled induction conclusion.
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weak fertilise: this sub-method uses the induction hypothesis as a rewrite

rule to simplify the rippled induction conclusion.

As an example, figure 3-3 displays the method eval_def, which applies rewrite

rules from base and recursive equations which are not wave rules. The current goal

method(eval_def{ Pos,[Rule,Dir]),

H==>G,

[matrix(Vars,Matrix,G),
wave_fronts(_,[],Matrix),
exp_at(Matrix,Pos,Exp),

\+ Pos=[0] ],

not metavar(Exp),
reduction_rule(Exp,NewExp,Cond,Dir,Rule,_),
polarity_compatible(Matrix,Pos,Dir),
elementary(H==>Cond,_),

[replace(Pos,NewExp,Matrix,NewMatrix),

matrix(Vars,NewMatrix,NewGoal)],

[H==>NewGoadl],

eval_def(Pos,[Rule,Dir])).

Figure 3-3: Method eval_def

is matched with the sequent H==>G. The preconditions split the goal ¢ into univer-
sal variables and the matrix, checks that the matrix contains no wave front annota-
tions, and locates an expression Exp within the matrix that is not meta-variable,
and which can be rewritten using the conditional rule Cond — Exp = NewFxp
where = indicates rewriting. Rule may be based on implication, equality or equi-
valence and must had been proven to be measure decreasing under a well-founded
termination order. The polarity conditions ensures that the rule is terminating
and the hypotheses must imply the conditions Cond of the rule. The postcon-
ditions replace the expression Exp by the new expression NewExp and form the
new goal NewGoal. The output is the new sequent formed with the hypotheses
and the new goal H==>NewGoal. There is a tactic called eval def with arguments

Pos, [Rule,Dir] associated to the method, which applies the rewriting.
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Proof plan construction involves search. However, the planning search space is
typically many orders of magnitude smaller than the object-level search space. The
heuristics represented in the preconditions of the methods ensure that backtracking
during planning is rare. So the search space for a plan is computationally very
cheap. The cost of this dramatic pruning of the object-level search space is that

the planning system is incomplete. Fortunately, this has not proved a serious

limitation [Bundy et al 91].

3.2 Inductive Proof Planning

In this section we explain in more detail the induction strategy and its main

heuristics: rippling analysis, rippling, and fertilisation. A pictorial representation

of this strategy is given in figure 3-4.

induction_strategy

Induction

base_case

step_case

ripple

wave

fertilise

Figure 3-4: A Proof Plan for Induction

Each of the boxes represents a method. The nesting of the boxes represents the

nesting of methods, i.e. an inner method is a sub-method of the one immediately

outside it.
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3.2.1 Rippling

The purpose of rippling is to complete an inductive proof by rewriting and appeal
to the induction hypothesis, once an induction scheme and an induction variable
have been chosen. The idea behind rippling is that the induction conclusion will
be an image of the induction hypothesis except that constructor terms such as the
successor function s, will be wrapped around the induction variables. Rippling
attempts to move the constructor function out through the term, leaving behind
an exact image of the induction hypothesis within the induction conclusion by
annotating the differences with special annotations [Bundy et al 93]. For example,

suppose we have a conjecture about the associativity of addition:
Va,y,z: Natural (x +y)+z=24 (y + 2) (3.1)
If we prove this conjecture by induction then we have the induction hypothesis:
(X+Y)+Z=X+(Y +2) (3.2)

and the induction conclusion with annotations:

(@] +9)+2=[s@] + @ +2) (3.3)

The annotations are explained as follows: the box around the s constructor is
called a wave-front; the arrow indicates that the term s is moving outwards to
dominate the term in the left-hand side; the underlined term within the box is
called the wave-hole; Deleting the arrow and everything in the box which is not
underlined gives the skeleton which is identical to the induction hypothesis and
is preserved during rippling; the induction conclusion without the annotations is

called the erasure.

The selection of induction schemes and induction variables is supported by
rippling analysis. The movement of wave-fronts is supported by various types of

rippling. Both are described next.

Rippling Analysis

Rippling Analysis is a heuristic that helps to suggest an induction variable and an

induction scheme by a look-ahead analysis of the rippling process [Bundy et al 89].
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Rippling analysis first suggests candidate induction schemes, and then tests their
validity. Suggested inductions are generated by considering all permutations of
all the universally quantified variables with all possible infinitely many induction
terms, severely restricted to those suggested by wave-rules. Induction terms are
generated subject to the criterion that they can be rippled by some wave-rule
present in the data-base. Each occurrence of each variable is tagged with a collec-

tion of candidate inductions which describe:

the induction term

annotations of the induction term

any variables that must be sinks (explained below)

any simultaneous inductions required on some other variables

o how well this suggestion fares for the other occurrences of that variable

An occurrence for which a wave-rule is applicable with this induction term is
said to be unflawed, otherwise it is said to be flawed. Flawed occurrences are to
be avoided since there is no wave-rule to move one or more initial wave-fronts

introduced by the induction.
All this information is then processed by the following heuristics to rank the

various suggestions:

e prefer inductions on a variable which minimises the number of flawed occur-

Tences;

e prefer inductions on a variable which minimises the depth on the term tree

of all flawed occurrences;

e prefer inductions on a variable that minimises the number of unflawed oc-

currences
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For instance, suppose we have the conjecture for the associativity of addition 3.1,

the Peano axiom:
VYU,V : Natural U =V < s(U) = s(V) (3.4)
and the definition of addition in terms of 1-step recursion:

0+V =V
s(U)y+V = s(U+V) (3.5)

The induction scheme dual to 1-step recursion is 1-step induction on the natural
numbers with induction term s(x) and induction variable x:

P(0) AVa: Natural P(x) — P(s(x))
Va : Natural P(x)

Each of the three universally quantified variables in the conjecture x, y, z, are
analysed with respect to the axiom and the definition of +. Both occurrences of
the variable = are in the recursive position of +: e.g. = + ...; one occurrence of
the variable y is in the recursive position of +: e.g. ¥ + ...; and no occurrence of
the variable z is in a recursive position. The variables x is unflawed, variables ¥y

and z are flawed. The following table summarises this analysis:

Var. Def. Ind. Ind. Occurrences Status

term scheme Total unflawed flawed

X + s(x)  1-step 2 2 0 unflawed
y + s(y)  1-step 2 1 1 flawed
7 none none  none 2 0 2 flawed

In this case a 1-step induction on x is chosen. The step-case becomes:
Va,y,z: Natural, (x+y)+z=a+ (y+2)F (s(x)+y)+z=s(x)+ (y+ 2)

to which we can apply three rewrites based on the definition of 4+ and finish the

proof successfully.

An extension to rippling analysis which uses meta-variables to instantiate un-

known induction schemes is called middle out reasoning [Hesketh 91].
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Types of rippling

There are several types of rippling. We describe rippling-out, rippling-in, rippling
sideways, conditional rippling and rippling with multiple wave-rules. Other types

of rippling exist and are described in [Bundy et al 93].

Rippling out

Rippling out moves wave-fronts outwards to match the induction hypothesis using
wave-rules. For instance, wave-rules corresponding to equations 3.5 and 3.4 are as

follows:

@] +y = [szty) (3.6)

@] =[] = ==y (3.7)

If we apply wave-rule 3.6 to the left-hand side of the induction conclusion (3.3) we

obtain:

sfe+y)| +2=...

one more application of the rule gives:

5((:1:—|—y)—|—Z)T:...

the wave-front s is now completely rippled out in the left-hand side. We can now

rewrite the right-hand side with the same wave-rule:

=[satwta)]

the wave-front s is also completely rippled-out in the right-hand side too and we

obtain:

Gty +2)| =[srw+2)] (3.8)

we can now use wave-rule 3.7 to obtain:
(et+y)+z=a+(y+=2)

which matches the induction hypothesis finishing the proof.
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Rippling in

Rippling in moves wave-fronts in the opposite direction, that is, inwards. Wave
rules that do rippling in can be obtained from equations that rewrite the right-
hand side of the equation into the left-hand side. For instance, an inwards wave

rule for equation 3.5 is:

swty)] =[s@] +y (3.9)

the inwards direction is indicated by the arrow in the box.

Rippling sideways

Rippling sideways is formed by combining rippling out and rippling in to move
a wave-front within an expression towards an argument of that expression where
there is a universally quantified variable. Initially the wave-front goes outwards,
and when it is in the appropriate position, moves inwards to the position of the
universally quantified variable, which will "absorb’ the wave-front. These variables
are called sinks. The idea is that in the induction conclusion there must be another
universally quantified variable that will be unified with the wave-front that was
absorbed by the sink. Sinks are represented by the symbol: |...|. For instance,

consider the following conjecture about list reversal:
VL, M : Natural list, rev(L) <> M = qrev(L, M)

where rev is the naive list reversal function, grev is the tail recursive reversal
function and <> is the function that appends two lists. These primitive recursive

functions are defined by:
rev(nil) = il

rev((H = U) = reo(U) <> (H = ml) (3.10)

grev(nil,V) = V
grev(H :: U V) = gqrev(U,H V) (3.11)
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nil<>V =V
(H:U)<>V = H:=:(U<>V) (3.12)

where :: is the list constructor operator and nel is the empty list. The following

wave-rules are derived from the recursive equations 3.10, 3.11 and 3.12:

rev(T) = |rev(U) <> (H :: nil) ! (3.13)
qrev(T,V) = qrev(U,l) (3.14)

(H:=U) <> ' = |H:U<>V) ' (3.15)

<

Wave rule 3.14 is an example of a side-ways (also called transverse) wave rule.
Additionally, we can show that append is associative and derive the following

wave-rule which is also a transverse wave-rule:

(T) S W=U<> (VW] (3.16)

Applying induction, we get the hypothesis:
rev(l) <> M = qrev(l, M)

and the conclusion:

rev(h :: [) ' <> |m| = qrev(|h =l T, lm])

To make the induction conclusion match the induction hypothesis we will ripple
the two wave-fronts sideways so that each surrounds an |m]. Applying 3.14 to

the right-hand side we get:

rev(h :: [) i <> |m| = qrev(l,|h 2 m])

We draw the sink annotation outside the wave-front to show that it has absorbed
the wave-front. We now apply 3.13 to ripple the wave-front out in the left-hand

side:

(|rev(l) <> (h :: nil) T) <> |m| = qrev(l,|h 2 m])

Wave-rule 3.16 is used to ripple the wave front sideways to the left-hand |m]:

(rev(l) <> ({ (hnil) <>m lJ) <> |m| = qrev(l,|h 2 m])

Normalisation is now applied to simplify the wave-fronts in the sinks and make
them identical. This permits the use of the induction hypothesis which matches

the induction conclusion if we instantiate M to h :: m, finishing the proof.
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Conditional rippling

Conditional rippling uses conditional wave-rules, which are wave-rules that are

applied when a condition is provable:
Condition — a = 3

where o = 3 is a wave rule and Condition is a formula. If a condition of a wave-
rule is provable from the current hypotheses, then we can use the rule. But even
if the condition is not currently provable, we can still use the rule, provided we
divide the proof into two cases, using the condition and its negation. A problem
to solve is when to use the condition to split the current case into two sub-cases,
and when to try to prove the condition within the current case. A partial solution
to this problem is to store related conditional rules in complementary sets of the

form:

Conditiony, — o — 3

Condition, — o — f3,

where C'onditiony, ..., Condition, form a partition. The following is a hypothet-

ical example of a complementary set of wave-rules:

= false Ny = false —  bus(|s(t) T,:L',y) = |memory(t, bus(t,x,y))
:

A
x = false Ny =true — bus(|s(l)|,x,y) = |acc(t,bus(t, x,y))
"

r=true Ny = false — bus(|s(t) T,:L',y) = |pe(t, bus(t, x,y))

r=1true Ny =true — bus(|s(t)|,x,y) = |buffer(t,bus(t,z,y))

which says that a bus loads at time ¢+ 1 from either the memory, the accumulator,

the program counter, or the buffer register, depending upon the values of = and y.

Rippling with multiple wave-fronts

This kind of rippling ripples out more than one wave-front at once. Wave rules

that do this type of rippling are called multi-wave rules. Examples of multi-wave
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rules are the following:

i i

YU,V : Natural |s(U)| =|s(V)| = U=V

U+v] =[x+Y] = [U=xrv=v]
1l

U+V)| W = [TxW VW]

Wave rules are derived from axioms, recursive definitions, and lemmas. An-
notations of well annotated terms (wats) on wave rules and induction conclusions
are obtained by the recursive application of the unary functions wfout, wfin, and
wh which place an outwards box, and inwards box, or an underline in an un-

annotated term, respectively. These functions can be represented schematically as

follows:
wfout(a(x)) gives |afx) !
wfin(a(x)) gives |afx) !
wh(a(x)) gives azx)
This way, an outwards wave-front like w fout(a(wh(p1),. .., wh(p,))) is represen-
ted schematically by |a(py, ..., i) T, where n > 0. The arguments p; can also

be well annotated terms. The function skel takes a well-annotated term wat and

returns a set of terms which form the skeleton of wat.

It has been shown that rippling with well-annotated terms has the following
properties [Basin & Walsh 96b]:
well-formedness: if s is a wat, and s ripples to ¢, then ¢ is also a wat.

skeleton preservation: if s ripples to ¢, then skel(s) C skel(?);

correctness: if s ripples to t, then skel(t) rewrites to skel(t) in the un-annotated

theory;

termination: rippling terminates because it guarantees a measure reduction in
a well-founded order. The position and orientation of wave-fronts define
this measure, and rippling applies wave rules that reduce this measure in an

unchanging skeleton.
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Notice that rippling reasons backwards, from the conjecture to the axioms.
Therefore, to apply the implication ¢ — @ it uses the rewrite rule ¢» = ¢. Clam
uses a general notion of polarity to determine in which orientation and to which
sub-expressions a wave-rule can be legally applied. For instance, for wave-rules
formed from implications, the polarity of a sub-formula is the parity of the number
of implicit or explicit negations within which it is contained, e.g in =pAg¢ — r, p and
r are of positive polarity and ¢ is of negative polarity. For wave-rules formed from
inequalities, the polarity can be calculated from the monotonicity of the functions
containing the sub-expression. The annotations in the induction conclusion and
the wave-rules are calculated automatically in Clam by an algorithm implemented

in a wave-rule parser.

3.2.2 Fertilisation

The use of the induction hypothesis to simplify the induction conclusion is called
fertilisation. It is applied when no further rippling is possible. In the previous
example we made a direct appeal to the induction hypothesis to complete the
proof. This is called strong fertilisation. Alternatively, the induction hypothesis
can also be used as a rewrite rule to simplify the induction conclusion. This is
called weak fertilisation. For instance, in the example about the associativity of
addition, instead of using wave rule 3.7, we can use the induction hypothesis (3.2)
to rewrite either side of the conclusion (3.8). Using the hypothesis 3.2 left-to-right
we get:

s+ (y+2) =s(z+(y+2))
which is trivially true, finishing the proof.

Weak fertilisation is useful when rippling gets blocked in one side of the induc-

tion conclusion. Consider the following conjecture:
Vo : Natural half(z + ) =2
where half is defined by:

half(0) = 0
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half(s(0)) = 0
half(s(s(u))) = s(half(u)) (3.17)

from which Clam derives the wave-rule:

hal f(s(s()) ) = [sChalf @)

Assume that rippling analysis chooses a 1-step induction on z. The step case

becomes:

half(x +x) =a F half(|s(z) T—|— s(x) T) =|s(x) i

The wave-rule from the recursive definition of plus applied to the left-hand side of

the induction conclusion gives:

half(|s(z +|s(@)])|) = |s(2)

at this point no further wave-rules are applied and the rippling is blocked. Note
that the wave-rule required to unblock this rippling is:

U+[s)] =[s+v)[

This is a commuted version of addition, but let us assume that this wave-rule is
not available. However, the right-hand side is trivially fully rippled, so we can

apply weak fertilisation using the induction hypothesis right-to-left to get:

half(s(z + s(2))) = [s(half{a+ 2))|

After strong fertilisation, wave-fronts are removed since they have completed their
job. After weak fertilisation they may still have a role to perform on the unblocked
side of the equation, e.g. the right-hand side, so the annotations are left in place
in this side. Their role is to be rippled-in by applying wave-rules derived from
equations in the opposite direction, that is, from right to left. This is indicated
by annotating the wave-front with the direction in which it is going to be rippled:

inwards. Thus, the inwards wave-rule obtained from equation 3.17 is:

s(hal f(U))] = hal f(s(s(U)])
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applying it to the right-hand side gives:

half(s(z + s(2))) = hal f([s(s(z + 2)) ')

after which no more rippling in is possible. The wave-fronts are now removed and

the outermost function symbols are cancelled to give:
x+s(x)=s(x+x)

which is solved by generalisation and induction.

Note that this subgoal is an instance of the missing wave-rule. This is not
a coincidence, from the above analysis, we can see that if weak fertilisation and
rippling succeed, then the subgoal they leave is an instance of the missing wave
rule, which can be generalised into the missing wave-rule, stored, and used again

when needed.

3.3 An example

We now give an example to illustrate the concepts explained. Consider the con-
jecture that says that the length of two lists appended is equal to the sum of the
lengths of each list:

Va,y: 71 list length(x <> y) = length(x) + length(y) (3.18)

where x and y are two lists of elements of type 7, and length calculates the length

of a list. The recursive definition of length is:

length(nil) = 0
length(H :: U) = s(length(U)) (3.19)

From which the following outwards wave-rule is derived:

length(T) = S(Zength(V))T (3.20)

(H::U) <>VT = H::(U<>V)T (3.21)
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1 ind_strat
/ \
2  sym evad 7 Step_case
3 rewrite 8 ripple
4 length 9  wave (length)
5 append 10 wave (plus)

}

6 plus 11 wave (append)

12 wave (length)

13 wave (Peano axiom)

14 fertilise

15 elementary

Figure 3-5: Structure of proof plan

The structure of the proof plan which proves this conjecture is displayed in figure
3-5. The proof plan is obtained automatically by Clam using the depth-first
planner. Method and sub-method applications are marked with step numbers in

the nodes of the tree and are as follows:

e methods in the data base are tried one by one. When the method ind_strat
is tried, (in this case the other methods will have failed), we have that
rippling analysis and the definition of append suggest a list induction with
x as the induction variable (step 1)

o the base case is

length(nil <> y) = length(nil) 4 length(y)
to which symbolic evaluation is applied (step 2)

o rewriting with the base-case definitions of append, length, and plus, and
propositional reasoning solves the base case (steps 3-6)

e the step case is

length(x <> y) = length(x) + length(y)
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+ length(T <> |y]) = length(T) + length(|y])

to which the step_case sub-method is applied (step 7)
e the ripple sub-method looks for wave-rules to apply (step 8)

e the wave sub-method applies wave-rule 3.20 (the recursive definition of length)

on the right-hand side of the induction hypothesis (step 9):

length([@=z] <> |y)) =[s(length(@)| + tength(|y))

e the wave sub-method applies wave-rule 3.6 (the recursive definition of plus)

in the right-hand side (step 10):

length([a x| <> [y]) =|s(length(z) + length(|y]))

e the wave sub-method applies wave-rule 3.15 (the recursive definition of ap-

pend) in the left-hand side (step 11):

length(ja :: @ <> |y T) =|s(length(z) + length(|y]))

e the wave sub-method applies wave-rule 3.20 (the recursive definition of length)

in the left-hand side (step 12):

s(length(x <> |y])) - s(length(x) + length(|y]))

e the wave sub-method applies wave-rule 3.7 to obtain (step 13):

length(z <> |y]) = length(z) 4 length(|y])

e this matches the induction hypothesis and strong fertilisation finishes the

proof applying the sub-method elementary

Proof planning has been applied to other domains in addition to induct-
ive theorem proving. These include summing series [Walsh et al 92], hardware
configuration [Lowe 91], program synthesis [Kraan et al 93], bridge game playing
[Frank et al 92], and data-type transformation [Richardson 95].
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3.4 Clam-Oyster

The Clam-Oyster system has been developing since 1988 by the Mathematical
Reasoning Group at Edinburgh, incorporating previous experience in meta-level
and equational reasoning obtained from the PRESS system during the late 70s and
early 80s [Sterling et al 82,Silver 83]. A description of the Clam-Oyster system is
given in [Bundy et al 90] and here, we give a brief description, highlighting the
features which will be relevant for understanding hardware verification with proof

planning.

3.4.1 Oyster

Oyster is a tactic-based interactive proof editor for goal directed, backward chain-
ing proofs. It is based on intuitionistic higher-order logic and type theory. It
uses Prolog as a meta-language. It includes the types and constructors for natural
numbers, integers, lists, disjoint union, functions, dependent functions, product,
dependent product, quotient, subsets and recursion. A detailed description of the
system is given in [Horn 95]. The user can create definitions and theorems which
are proved using the inference rules of the logic and of the various types. For in-
stance, the definition of addition over the natural numbers which we will be using

in the following chapters, is given by:

plus(x,y)<==>p_ind(x,y, [p,r,s(r)])

where p_ind is the inductive constructor for the natural numbers, x is the induction
variable, y is the value for the base case, and [p,r,s(r)] describes the recursive
computation of the function: s(r) is the value at s(p) where r is the value at p.
From this definition, we have derived a primitive recursive function of addition,

given by equations 3.5, which must be justified as theorems in the theory of the
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1

natural numbers . We may also define addition using the extract term from a

synthesis theorem in which the p_ind term is introduced.

plus(x,y)<==>term_of (plus) of x of y

This sort of definition facilitates the type-finding procedure during proof. All the
object-level definitions as well as the equations and rewrite rules derived from the

equations and used by Clam for proof planning, are treated in a similar way.

3.4.2 Clam

Clam implements the idea of proof planning. The main components of the Clam
proof planner are: the logical objects, the method language, the planners, the
library mechanism, and the wave-rule parser. The method language which con-
sists of predicates and connectives, also uses Prolog as its meta-language. The
library mechanism allow the user to manipulate the logical objects. The planners
implement various search procedures like depth-first search, breadth-first search,
iterative deepening search, and best-first-search to apply methods. The wave-rule
parser generates automatically annotations of wave-rules and induction conclu-
sions. These annotations are created dynamically when the wave-rules are re-

quired. A detailed description of the system is given in [vanHarmelen & group 96].

Clam has various types of logical objects and uses commands to handle them.
For instance, an Oyster definition for addition is recognised by the command
def (plus). The base and recursive equations of addition are handled by giving
them identifiers made from the name of the definition and a consecutive num-
ber, i.e., plusl, and plus2, and handling them by the commands eqn(plusil)
and eqn(plusl) respectively. Theorems like the associativity of addition, given
by formula 3.1 are named by an identifier, e.g. assp and handled by the com-
mand thm(assp). Wave rules derived like 3.6 are identified by the name of the

'We have used a infix notation to represent arithmetic and list operations
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formula from which they are derived and recognised by the command wave like
in wave(plus2). Methods, sub-methods, induction schemes, and proof plans are
handled by commands mthd, smthd, scheme, and plan respectively, in a similar

way.

Dependencies among logical objects are declared in a file called needs For
instance, the logical objects needed by theorem 3.18 (called len_sum) are declared

by the following entry in the needs file:
needs(thm(len_sum) [def(plus),def(length),def(append) ,wave(cnc_s)])

Logical objects can be loaded from and saved into the library with commands like

1ib load(T) and 1lib_save(T), respectively. For instance, by saying
lib_load(thm(len_sum))

Clam will load the theorem len_sum along with all the logical objects declared in

the needs file.

3.5 Summary

We have presented a review of the proof planning technique as developed by the
MRG group. We have described the notion of methods, which is the main com-
ponent of proof planning. We have also described inductive proof planning and
its main heuristics and search control mechanisms: rippling analysis, rippling, and
fertilise, and have illustrated inductive proof planning with an example, along
with a description of the Clam-Oyster proving system. This description provides
us the background knowledge of proof planning required to explore now its use in

verifying hardware.
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Hardware Verification

Proof planning can be applied to automate hardware verification. This is the main
hypothesis of this thesis. In this chapter we illustrate the use of proof planning
for hardware verification by applying it to the verification of two simple circuits,
and introduce the basic ideas. Section 4.1 describes basic elements for hardware
verification: types, operations on types, and conversion operations between types;
section 4.2 explains the proof planning of a non-recursive circuit: a full adder;
section 4.3 explains the proof planning of a recursive circuit: an n-bit incrementer;

and section 4.4 presents a summary or the chapter.

4.1 Basic elements

In this section we describe the basic elements that we will need for our hardware
verification task: types, operations on types, and conversion functions between
types. Circuits are represented using a functional representation as described in

section 2.2.4 and computer words are formalised using lists.

4.1.1 Types

The main types we will be using include: Booleans, words, natural numbers,

signals, and states. Other types that we may use will be introduced when needed.

60
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Booleans

The type Boolean is represented as a disjunction of two unary types, where true

is the left injection and false is the right injection of the disjoint type.

This definition is influenced by the fact that we are using an intuitionistic
logic, type theory system (i.e. Ogyster) at the object level, but the results are

independent of initial design decisions like this.

Words

Words (or bit-vectors) are represented as lists of booleans:
word = bool list

The elements of the type (7 list) are nil and terms of the form h :: ¢, where nil
stands for the empty list, :: is the list constructor, f is an element of type 7, and
t is a list of type 7 list. Inductive term constructors are supplied (e.g. 1ist_ind),
from which primitive recursive functions defined over lists, like the append of two
lists, the reverse of a list, and others, can be obtained. Most significant bits can
be either to the left or to the right of the list. The latter representation is called

big-endian, the former is called little-endian.
We can parameterise words on their length using the following set type:
wordn(n) = {w : word|length(w) = n}.

The output of a hardware device is given as a word containing a finite number of
Boolean values, so we will frequently use these types to formalise the output of

circuits like adders, arithmetic logic units, shifters, memories and other devices.
Computer memory will be represented by a list of words of length n:

memn(n) = wordn(n) list

Natural numbers

The type pnat supplies the natural numbers. The elements of pnat are 0 and terms

of the form s(...), where s is the successor function on natural numbers. Inductive
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definition terms are supplied (e.g. p-ind), from which primitive recursive functions
defined over pnat, like addition, subtraction, division and multiplication, can be

obtained.

This type will be frequently used to formalise the specification of a hardware

device, abstracting the internal working of the device.

Signals

Signals arise in modelling sequential circuits. A signal is represented by a function

type from time (represented by the natural numbers) to words:
stgnal = time — word

The output of data-path components which are transmitted by a bus, are usually
formalised using signals. Control signals are represented by another function type

flag from time to Booleans:
flag = time — bool

Signals generated by a control unit, usually are of type flag.

States

States arise when modelling the operation of a computer system. A state is rep-
resented by a product type where the types of the elements of the product depend

on the kind of state being represented:

state = typei#...H#Htype,

where # is the product type constructor. Elements of this type are formed by
the operator &, e.g. t1& ... &t, is an element of the type state. For instance, a
computer state at the instruction level ma be represented by the contents of the
memory, the program counter, the accumulator, and a status flag which indicates

whether the computer is idle or running:

inst_state = memn(16)#Fwordn(13)#wordn(16)#bool
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where memn(16), wordn(13) and wordn(16) are types for representing a memory
of 16-bit words, words of 13 bits (e.g. the program counter), and words of 16 bits

(e.g. the accumulator register).

A computer state at the register transfer level is often represented by the
contents of the memory and various registers of different lengths like the program
counter (13 bits), the accumulator (16 bits), the status flag (1 bit) , the buffer (16
bits), the memory address register (13 bits), the instruction register (16 bits), the
argument register (16 bits), the microcode program counter (5 bits) and the ready

flag (1 bit). Its type is given by:

rt_state = memn(16)#wordn(13)F#wordn(16)4# . .. #bool

We will see in the next sections and in chapter 5 how all these types are used

to formalise and verify combinational and sequential hardware.

4.1.2 Operations

We define some operations on types, the ones we will be using in modelling hard-
ware. A type operation is a function that takes elements of the type and produces

another element of the same type.

Boolean logic

A Boolean logic comprises the type Boolean and operators on this type which are
defined in terms of a built-in decision operator. For instance, the and operator

applied to two variables U and V' is defined by:
and(U,V) = if U is true then V else false

From this definition we can derive properties on booleans like the and operation
which is given by:
and(true,V) = V
and(false,V) = false
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These functions correspond to theorems which are justified from the primitive
definition of and. From these equations, rewrite rules are obtained for proof plan-
ning. The other Boolean operators are defined in a similar way: not, or, zor, imp,

and equiv. We these Boolean functions we will be able to formalise Boolean gates
like AND, OR, INVERTER, XOR, NAND, etc., as well as basic hardware devices

such as an adder which sums two bits.

Word operations

Primitive recursive functions defined over lists like append, length and reverse
defined in chapter 3, apply also to words. The bit-wise and operation is defined
by:

and_w(nil,nil) = il
andw(H1 U, H2::V) = and(H1,H2) :: and_w(U,V) (4.1)
Other bit-wise Boolean operations, like not, or and zor, are defined in a similar

way and will be useful in specifying the behaviour of an arithmetic logic unit.

Natural number operations

The following operations will be useful in specifying the behaviour of arithmetic
circuits like multipliers, dividers, exponentiators and factorial circuits. The follow-

ing are primitive recursive function defined on the natural numbers. Multiplication

is defined by:

0xV = 0
s(Uy«V = UxV 4V

Exponentiation is defined by:

22U = 9242V
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where 2 is an abbreviation for s(s(0)). Factorial is defined by:

fact(0) = s(0)
fact(s(U)) = s(U)* fact(U)

And division on the natural numbers (quotient and remainder) are defined by:

U/o = 0
U<V UV = 0
U+V)V = s(UJV)

rem(U,0) = 0
U<V —=rem(U)V) = U
rem((U4+V),V) = rem(U,V))

4.1.3 Conversion functions

Functions that convert from one type into another type are necessary for comparing
the specification and the implementation of a circuit, which are frequently defined
in different types, as opposed to operations on a type, whose application produces
elements of the same type. For instance, if the specification of a circuit is given
by an equation in the natural numbers and the circuit gives a word as output, we
need to convert the word into a natural number to make it comparable with the

specification.

The function bool2nat converts a Boolean into a natural number:

bool2nat(false) = 0

bool2nat(true) = s(0)

The primitive recursive function word2nat converts a word in big endian format
into a natural number:
word2nat(nil) = 0

word2nat(H = U) = bool2nat(H) + 2 * word2nat(U) (4.2)
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word2nat_[ converts a word in little endian format into a natural number:

word2nat_I(nil) = 0

word2nat I(H = U) = bool2nat(H) * olength(U) 4 word2nat 1(U)

Sometimes we need the inverse operation, that is, converting a natural number into
a word of a certain length. This is obtained by the following primitive recursive

function:

nat2word(0, N) = 0

nat2word(s(len), N) = nat2bool(N) :: nat2word(len, hal f(N))

where nat2bool is a primitive recursive function that converts the number 0 into

false and the number s(0) into true.

The function abs_imp converts a register-transfer level state into an instruction

level state:
Vay : memn(16), 29 : wordn(13), x5 : wordn(16), x4 : bool, x5 : wordn(16),
xg : wordn(13), x7 : wordn(16), xs : wordn(16), xg : wordn(5), x10 : bool

absimp(x1&a&rs&as&as&rc&ar&asbrg&ary) = (r1&vr&as&ry)

4.2 A non-inductive proof

We describe now, the verification of a full-adder using a non-inductive proof plan.
The full adder is a non-recursive combinational circuit which serves as a building-
block of more complex circuits. Basically, it is a 1-bit adder which takes as input
two bits a, b and a carry input bit ¢ and produces a sum bit fa_sum and a carry

output bit fa_carry.

4.2.1 Formalisation

The formalisation of the full adder is given by formulae that describe the specific-

ation, the implementation and the verification conjecture.
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The specification of a full adder is given by the equation:

full_adder _spec(a, b, ¢) = bool2nat(a) + bool2nat(b) + bool2nat(c)

An implementation of the full adder is displayed in figure 4-1. The sum fa_sum

DA
;D )%F’C"’ g fa_carry

—

p2

Figure 4—1: 1-bit Full adder

is obtained by two XOR gates connected by an internal wire p;. The carry output
fa_carry is obtained from two AND gates, one OR gate, one XOR gate, and three

internal wires py, pa, p3. These circuits are formalised as follows:

fa_sum(a,b,c) = wxor(a,zor(b,c))
fa_carry(a,b,¢) = or(and(xor(a,b),c),and(b,c))
full_adder(a,b,¢) = fa_sum(a,b,c):: fa_carry(a,b,c) ::nil

The verification of the full adder is stated by the following conjecture:

F Ya, b, c: bool word2nat(fa_adder(a,b,c)) = full_adder_spec(a, b, c)

4.2.2 Verification

The verification is done in two stages: proof planning and execution of the com-

posite tactic (proof plan) resulting from the proof planning.
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Proof planning

The conjecture is proof planned automatically by Clam using the depth-first plan-
ner. The method sym_eval solves the conjecture by doing rewriting, Boolean
case analysis on the variables a, b and ¢, and propositional reasoning. Figure 4-2
displays the structure of the proof plan. There are 22 method and sub-method

application shown by the numbers in the nodes of the tree.

1 symevd
2 bool_cases(a)
/
3 eval_def 13 eval_def
4 bool_cases(b) 14  bool_cases(b)
5 eval_def 9 eval_def 15 eval_def 19 eval_def
l l | l
6 bool_cases(c) 10 bool_cases(c) 16 bool_cases(c) 20 bool_cases(c)

N NN N

elementary elementary elementary elementary elementary elementary elementary elementary

Figure 4-2: Structure of proof plan for verifying the full adder

o the method sym_eval applies symbolic evaluation to simplify the goal by

calling the sub-methods eval def, bool cases and elementary.

e cval def rewrites using the rules derived from the definitions of word2nat,

times, plus, fa_sum, and fa_carry.

® bool _cases does a case split on variable a to give two subgoals, one for the
false case and another for the true case (this sub-method is described in

chapter 6).
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o cval def simplifies again the resulting subgoals using the rewrites of and,
or, xor, bool2nat and plus. Similar simplifications are done for the boolean
variables b and ¢ giving 8 cases which are solved by propositional reasoning

using elementary.

Plan execution

The proof plan is then executed by the Oyster system which proves the conjecture
executing the tactic associated to each method. The formalisation of this proof is

displayed in appendix B.

Statistics

The proof planning is done by Clam in 4 seconds. The execution of the proof plan
is done by Oyster in 1:45 minutes. In general, plan execution times are higher
than proof planning times. This has to do with the use of a prover based on type

theory with time consuming type checking sub-goals.

4.3 An inductive proof

We now describe the verification of a recursive combinational circuit using an
inductive proof plan. An n-bit incrementer takes as input a word = of length n
and a Boolean carry input ¢, and produces as output a word of length n + 1 which
is the result of adding ¢ to z. If ¢ is true then = in incremented by 1 otherwise x

is left unchanged. In both cases there is a carry output ¢,.

4.3.1 Formalisation

The formalisation of the n-bit incrementer is given by formulae that describe the

specification, the implementation and the verification conjecture.



Chapter 4. Hardware Verification 70

The specification of an n-bit incrementer is described by the following equation:

inc_spec(x, ¢) = word2nat(x) + bool2nat(c)

An implementation of the n-bit incrementer is obtained by propagating the
effect of adding the carry input to the least significant bit of the word to be
incremented. This effect is achieved by cascading n half-adders as shown in figure
4-3. A half-adder is a full-adder with two inputs instead of three and is defined
by:

ha_sum(a,c) = xor(a,c)

ha_carry(a,c) = and(a,c)

x1 x2 xn
c half cl c2 half c(n-1) half co
N adder [ 7 adder adder =
yl y2 yn

Figure 4-3: Implementation of n-bit incrementer

This design is formalised by the following recursive function:
inc(nil,¢) = e¢:nil

inc(a ::x,¢) = ha_sum(a,c) ::inc(x, ha_carry(a,c)) (4.3)

The conjecture that establishes the equivalence between the specification and

the implementation is the following:
F Ve bool, Va1 word, word2nat(inc(x, ¢)) = word2nat(x) + bool2nat(c)

The specification is given unfolded, because this way, we can have a wave-rule

from the conjecture, once we prove it.
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4.3.2 Verification

The verification is done again in two stages: proof planning and execution of the

composite tactic (proof plan) resulting from the proof planning.

Proof planning

The proof plan is generated automatically by Clam using the depth-first planner.
The proof plan for this theorem is graphically displayed in figure 4—4.

1 ind_strat 1 ind_strat

N wmi ™ % Uion\
3 sym_eva 7  step_case
4 eval_def 8 ripple
word2nat
plus
inc 9 wave
times

5  term_cancel
T 10 unblock

6 elementary \L
11 fertilise (weak)

12 sym_eval

13 term_cancel

i

14 bool_cases

AN

15 eval_def 17 eval_def9 eval_def21 eval_def

16 18 20 22
elementary elementary elementary elementary

Figure 4-4: Structure of the proof plan for n-bit incrementer

The left-hand side shows method application and the tree in the right-hand
side shows both method and (the main) sub-method application. There are 22
method/sub-method application steps indicated by the numbers on the nodes:

o the verification conjecture matches the input slot H ==> (' of the method
ind_strat, with H set to the empty list and G set to the verification con-

jecture (step 1);
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o the sub-method inductionis tried: rippling analysis and the recursive defin-
ition of inc suggest an induction on word using variable = (step 2). This
induction scheme is a special case of induction on lists where the elements

of the list are of type bool. Thus, we have the following new goals:

the base case:
word2nat(inc(nil, c)) = word2nat(nil) + bool2nat(c)

and the step case:
word2nat(ine([vg = vy T, le])) = wordQnat(T) + bool2nat(|c|)

e The base case is solved by symbolic evaluation (steps 3-6) as follows: re-
writing is applied to the goal using rules from the equations for word2nat,
plus, inc and times. Then the sub-method term_cancel (which is explained
in chapter 6) applies arithmetic reasoning by cancelling out equal additive
terms on both sides of an equation. Finally, the sub-method elementary

finishes the remaining subgoal.

e The step case is simplified by the sub-method step_case as follows (steps
7-11): The annotations of the sub-term word2nat(vy :: vy) on the right-
hand side of the equation match the annotations of the left-hand side of
the following outwards wave-rule obtained from equation 4.2, the recursive

definition of word2nat:

wordQnat(T) = | bool2nat(H) 4 2 * word2nat(U) ! (4.4)

so the wave method is applied to give:

. = [bool2nat(ve) + 2 * word2nat(x) ! + bool2nat(|c|)

The annotations of the sub-term inc(vy, ¢) on the left-hand side of the equa-
tion match the annotations of the left-hand side of the following outwards

wave-rule obtained from equation 4.3, the recursive definition of inc:

inc(T, V) = hasum(H, V) :ine(U, ha_carry(H,V)) ! (4.5)
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so the wave method is applied again to yield:

word2nat(| ha_sum(vg, ¢) :: ine(x, ha_carry(ve,c))| ) = ...

The annotations on the right-hand side of the equation match the annota-
tions of the left-hand side of wave-rule 4.4, so that the wave method applies

once more to give:

bool2nat(ha_sum(ve, ¢)) + (2 * word2nat(inc(x, ha_carry(ve, c))))| = ...

No more rippling or unblocking is possible, thus rippling finishes its role.

But now the fertilise method applies, as the sub-term
word2nat(inc(x, ha_carry(vg, ¢)))

on the left-hand side of the equation matches the left-hand side of the in-

duction hypothesis

word2nat(inc(U,V)) = word2nat(U) 4 bool2nat(V')

with the substitution ha_carry(vg, ¢)/V. Thus, the output of the fertilise
method is obtained by rewriting from left to right with the induction hypo-

thesis, giving:

bool2nat(ha_sum(vy, ¢)) + (2 * (word2nat(vy) + bool2nat(ha_carry(ve,c))))

(bool2nat(ve) + 2 * word2nat(vy)) + bool2nat(c)

e The resulting subgoal is simplified by symbolic evaluation (steps 12-22) by
applying arithmetic cancellation (this is a new method which will be ex-
plained in chapter 6), Boolean case analysis (also a new sub-method to be
explained in chapter 6) on variables vy and ¢, rewriting and propositional

reasoning on the four Boolean cases, to finish the proof.
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Plan Execution

The resulting composite tactic (or proof plan) customised for proving this partic-
ular conjecture is then ran in Oyster which executes the tactic associated to each
of the methods which compose the proof plan, obtaining in this way a verification

proof.

Statistics

Clam plans the proof in 9 seconds. Oyster executes the plan in 41 seconds. The
proof planning of the n-bit incrementer required no lemmas. Another feature of
Clam is that, in general, because of its automation facilities, it requires very few
lemmas in order to find proof plans, compared to other systems. However, proof
plan generation can be made faster if we add certain lemmas. For instance if we
add the lemma

zr+0=2a

Clam generates another proof plan in only 5 seconds.

4.4 Summary

We have presented two examples to introduce the basic ideas about the use of
proof planning for hardware verification. The first example was a full-adder, a non-
recursive, combinational circuit verified by case analysis. The second example was
an n-bit incrementer, a recursive combinational circuit verified by inductive proof
planning, using no lemmas in its verification. These two proofs are simple, but
illustrate the way in which proof planning can be applied to verify circuits built by
replicating a basic component. For this type of circuit we exploit the automation
facilities of inductive proof planning to produce a proof. Tasks required involved
formalising the problem, adding two new sub-methods (e.g. Boolean case analysis

and arithmetic reasoning), planning the conjecture and executing the plan.
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A Methodology

The hardware domain presents many examples of circuits with replicated com-
ponents and feedback loops. Formal methods provide techniques to reason about
such circuits and remain an active area of research. Among formal methods are
meta-level reasoning techniques, of which proof planning is a type. In chapter 4 we
saw how poof planning is applied to verify simple circuits. Proof planning can be
scaled up and applied systematically to verify hardware with replicated compon-
ents and feedback loops. Our work shows that proof planning can be successfully
applied at least in the following cases: verification of combinational circuits and
verification of synchronous sequential circuits. In the former, if the circuit is built
by replicating a set of basic hardware components, then it can be formalised using
recursive functions. In the latter, if the circuit operation is controlled by a global
clock, then we can formalise it using a finite-state machine to represent time trans-
itions. Given appropriate extensions, both types of verification proofs can be done
using inductive proof planning by reasoning about the number of components and

the time parameter.

In this chapter we describe a simple methodology for hardware verification us-
ing proof planning for verifying both types of hardware. Section 5.1 describes a
methodology based on the concept of proof engineering. Sections 5.2 and 5.3, apply
the methodology to verify a set of combinational and sequential circuits of increas-

ing complexity: an adder, an arithmetic logic unit, a parallel array multiplier, and

75
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a simple microprocessor. Section 5.4 discusses the features of extendability and

scalability of proof planning. Finally, section 5.5 summarises the chapter.

5.1 A Proof Engineering based Methodology

We describe a methodology based on the idea of proof engineering for the verifica-
tion of hardware using proof planning. Proof engineering refers to the development

of formal proof for systems (product) design and verification.

The methodology consists of partitioning automation of formal proof into tasks
classified at three levels: user, proof and systems (tool) tasks. User level tasks have
to do with formalising a particular verification problem and using a formal tool to

obtain a proof. Tasks typically will include the following:

formalise the problem by providing definitions of the specification and the

implementation, and a statement of the verification conjecture;

e instruct a proof planner to use one of the planners and a predefined set of

methods, to generate a proof plan; and

e cxecute the proof plan to obtain a proof

e if a proof is not obtained, then revise the formalisation, which may include

bugs, do appropriate corrections, and try again.

In case of failure, then proof tasks come into action. Proof level tasks have to
do with tuning proof techniques without modifying the tool system, and typically

will include the following:

e apply a different method configuration;

e provide a possible missing lemma;

e modify an existing method and tactic;
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e provide a new method and tactic;
e formalise a new theory.

If the problem persists (we expect this to be rarely the case), then systems level
tasks, which refer to the modification of the proof system tool, may be necessary.

This may include:
e correct a bug or inefficiency in either the planner or the prover;
e provide a new predicate or connective for the method language;
e provide a new planner or extend an existing one;
o extend the library mechanism with a new type of logical object;
e extend the wave-rule parser or provide a new one; or

e develop a new interface for a different tactic-based prover, a model checker,

or a decision procedure.

The line between the tasks is sometimes rather fine, e.g. providing a different
method ordering could be done at the user level as well, especially for users with a
certain experience with the use of proof planning. Also, providing a new method
or a new predicate are not that different, although, conceptually, they are different,
because the latter involves a modification to the planner and the former is only

input to the planner.

We believe that this methodology could be supported organisationally, by hav-
ing different individuals with different levels of competence carrying out these
tasks. For instance, the user level tasks could be performed by design engineers,
with expertise in product design in a particular domain. The proof level tasks
would be performed by an individual with experience in the use of formal meth-
ods for system design, and who we call a proof engineer. The systems level tasks
will be done by software developers who build, maintain and commercialise formal

methods tools. In this case, we have played these three roles.
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The methodology proposed is not exclusive for hardware, it could equally be
applied to applications in other domains e.g. software development, product con-

figuration, product design, production scheduling, etc.

To formalise a verification problem, the user provides equations, both recurs-
ive and non-recursive for the specification and the implementation, a verification
conjecture, and dependencies among logical objects. The conjecture is typically
an equation stating that the specification is equal to an abstract form of the im-

plementation. For combinational hardware it takes the form:
Vaq,...,x, conditions — spec(xq,...,x,) = abs(imp(xy,...,1,))

In the case of synchronous sequential hardware, there will be a time parameter ¢,
and if the specification and the implementation involve different time scales, then,
we must provide a mapping function f that converts times from one scale into the

other:

Vi:timeVay, ..., x,

conditions — spec(t,x1,...,x,) = abs(tmp(f(t), x1,...,2,))

In either case, the same set of methods is applied to plan the conjecture.

In the following sections we illustrate the methodology by describing several
examples of combinational and sequential circuits. In presenting these examples,
we also emphasise two features of proof planning which support the methodology:
extendability and scalability. Extendability means that the proof and systems tasks
which involve extensions to proof planning to verify a particular circuit will also
work to verify other circuits of the same type. Scalability means that the proof
and systems tasks which involve extensions to proof planning to verify a particular
circuit will also work to verify more complex circuits. We conjecture that these two
features of extendability and scalability will hold for circuits of industrial-strength,

if we apply to them a proof engineering methodology based on proof planning.



Chapter 5. A Methodology 79

5.2 Combinational circuits

In this section we describe the verification of some combinational circuits using
the methodology. The circuits presented in this section are: an adder, a multiplier,
and an arithmetic logic unit. We focus on the aspects which are relevant to the

verification methodology: user, proof, and systems level tasks.

5.2.1 An n-bit adder

An n-bit adder takes as input two words = and y of the same length n, and a carry

input bit ¢ and produces a word adder of length n 4+ 1 which is the sum of x and

Y.

User tasks

Tasks involved here include formalising the problem and running Clam- Oyster to
obtain a verification proof. The formalisation of the adder included experimenting
with relational and functional representations. A relational formalism was tried
first, just to find out that Clam (especially the rippling technique) was designed
to deal with functional representations, and we preferred the functional formal-
ism thereafter. Another representation decision was determining whether to use
functions or lists to represent words. The first attempt was to use functions, but
this revealed several inefficiencies of Clam’s wave-rule parser in handling large
terms. The decision to use a functional formalism to represent circuits and lists

to represent words was supported by reading Hunt’s work with Ngthm [Hunt 86].

The specification is given by the equation:
adder _spec(x,y, c) = word2nat(x) + word2nat(y) + bitval(c)

A common implementation of the n-bit adder is the ripple-carry adder obtained

by cascading n full adders. This implementation is formalised by the following
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recursive function, where the first two arguments are assumed to have the same

length:

adder(nil,nil,e) = ¢

adder(a :: x,b::y,¢) = fasum(a,b,c):: adder(x,y, fa_carry(a,b,c))

The verification conjecture has the form of a combinational circuit:

length(x) = length(y)

word2nat(adder(x,y, ¢)) = word2nat(x) + word2nat(y) + bitval(c)

The next task is to run Clam-Oyster to get a proof. The proof plan that proves
this conjecture is generated automatically by Clam and is displayed graphically
in figure 5—1. Notice that it has the same structure as the proof plan for the
incrementer circuit described in chapter 4. The left-hand side shows the method
application and the right-hand side shows both, method and sub-method applica-
tion. The planning takes 31 method and sub-method application steps, indicated
by the numbers on the nodes of the tree, we briefly explain the main steps of the

planning:

e rippling analysis, the recursive definition of the adder, and the condition
length(x) = length(y) suggest a double induction on the variables « and y
(steps 1-2). An induction scheme with these characteristics was added to

Clam’s database of induction schemes.

e the base case:
word2nat(adder(nil,nil, ¢)) = word2nat(nil) + word2nat(nil) 4+ bitval(c)

is solved by symbolic evaluation, rewriting, term cancellation, and proposi-

tional reasoning (steps 3-6)
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1 ind_strat 1 ind_strat
13 sym eva 2 induction
/ \
3 sym eva 7 step_case
4 eval_def 8 ripple
5 term_cancel 9 wjve
6 elementary 10 unblock
11 fertilize
12 Weaj_ferti lize
13 sym_eval
14 term%cancel
15 bool%cases
ot o

17  elementary

Figure 5-1: Proof plan for the n-bit Adder

e the step case:

word2nat(adder([vg = N y T,c)) =
wordQnat(T) + wordQnat(T) + bitval(c)

is simplified by rippling, by applying the wave sub-method with the wave

rule 4.4, and the outwards wave rule derived from equation 5.1:

! ]::KT,C):>

Y

adder(‘ H:U

fa_sum(H, I,C) :: adder(U,V, fa_carry(H, I,C))

Unblocking is applied next, and then weak-fertilisation (steps 7-13).

e the remaining subgoal is solved by symbolic evaluation applying term can-
cellation, Boolean case analysis on variables vy, vy, and ¢, which results in 8

cases, each of which is solved by rewriting and propositional reasoning (steps

13-31).
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Plan execution is then carried by Oyster by executing the tactic associated to

each of the methods which appear in the plan.

Proof tasks

The proof tasks consisted of: writing an extra clause for the Boolean case analysis
method, writing a method for doing arithmetic reasoning; adding a new clause
for weak fertilisation; modifying the generalise method to handle Boolean case
analysis; adding a new scheme for induction on two words of the same length;
experimenting with method orderings; and writing or updating tactics associated
to the new or the updated methods. All this extensions are described in chapter

6 and their statistics are analysed in chapter 7.

e Boolean case analysis was first used for verifying the full-adder. The method
contained two clauses to cover a situation in which a Boolean variable is
among the variables of the goal and another situation in which a Boolean
variable is already in the hypothesis list. A third clause was added for the
adder to recognise Boolean terms like the head of a word and do case analysis

on them. The tactic for this method was adapted from the case-split tactic.

o Cancellation of top-level additive terms on both sides of an equality was
carried out by a term cancellation sub-method. The sub-method required

some new predicates and was easy to implement.

o A key step for the successful planning of the adder verification conjecture
was the addition of a clause in the weak fertilise method to handle wave-
fronts that contain several sinks, each of which stores an inwards wave-front.
With this addition, the step case was completed and the proof was finished

by term cancellation and Boolean case analysis.

o The generalisation method was slightly modified to add a precondition for
generalising Boolean terms. The lack of this condition would cause Clam to

loop, reflecting a bug in the type guessing predicate.
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o A special induction scheme was added to Clam’s data base to verify hardware
devices like the adder, in which there are replicated components and two

input words of the same length.

e For this particular proof we had to apply induction first to avoid applying
Boolean case analysis and unfolding of definitions which made proof by in-
duction more difficult. This was done by a change in method ordering and
required experimentation with various orderings. Otherwise, backtracking
when a method fails will generate a different ordering, which in this case,

will find the desired proof plan.

e The modification to the tactics were in most cases straightforward except the
one for term cancellation which was very difficult to implement as explained

in 6.

Systems tasks

The systems level extensions were minor, although in some cases they were time
consuming (e.g. parsing well-annotated terms), and consisted of: writing a new
method predicate for finding terms of type Boolean, updating the type information
of the Prolog program which does type checking, and correcting inefficiencies (e.g.
the predicate for well-annotated terms was implemented in such a way that made

un-necessary, time consuming calculations).

5.2.2 Arithmetic Logic Unit

An Arithmetic Logic Unit (ALU) takes as input two words @ and y of the same
length n, a carry input ¢, and three selection boolean variables sg, sy, s3 which
determine the kind of micro-operation to execute, and produces a word of length
n + 1. It is interesting to note that although this circuit is more complex that
the adder, its proof did not require any new extensions to Clam-QOyster. The ALU
performs the 12 operations displayed in the following table:
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Selection
$3 81 89 ¢ Operation
0 0 0 0 Movex
0 0 0 1 Incrementx
0 0 1 0 Addxandy
0 0 1 1 Addxandy with carry
0 1 0 0 Subtracty from x with borrow
0 1 0 1 Subtracty from x
0 1 1 0 Decrementx
0 1 1 1 Movex with carry
1 0 0 X Bitwise Orof x and y
1 0 1 X Bitwise Xor of x and y
1 1 0 X Bitwise And of x and y
I 1 1 X Notof x (complement)

When sy equals zero, we have an arithmetic operation. The carry input ¢ is used
to further determine the operation. When s; equals 1 we have a logic operation

and the value of ¢ is a don’t care, which is indicated by X.

User tasks

The formalisation of this circuit proceeded as follows: the implementation has
the same form as the incrementer and the adder, thus, implementing the ALU
was straightforward; the specification gave more trouble and most of the time was

spent debugging each of its 12 components.

The specification of the ALU is formalised in terms of the adder and bit-wise

Boolean operations on words. When ¢ = false in
adder(x,nat2word(length(x),0), c)

we have the effect of transferring =, when ¢ = true, x is incremented by 1. When
¢ = false in adder(x,y,c), we get the addition of # and y, when ¢ = true we

have addition with carry. Subtraction of two words x and y is defined in terms of
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addition by adding to = the 1-complement representation of y:
subtract(x,y, c) = adder(x,not w(y), c)

When ¢ = false we have subtraction with borrow, when ¢ = true, y is subtracted
from x. Bitwise boolean operations on two words are specified by the functions

or_w, ror_w, and and_w. Negation of a word is specified by not_w.

There are several possible hardware designs to implement the micro-operations
of the ALU. One approach is to construct and verify a 1-bit AL U that implements
the 12 micro-operations and then cascade n of them to obtain an n-bit ALU.
Figure 5-2 shows a hardware implementation for a 1-bit ALU that implements

the 12 micro-operations [Mano 79].

Ci X8
s2
o — a

x4 x2
X —=
1-bit

Adder

s DJ
cary

= z

Co

Figure 5-2: Hardware Design of a 1-bit ALU

The verification of this circuit is done in Clam- Oyster by Boolean case analysis

on the six variables giving 64 cases.

The n-bit ALU can then be implemented by cascading n 1-bit ALUs. This

implementation is formalised by the following recursive function:

alu(so, s1, s2,nil,nil, ¢) = and(not(sz), ¢) = nil
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alu(so, $1,89,a 22,0y, ¢) (5.1)

alu_sum(sg, $1, $2,a, b, ¢) == alu(so, s1, S2, ¢, y, alu_carry(so, $1, 82,a,b,¢)) (5.2)
The verification conjecture has the form of a combinational circuit:

length(x) = length(y)

alu(so, $1, 82, %, Yy, ¢) = alu_spec(sg, s1, $2, T, Y, ¢)

The next task is to run Clam-Oyster. The proof plan is generated automatically
by Clam and is displayed graphically in figure 5-3. Again, notice that it has the
same structure as the structure of the proof plans for the incrementer and the
adder. The left-hand side shows the method application and the right-hand side

shows both, method and sub-method application. The planning takes 134 method

1 ind_strat 1 ind_strat
36 sym eva 2 induction
base case step case
3 sym eva 30 step_case
4 eval_def 31 ripple
5 bool_cases 32 wave
w,/ (12)
6 eval_def (8-29) 33 unblock
7 elemLtary 34 fertilize
35 weak_fertilize
36 sym_eval
37 eval_def
38 bool_cases
(€ / (48)
39 eval _def (41-134)

40 elementary

Figure 5-3: Proof plan for the n-bit ALU

and sub-method application steps, indicated by the numbers on the nodes of the

tree:
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e rippling analysis, the recursive definition of the ALU, and the condition
length(x) = length(y) suggest a double induction on the variables « and y
(steps 1-2).

o the base case:

alu(so, 1, 82, nel, nil, ¢) = alu_spec(sg, $1, s9, ntl, nil, c)

is solved by symbolic evaluation, rewriting, Boolean case analysis on ss,
$1, So, and ¢ (12 cases, one for each micro-operation), and propositional

reasoning (steps 8-29)

e the step case:

alu(so, $1, 82,[vg =t & IR y T,c) = alu_spec(sg, $1, $2,[ Vg = & N y T,c)

is simplified by rippling, by applying the wave sub-method with the outwards

wave rule derived from equation 5.1:

L[] o)

H:U

IV

alu(so, $1, 82, \

=

alu_sum(sg, $1, 89, U, V, C) i alu(sg, $1, 82, @, y, alu_carry(so, s1, $2,a, b, ¢))

unblocking is applied next, and then weak-fertilisation (steps 30-35).

o the remaining subgoal is solved by symbolic evaluation applying rewriting,
Boolean case analysis on variables vg, vs, 59, $1, S, ¢ which results in 48 cases,

each of which is solved by rewriting and propositional reasoning (steps 39-

134).

Next, plan execution is carried by Oyster by executing again the tactic associated

to each of the methods which appear in the plan.

Proof tasks

We were surprised to see that there were no proof tasks involved. The extensions
made for the adder were exactly the ones needed for the ALU. This example

illustrates the extendability and scalability features of proof planning.
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Systems tasks

The systems tasks were again minor although time consuming, and consisted
mainly of debugging the code and finding a way around the inefficiencies of Clam
in parsing large terms. For instance, the wave-rule parser of version 2.2 could
not load the specification of the ALU in a reasonable time (e.g. it would run for
two hours without finishing). The reason is that it was looking for well-annotated
terms in a very inefficient way. A new implementation of the wave rule parser in
version 2.3 solved this problem. For the time being, we had to patch the library

mechanism program to avoid un-necessary calculations.

5.2.3 Multiplier

This circuit takes as input two words of lengths n and m and outputs a word of
length n 4+ m corresponding to the product of = and y. Multiplication of binary
numbers can be implemented by a simple parallel array multiplier using binary
additions. Consider, for example, multiplying a 3-bit word by a 2-bit word. This

is represented by:

T2 €1 T

X Y1 Yo

T2lYo T1Yo ToYo

21 T1Y1  TolY1

24 23 z2 21 20

to multiply an n bit word by an m bit word the array multiplier uses n * m AND
gates to compute each of these intermediate terms in parallel, and then m binary

additions are used to sum together the rows. This requires a total of n * m one

bit adders.

User tasks

Formalisation of this circuit was easier using a little endian representation of words

(i.e. more significant bits to the left).
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The specification of the multiplier is expressed by the following formula:
mult_spec(x,y) = word2nat(x) * word2nat(y)
The implementation is formalised by the following recursive function:
mult(x,nil) = zeroes(length(x))
mult(x, h:y) =
adder _I(mult_one(x, h) <> zeroes(length(y)), mult(x,y), false) (5.3)

where <> is the list append operation, zeroes(n) yields n zeroes, mult_one multi-
plies the word x times the boolean h; adder_l is an n bit adder which sums words

in little endian notation.

The conjecture which states the equivalence of the specification and the imple-

mentation is as follows:
Va,y : word, word2nat(x) x word2nat(y) = word2nat(mult(x,y))

The proot plan is generated automatically by Clam and is graphically displayed
in figure 5—4. Once again, notice that the structure of this proof plan is similar to
the ones for the incrementer, the adder, and the ALU, except that the induction
strategy is applied 7 times instead of 1. The planning takes 9 method application

1 ind_strat
2 ind_strat 3 sym_eva
4 i nd_strat 6 ind_strat
5 ind_strat 7 sym eva
8 ind_strat
9 ind_strat

Figure 5-4: Proof plan for the nm-bit multiplier
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steps, indicated by the numbers on the nodes of the tree. In this tree we show
just the method application and omit the sub-methods, to make the tree more

readable:

e rippling analysis, and the recursive definition of mult, suggest an induction
on the variables y (step 1).
o the base case:

word2nat(x) * word2nat(nil) = word2nat(mult(x, nil))

is simplified by symbolic evaluation applying rewriting, giving:
0 = word2nat(zeroes(len(x)))
which is solved by another application of the induction strategy by an in-
duction on x (step 2)
e the step case:
word2nat(|x|) * word2nat([vy vy T) = word2nat(mult(|z] ,[vo = vy T))

is simplified by rippling, by applying the wave sub-method with the outwards

wave-rule derived from equation 5.3:

mult(U, T) =

adder I(mult_one(U, H) <> zeroes(length(V)), mult(U,V), false) '

the wave rule obtained from the verification of the n-bit adder, word2nat,

distributivity of times over plus, unblocking, and weak fertilisation, to yield:

word2nat(multOne(x,vy) <> zeroes(length(vy))) + word2nat(mult(x, vy))

word2nat(x) * (bitval(vg) * exptwo(length(vy))) + word2nat(mult(x, v1))

This equation involves mostly arithmetic reasoning, and is solved by symbolic

evaluation and the induction strategy in steps 3-9.

Plan execution is then carried by Oyster by executing the tactic associated to each

of the methods which appear in the plan.
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Proof tasks

The main proof task was finding the various lemmas required for the proof. The
extensions made for the adder worked for the multiplier as well. The lemmas
needed correspond to the verification of the n-bit adder, distributivity of times
over plus, associativity of times, and reduction rules like + 4+ 0 = z, z « 0 = 0.
Reduction rule like this can be solved by induction, although they occur in a
context in which the equation in quite complicated and the planning will take

more time.

Systems tasks

There were no systems tasks involved for this proof.

5.3 A sequential circuit

We now present the verification of a sequential circuit: a simple microprocessor,
called the Gordon computer. This is a 16-bit microprocessor, with 8 program-
ming instructions, no interrupts, and a synchronous communication interface with
memory, designed by Mike Gordon and his group at Cambridge University. Its
architecture has been described elsewhere [Joyce et al 86,Camilleri 88,Joyce 90].
There are three sets of lights: 13 PC display lights which show the contents of the
program counter, 16 ACC display lights which show the contents of the accumu-
lator, and the idle light which is on when the computer is idling (i.e. not executing
a program). There are also 16 two-position switches which are used for inputing
data. There are also 3 boolean switches and a knob in the front panel. Pushing the
button switch when the computer is running (i.e. executing a program) interrupts
the execution of the program and the computer idles. The effect of pushing the
button switch when the computer is idling is determined by the position of the
knob. When the knob is in position 0 the effect of pushing the button is that the

word determined by the state of the thirteen rightmost switches is loaded into the
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program counter. Pushing the button when the knob is in position 1 loads the
word determined by the sixteen switches into the accumulator. When the knob
is in position 2 the contents of the accumulator is stored in the memory at the
location held in the program counter. Finally, knob position 3 is used to start
the execution of the program stored in memory beginning at the location in the
program counter. When execution of a program begins the idle light goes off and
stays off until execution stops. Execution can only stop if a HALT instruction is

encountered or an interrupt is generated by pushing the button.

The specification, given at the instruction level, is defined in terms of the se-
mantics of the 8 programming instructions. Each instruction consists of the set
of operations that determines a new computer state, where a state is determined
by the contents of the memory, the program counter, the accumulator and the
idle/running status of the computer. The execution of an instruction defines a
transition from a state into a new state and this transition determines the time-
unit of an instruction-level time-scale. Thus, for each instruction we must specify
the way in which each of the four components of a computer state are calculated.
The implementation is at the register-transfer level. It consists of a data-path
and a microprogrammed control unit. A computer state at the register-transfer
level is determined by the contents of 11 components: the memory, the program
counter, the accumulator, the idle/running flag, the memory address register, the
instruction register, the argument register, the buffer register, the bus, the micro-
code program counter and the ready flag. The control unit generates the necessary
control flags to update the computer registers. Communication between the bus
and the registers is regulated by a set of gates. The implementation uses a micro-
instruction time-scale. The number of micro-instructions required to compute a
given instruction is calculated automatically by using the ready flag in the mi-
crocode, and the associated time at the micro-instruction-level time-scale mapped
onto the respective time at the instruction-level time-scale. The correctness the-
orem asserts that the state of the computer at the specification level is equal to

an abstract state of the implementation level each time an instruction is executed.
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The computer has the following programming instructions, each consisting of a

3-bit operation code and a 13-bit address:

opcode address mnemonic description

000 13 bits  HALT stops execution

001 13 bits  JMP L jump to address

010 13 bits  JZR L jump to address it ACC=0

011 13 bits  ADD L add contents of address to ACC

100 13 bits  SUB L subtract contents of address from ACC

101 13 bits LD L load contents of address into ACC
110 13 bits ST L store contents of ACC in address
111 13 bits  SKIP skip to next instruction

5.3.1 User tasks

The formalisation involved activities like: translating from the relational specific-
ation given in [Joyce et al 86] into a functional representation, and debugging the
definitions. The translation of representation was time-consuming and it would
have been easier to start from scratch. Other user tasks included: defining the
types and converts for signals and states described in chapter 4, providing a time-

scale mapping function, and characterising the stability of signals.

There are two time-scales, the instruction time-scale and the micro-instruction
time-scale. Each time an instruction is executed the instruction time-scale is in-
cremented by 1. Each instruction requires a variable number of micro-operations
to execute. This variability is controlled by the ready flag which becomes true at
the beginning and at the end of each instruction execution. Each time a micro-
operation is executed the micro-instruction time-scale is incremented by 1. The
function mecrotime takes an instruction level time and other arguments and con-
verts it to a micro-instruction level time. There are also abstraction functions for
the signals swithches, the knob, the button and the idle flag to map them between

the two time-scales.

microtime(s(u), swt, knob, button) = iterate time(u, swt, knob, button)
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iterate_time(u, swt, knob, button) = next_time(microtime(
u, swt, knob, button), swt, knob, button)
next time(t, swt, knob, button) = if ready(s(t), swt, knob, button) = false
then next_time(s(t), swt, knob, button)

else s(t)

The predicate stable(sig,t1,t2) means that the signal sig is stable between times

t; and t5. It has the following property
Vi pnat, t <t <ty — sig(t) = sig(t1)
From here we can prove the lemma:

stable(sig,t1,ty) — Vt, 11 <t <ty — sig(s(t)) = sig(t)

Specification

The specification of the Gordon computer is graphically displayed in figure 5-5.
The computer can be in any of two states, idling or running. When idling the
computer can execute any of 6 operations depending on the values of button and
knob. When running the computer can execute any of 9 instructions depending
upon the value of the operation code. The jump on zero instruction is split in two
cases depending on the contents of the accumulator. These 15 cases specify the in-
struction level behaviour of Gordon computer. The following conditional equation

illustrates the case corresponding to the specification of the add instruction:
Yu : pnat, swt : signaln(16), knob : signaln(2), button : flag
idle(microtime(u, swt, knob, button), swt, knob, button) = false A
button(microtime(u, swt, knob, button)) = false A

opcode = (false :: true :: true :: nil)

computer(s(u), swt, knob, button) = (5.4)
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idle

e

button

true

button

false true false / %b
opcode slate 10 state11
statel opcode state 12 knob
001 \ y \
state 2 opcode state 13 knob
010 y N
acc opcode state 14 state 15
o7 o BT
state 3 state 4 state5 opcode
100 \
stateb opcode
101
. state? opcode
state=(memory,pc,acc,idle) 110 \111
state 1=(m,pc,acc,true) halt
state 2=(m,addr(pc,m),acc,fal se) jump state8 state9
state 3=(m,addr(pc,m),acc,false) jumpif zero
state 4=(m,inc(pc),acc,false) jump if no zero
state 5=(m,inc(pc),add(acc,fetch(pc,m)),fal se) add
state 6=(m,inc(pc),subt(acc,fetch(pc,m),fal se) subtract
state 7=(m,inc(pc),fetch(pc,m),false) load
state 8=(store(addr(pc,m),acc,m),inc(pc),acc,false) store
state 9=(m,inc(pc),acc,false) skip
state 10=(m,pc,acc,true) top execution
state 11=(m,pc,acc,true) stop operation
state 12=(m,pc,ac,true) load pc
state 13=(store(pc,acc,m),pc,acc,true) load acc
state 14=(m,pc,swt,true) load mem
state 15=(m,cut(swt),acc,true) start execution

Figure 5-5: Specification of the Gordon computer

execute_add(computer(u, swt, knob, button))

where

Va @ state execute_add(x) (5.5)

fst(x)&inc_g(snd(x))&
add_g(trd(x), fetch(cut( fetch(snd(x), fst(x)))), false)&true

where fst, snd and trd access the first, second and third elements of a spe-

cification state respectively. The other 14 cases are defined in the same way.
These cases use the following uninterpreted functions: add_g(x,y,c) : wordn(16),
wordn(16), cut(x) : wordn(13),

subtract_g(x,y,c) : wordn(16), inc_g(x,y,c)

pad(x) : wordn(16), fetch(x) : wordn(16), store(x) : memn(16).
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Implementation

The implementation description of the Gordon computer is given at the register-

transfer level as shown in figure 5-6 [Joyce et al 86]. The implementation has

switches knob button

acc

next address

pc acc ready idle

Figure 5-6: Register-transfer level implementation of the Gordon computer

a number of registers in addition to the program counter and accumulator of
the instruction level. The instruction currently under execution is held in the
instruction register IR, addresses of memory locations to be read or written to
are held in the memory address register M AR, arguments to the arithmetic and
logic unit ALU are held in the ARG register and the results of the ALU are held
in the buffer register BUFF. The implementation also used five gate devices GO0,
G1, G2, G3 and G4 to control the reading of data onto the 16-bit bus BUS.

The fetch-decode-execute cycle is driven by a microcoded control unit. The
microcode is stored in a read-only ROM which can hold 32 microcode instructions,
each 30 bits wide. On every clock cycle, the microcode instruction addressed by
the microcode program counter M PC' is read from the ROM and decoded by the
decode unit DECODE. Output from the decode unit consists of signals which
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control the operation of the data part of the implementation. These signals cor-
respond to control lines which are labelled in figure 56 as rsw, wmar, memct{A,
memctl B, wpe, rpe, wace, race, wir, rir, warg, aluctl A, aluctlB and rbuf. For
instance, when the boolean signal rpc has the value true the low 13 bits of the bus
are read into the program counter register PC'. All of the control signals have flag
type (function from time to Bool). The decode unit also produces the address of

the next microcode instruction which is loaded in the microcode program counter.

The register-transfer implementation of the Gordon computer is divided into
two parts, the data-path and the control unit. The components of the data-path
are the registers, the memory, the arithmetic and logic unit, and the bus. Types of
registers include 16-bit registers or 13-bit registers; selectively loadable registers or
directly loadable registers; bi-stable registers or tri-stable registers. Memory words
and registers that store their contents are 16-bits long. Addresses and the registers
that store them are 13-bits long. Selectively loadable registers use a boolean flag
to determine when they can be loaded. These boolean flags are generated by
the Control Unit. Among these registers are the memory, defined by the type
memn which consists of a list of words in memory. The operation performed on
memory is determined by the values of the flags memctl/A and memctiB. The
buffer is a 16-bit, directly loadable, bi-stable register which stores the output of
the Arithmetic Logic Unit. The bus is used for the transfer of both 16-bit data
and 13-bit addresses. It merges signal from the various devices and ensures that
just one device has access to it. Each of these and the other registers are defined
by a recursive function. For instance, the following recursive function defines the

accumulator:

ace(s(t), swt, knob, button) = if wace(t, swt, knob, button) = false
then acc(t, swt, knob, button)

else bus(t, swt, knob, button)

The control unit generates the 16 control flags that drive the data-path. It contains
s 30-bit microcode store, a 5-bits microcode program counter mpe, and a combin-

ational logic to compute the next value of the mpe. For instance, the control flag
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wace is calculated by:
wace(t, swt, knob, button) = me_wace(mpe(t, swt, knob, button))

mec_wace is the column of the microcode that stores the 32 values of the write
accumulator flag. The other 15 control flags are defined in a similar way. The
microcode program counter is a 5-bit register that loads every clock cycle and

calculates the next value of the mpe.

The implementation of the Gordon computer is established by the function
computer_amp that defines the computer implementation state at any time of the

microinstruction time-scale.

computer_imp(p)

memory(p)&pe(p)&ace(p)&idle(p)&
buf fer(p)&mar(p)&ir(p)&arg(p)&mpe(p)&ready(p)

where p = (¢, swt, knob, button).

Conjecture

The first statement of correctness is given by the following verification conjecture
which establishes that if the specification and the implementation match at a given

point in time ¢ of the instruction time-scale then they will also match at time ¢ 4 1.

Yu : pnat, swt : signaln(16), knob : signaln(2), button : flag
stable(swt, microtime(u), microtime(s(u))) —

stable(knob, microtime(u), microtime(s(u))) —
mpe(microtime(u, swt, knob, button), swt, knob, button) =

false :: false :: false :: false :: false :: nil in wordn(b) —

abs_imp(computer imp(microtime(u, swt, knob, button), swt, knob, button))
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computer(u, swt, knob, button)

—

abs_imp(computer imp(microtime(s(u), swt, knob, button), swt, knob, button))

computer(s(u), swt, knob, button)

This version of the conjecture assumes that the computer is stable after power up.
It can be shown that there exists a time at which the microcode program counter
is reset, and this value is either the address 00000 (0) or the address 00101 (5),
corresponding to the initial states when the computer is idling or executing an in-
struction, respectively. These values of the mpe can be reached by an initialisation
procedure for the computer after power up. The first fabrication of Gordon com-
puter did not include a reset button for the microcode program counter. Formal
verification did not catch this fact because the output values of the mpe were as-
sumed bistable without regard to the type of input values of the mpe. Although
the deduction was correct, the register transfer model was not accurate enough to
detect this fact [Joyce et al 86]. Thus, we assume that the computer powers up
and reaches a stable state where the mpc is set to zeroes when the computer is
idling. When the computer is running the mpe is set to 5. Also, in this version
of the theorem we assume that the bus carries bistable signals, i.e. we do not

merge/split signals with floating values.

A second statement of correctness is given by the following verification conjec-
ture which establishes the equivalence of the specification and an abstract repres-

entation of the implementation at any point of the instruction-level time-scale:

Yu : pnat, swt : signaln(16), knob : signaln(2), button : flag
(Yt : pnat, stable(swt, microtime(t), microtime(s(t)))) —
(Yt : pnat, stable(knob, microtime(t), microtime(s(t)))) —
mpe(microtime(u, swt, knob, button), swt, knob, button) =

false :: false :: false :: false :: false :: nil in wordn(b) —
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abs_imp(computer _imp(microtime(u, swt, knob, button), swt, knob, button))

computer(u, swt, knob, button)

The proof of this conjecture is done by induction on time. The base case corres-
ponds to an unrealistic situation in which the computer powers up and establishes

at time 0. The step case coincides with the previous version of the conjecture.

A third version of the conjecture is as follows:

Yu : pnat, swt: signaln(16), knob : signaln(2), button : flag

Vswt_abs : signaln(16), knob_abs : signaln(2), button_abs : flag

!

(Yt : pnat, stable(swt, microtime(t), microtime(s(t))))

!

(Yt : pnat, stable(knob, microtime(t), microtime(s(t))

(Yt : pnat, knob_abs of t = knob of microtime(t, swt, knob, button

—

(

( )
(Yt : pnat, swt_abs of t = swt of microtime(t, swt, knob, button)) —
( )
(Yt : pnat, button_abs of t = knob of mucrotime(t, swt, knob, button)) —
mpec(microtime(u, swt, knob, button), swt, knob, button) =

false :: false :: false :: false :: false :: nil in wordn(5) —

abs_imp(computer _imp(microtime(u, swt, knob, button), swt, knob, button))

computer(u, swt_abs, knob_abs, button_abs)

This version considers abstract views of the variables swt, knob and button which
are used in the specification of the computer and are unfolded by the abstraction
equations included in the conditions of the conjecture. The proof also assumes the

the computer powers up and establishes at time 0.
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In the following version of the conjecture, we allow for an arbitrary period of

time for initialisation after power up:

Yu,v : pnat, swt : signaln(16), knob : signaln(2), button : flag

Vswt_abs : signaln(16), knob_abs : signaln(2), button_abs : flag

!

(Yt : pnat, stable(swt, microtime(t), microtime(s(t))))

!

(Yt : pnat, stable(knob, microtime(t), microtime(s(t))

—

(Yt : pnat, knob_abs of t = knob of microtime(t, swt, knob, button

—

(

( )
(Vi : pnat, swi_abs of 1 = swt of microtime(l, swt, knob, button))

( )

(, )

—

(Yt : pnat, button_abs of t = knob of muicrotime(t, swt, knob, button
mpec(microtime(u, swt, knob, button), swt, knob, button) =

false :: false :: false :: false :: false :: nil in wordn(5) —

abs_imp(computer _imp(microtime(u, swt, knob, button), swt, knob, button))

computer(u, swt_abs, knob_abs, button_abs)
H

u<ov—

abs_imp(computer imp(microtime(v, swt, knob, button), swt, knob, button))

computer(v, swt_abs, knob_abs, button_abs)

A scheme like the following would be used to prove this conjecture by induction

on time:

H FVYa:pnat, Conditions — ¢(x) — ¢(s(x))

: t 2
V¢ : pnat = u(2) (H F Yu,t: pnat, Conditions — u <t — ¢(u) — ¢(t)

)

Verification

The proof plan corresponding to the second version of the conjecture is generated

automatically by Clam and is graphically displayed in figure 5-7. Once again,
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notice that the structure of this proof plan is similar to the structure of the previous

plans. The planning consists of the method application steps, indicated by the

1 ind_strat
!
9 change_mpc
10 sym_eval
11 generalise
!
13 normalize
wm_g/ \wm_eval

apply_lemma sym_eval

base_case

1

ind_strat

induction

2

3

4

step_case

ripple

|

casesplit

| 0

5 wave

6

unblock

fertilize

|

weak_fertilize

g change mpc

13

"

sym_eval

sym_eval
eval_def (memoisation)

generalise

normalize ~_

/ \ sym_eval

apply_lemma sym_eval

Figure 5-7: Proof plan for the Gordon computer

numbers on the nodes of the tree:

e the proof is done by induction on the time variable u, which is suggested by

the recursive definition of computer. The base case, is solved by symbolic

evaluations using initial values for the specification and the implementa-

tion at time 0. For the step case, the induction hypothesis establishes the

equality of the specification and an abstract view of the implementation at

time u of the instruction-level time-scale, and the induction conclusion es-

tablishes the same equality at time s(u) of the same time-scale. Mapping

this time unit into the microinstruction time-scale, results in the execution

of a variable number of micro-operations, each requiring a time unit of the
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microinstruction time-scale. The sequence of micro-operations associated to

each instruction is recorded in the microcode.

e the step case is (step 1):

...abs_imp(computer _imp(mt(u, swt, knob, button), swt, knob, button))

computer(u, swt, knob, button)

.. .absamp(computer_imp(mi(

computer(

|_

t
s(u) |, swt, knob, button), swt, knob, button))

t
s(ul ), swt, knob, button)

which is then simplified by the step_case method (step 2). mt is an abbre-

viation for mecrotime. Rippling tries to reduce the differences between the

goal and the hypothesis using the 15 wave-rules that define the specification

(step 3). This induces a case-split generating 15 cases, one for each of the

possible computer instructions that result when the computer is idling (6) or

when the computer is running (9) (step 4). For each of these cases the wave

method applies the outwards wave rule associated with each of the 15 re-

cursive equations of the specification (step 5), does unblocking (step 6), and

applies weak fertilisation (steps 7-8). For instance, consider the case when

tdle is false, button is false and the operation code is 3. This correspond

to the add operation. After case-split the goal is:

Yu : pnat, swt : signaln(16), knob : signaln(2), button : flag

idle(mt(u, swt, knob, button), swt, knob, button) = false A

button(mt(u, swt, knob, button)) = false N

opcode = (false :: true :: true :: nil)

abs_amp(computer _imp(mit(

sw)]

, swt, knob, button), swt, knob, button))
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t
computer(|s(u) |, swt, knob, button)

the wave sub-method applies the following outwards wave-rule associated

with its recursive definition given by equation 5.4:
Yu : pnat, swt : signaln(16), knob : signaln(2), button : flag
idle(microtime(U, swt, knob, button), swt, knob, button) = false A
button(microtime(U, swt, knob, button)) = false A

opcode = (false :: true :: true :: nil) —

t
computer(|s(U) |, swt, knob, button) =

t
execute_add(computer(U, swt, knob, button))

The resulting subgoal:

abs_imp(computer imp(mt(|s(u)| , swt, knob, button), swt, knob, button))

execute_add(computer(u, swt, knob, button))

is simplified by unblocking using equation 5.5 and weak fertilisation to give:
v = [st(v)&ineg(snd(v))&

add_g(trd(v), fetch(tI(H(t( fetch(snd(v), [st(v))))), [st(v)), false)& false

where

v = abs_imp(computer imp(mt(u, swt, knob, button), swt, knob, button))

e since idle is true, the mpe should be set to 5. This is done by the method
change mpc (step 9)



Chapter 5. A Methodology 105

e The resulting subgoal is proved by symbolic evaluation using the recursive
definitions of the implementation state components, namely mpc, memory,
pe, ace, arg, mar, ir, buf fer (step 10). The recursion is done 10 times,
which is the number of micro-operations the computer takes to execute the
add instruction. The memoisation procedure applied by the eval _def sub-
method, plays a critical role here, for storing and reusing values previously
computed, otherwise the memory is exhausted after two or three iterations

(step 11). The memoisation procedure is described in section 5.3.2.

o the generalise method generalises a term which results when fetching the

contents of the program counter from memory (step 12)

e in the next step the normalise method generates four subgoals, one for each
element of a specification state. Three of these subgoals are tautologies and

are solved by the sym_eval method, and the fourth:
cut(inc_g(pad(pc(w, swt, knob, button)))) = inc_g(pe(w, swt, knob, button))

is solved by the apply lemma method which using the lemma

cut(inc_g(pad(x))) = inc_g(x)

e the other 14 cases are solved in a similar way

5.3.2 Proof tasks

The proof tasks consisted of: writing a new sub-method for implementing a
memoisation algorithm for computing recursive functions, writing a new method
for experimenting with difference matching, extending the normalisation method
to normalise equations with product terms, experimenting with various represent-
ations (e.g. time abstraction, state-transition graphs, conditional rewrites, vectors
vs matrices, etc), finding an effective way of representing and traversing the mi-

crocode table, experimenting with method orderings.



Chapter 5. A Methodology 106

Memoisation

The evaluation of a recursive function f(x) at a point @ = u, requires the cal-
culation of all the previous values of f at @ = ug,...,u,_1. If later we need to
evaluate f(x) again at another point x = v,,, where m > n, normally we would
calculate all the previous values of f at @ = vg,...,v,,_1. But the values of
fatx = wug,...,u,_1 and at * = vg,...,v,_1 are the same, so strictly speak-
ing, we do not need to re-compute them, we just need to calculate the values
of fat x = v,,...,v,,. Memoisation allows us to store values which have been
already computed and re-use them when needed again. This simple procedure
yields enormous savings in calculation time. Camilleri implemented a memoisa-
tion algorithm for the symbolic execution of the Gordon computer in HOL. As an
example of the computational savings that memoisation provides, he calculated
that in order to compute the value of bus(t + 10) the equation that defines bus
is executed over 60.5 million times [Camilleri 88]. We had a similar experience.
The evaluation of the recursive functions for the memory, the program counter,
the accumulator, the memory address register, the instruction register, the buffer,
and the microcode program counter for values of time between ¢ and ¢ + 10 shares
the same problem. The memoisation we implemented for proof planning stores
computed values of a function identified as 'memoisable’ in the hypothesis list,
and each time a new value of the function is needed, we first check whether the
value already exist in the hypothesis list. If it is there, we use it, otherwise, it is

computed and stored for future use.

Difference match

The formalisation of the Gordon computer was first made using a deterministic
finite-state machine to represent state transitions both at the instruction and
register-transfer levels. The conjecture stated that if the implementation and
the specification are equal at time ¢ in the instruction-level time-scale, then they
must be also equal at time s(t), in the same scale, provided ¢ and s(t) are mapped

to microinstruction-level time-scale within the implementation. This situation is
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represented by:

spec(t,...) = wmp(mt(t),...) — spec(s(t),...) = imp(mt(s(t)),...)
To prove this conjecture we assume the antecedent of the implication and try
to prove the consequent. To prove the consequent we used difference match-
ing [Basin & Walsh 93], a techniques that annotates the differences between two
expressions and then tries to reduce the differences. In our case we difference
matched the consequent and the antecedent and wrote a method (diff match)
which annotates the consequent based on these differences. Then we used rippling
to eliminate the differences and fertilisation to use the antecedent as a rewrite rule
to simplify the consequent. We obtained a proof plan for the Gordon computer
following this procedure. The proof plan is displayed in appendix E. But then we
realised that this procedure was just the step case of an induction on time and that
it was more general to see it in this way. In any case, learning about difference

matching was a useful experience.

Normalisation

The normalise method was extended to normalise a formula which consists of an

equality of product terms. If we have the goal:
Up...&U, =Vi... &V,
we want to split it into a set of n subgoals:
U,=Ww,...U, =V,

and prove each of these subgoals individually. This situation arises in the proof
planning of the Gordon computer after doing memoisation where we get a goal
which is an equality between two terms, each of which is a product of four types

(the instruction-level state).

5.3.3 Systems tasks

The systems tasks consisted of: finding an effective way to parse conditional terms

(e.g. predicate expression_at), solving inefficiencies of Clam in parsing large terms.
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For instance, the microcode table was implemented by a set of 32 lists, where
each list has 30 elements. Access to the elements of the microcode table was
implemented by a recursive function which traverses the list to locate an element.
But the execution of this function was very inefficient and time consuming, so we
changed the representation of the table and used vectors to represent the columns
of the table, and were able to access faster the elements by indexing instead of
by list traversal. Thus, we did not solve a systems problem, but did a change
of representation to avoid a inefficiency of the tool, which still exists. Therefore,
this task can be classified as a formalisation task, but we include it here because
it addressed a systems issue. The same kind of inefficiency arose earlier when
we tried to represent words by functions, so we preferred lists to represent words

rather than functions.

5.4 Extendability and Scalability

We have shown by experimentation that proof planning posses the features of
extendibility and scalability, which are important characteristics which contribute
to the generalisation of the methodology we have proposed. We do a brief analysis

of extendability and scalability.

5.4.1 Extendability

Extendability means that the same set of methods that were used to verify a
circuit of a certain type will work in the verification of a circuit of the same type.
For instance, the same methods used in the verification of the adder, worked in
verifying the ALU and the incrementer. Although the ALU is more complex that
the adder and the incrementer is simpler than the adder, in the three cases, the
implementation is obtained by replicating a basic component: n half adders make
an tncrementer, n full adders make an adder, and n 1-bit ALU make an n-bit
ALU. This pattern should also apply to other circuits implemented by cascading

a basic component.
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5.4.2 Scalability

Scalability means that the same set of methods that were used to verify a circuit
of a certain type will work in the verification of a circuit of higher complexity.
For instance, the same methods used in the verification of the adder, worked in
veritying the multiplier and the Gordon computer, which are much more complex

than the adder.

We can summarise graphically these two features in the chart displayed in

figure 5-8. The horizontal axis represents extendability and the vertical axis rep-

A
scalability

FM8501
Tamarak (upper region)
Gordon computer  modified Gordon comp.
divider (middle region)
multiplier
alu .
adder (lower region)
incrementer

extendability

Figure 5—-8: Extendability and scalability of proof planning

resents scalability. In the lower region and along the extendability axis, we find
circuits such as the incrementer, the adder and the ALU. Following the scalabil-
ity axis and in the middle region, we find parallel-array circuits, such as families of
multipliers and dividers. Further up the scalability axis and in the upper region,

we find microprocessor systems of various types along the extendability axis.

As an extendability test, we have done a slight modification to the instruction
set of the Gordon computer to see how proof planning methods behave. The

test consisted in deleting one (any) of the eight programming instructions and



Chapter 5. A Methodology 110

replacing the gap by a no-operation (NOP) instruction *. The instruction deleted
was the add operation. This involved a modification of the next-address-A field
of address 13 in the microcode table (implementation) to change the sequence
of the add micro-operations so that the new computer state associated with the
no-operation, consists only of an increment in the program counter pe, and a
modification of the specification branch to reflect a no-operation computer state
in place of the state produced by the add instruction. We were happy to see that
these changes did not require any modification of the methods or the planner. The
planner was able to automatically generate a slightly modified tactic to prove the

new conjecture.

Thus, these experiments and tests show the robustness of proof planning, and
provide support to our belief that the features of scalability and extendability
posed by proof planning can be the basis for the adoption of our proof engineering-

based methodology on a wider basis.

5.5 Summary

In this chapter we have presented a methodology based on the concept of proof
engineering, using proof planning, to verify combinational and sequential circuits,
and have illustrated its use in verifying circuits of increasing complexity. Formal
proof was divided into three conceptually different kind of activities: user, proof,
and systems tasks. We have seen how the features of extendability and scalability of
proof planning allow us to transport the same methods to verity circuits of similar
classes and higher complexities. Also, we have seen how slight modifications in the
implementation and specification of the proof of a circuit, are transparent to proof
planning, and do not require user intervention to obtain a modified proof, which

illustrates the robustness of proof planning. In general, little user interaction was

!This experiment was suggested by Mike Fourman
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required to get the proofs through. These features of proof planning make the

methodology look promising for systematic hardware verification.



Chapter 6

Extensions to Proot Planning

In this chapter we explain the extensions to proof planning which were required
for verifying hardware. Most of these extensions are not particular to hardware
and will apply to other domains as well. In general, the extensions were fairly
minor, as the existing implementation of proof planning contained most of the
elements necessary for the verification task. The most important extension was
the tuning of the existing methods, which, in most cases, consisted of addition or
modification of the method’s preconditions, or the addition of new clauses; in a
few cases, new methods were written. The declarative nature of the meta-logic in
which the method language is based makes it easy to write or modify methods.
Sometimes a method may require a new predicate to be added to the method
language, but usually, these predicates are easy to implement. Along with each
method added or modified, the corresponding tactic specified by the method must
be supplied.

We group the extensions according to the kind of tasks introduced in chapter
5: user, proof and systems level tasks. The user level extensions refer to the use
of proof planning to verify new kinds of circuits and are summarised in chapter 7.
Proof level extensions are described in section 6.1, which explains the extensions to
methods, tactics, inductive schemes, and equations; and systems level extensions
are explained in section 6.2, which describes new predicates of the method language

and the evolution of the Clam system. Section 6.3 summarises the chapter.

112
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6.1 Proof level

The knowledge required at this level is the one held by a typical user of tactic-based
theorem provers like HOL, LAMBDA, NUPRL and PVS, and consists of the ability
to write tactics, and specifications of their behaviour using methods, except we
require only knowledge of general purpose methods and tactics. The verification
of the circuits described in chapter 5, was obtained using slight variations of the
set of methods for inductive theorem proving presented in chapter 3. The new set

of methods is displayed in figure 6-1: we call it verify. Verify has exactly the same

Methods:
1. sym_eva simplifies symbolic expression
a elementary applies simple propositional reasoning
b. equa applies an equality in the hypothesis
c. eval_def applies rewriting and memoisation
d. term_cancel cancels out common term on both sides of an equation
e. bool_cases does Boolean case analysis
2. generalise generalises acommon term on both sides of aformula
3. normalise normalises aformula
4. ind_strat appliesinduction strategy
a induction selects induction scheme and induction variables
b. sym_eva applies symbolic evaluation to the base case
C. step_case appliesripple and fertilise to the step case
i. ripple appliesrippling heuristic
- wave applieswave rules
- casesplit does a case split
- unblock unblocks rippling
ii. fertilize simplifies induction conclusion with induction hypothesis
- strong fertil. applies induction hypothesis directly
- weak fertil. applies induction hypothesis as rewrite rule

Figure 6—1: Verify: set of methods for hardware verification

abstract procedural interpretation as the set of methods given in chapter 3:

e try to solve the conjecture by symbolic evaluation. If successful, finish, if

there are remaining subgoals, try the set of methods again;
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e try to solve the conjecture by induction, generalising or normalising any
terms, if necessary. Solve the base case by applying symbolic evaluation and
solve the step case by applying rippling and fertilisation. In either case, if

there are remaining subgoals, try the set of methods again.

In theory, the ordering of the methods should not matter, because in backtrack-
ing, the planner can find a sequence of method applications that would prove a
conjecture. However, in practice this depends on the type of planner used. The
depth-first planner is very efficient, but in some cases it may fail to find a plan
when there is one, if it follows an infinite branch which does not contain a plan.
A remedy to this situation, which again is just for practical considerations, is to
re-order the methods. This will produce a different search sequence in looking for a
plan, and may find a plan without backtracking or avoid the possibility of following
an infinite branch. A more informed search may be more useful (e.g. a best-first
planner). A best-first planner will do an analysis of the current conjecture and
utilise domain knowledge encoded as heuristics of the planner, to determine which
of the methods which are applicable at a certain point in the proof, should be tried
next. In our case, we have used the depth-first planner and generated different
orderings of verify when required. For instance, the order ind_strat, generalise,
normalise, sym_eval (verifyl) was used in the verification of the adder, and the
order sym_eval, ind_strat, generalise, normalise, (verify2) was used in the
verification of the ALU. However, the original order (verify) can also find these
plans in backtracking. In general, a good order for a given conjecture was found

by experimentation.

For instance, suppose that we have the method set verify and a goal ... f(Imp) =
Spec. Suppose also that methods sym_eval and ind_strat are both applicable,
with sym_eval unfolding the definition of Spec (assume it is given by a large
term) and then applying a Boolean case analysis. In this situation, we would
like ind_strat to be applied before sym_eval, because otherwise, the induction
would become very complicated. As we have seen, a remedy to this situation is
experiment with other ordering of verify. This sort of dynamic ordering could be

calculated by a heuristic planner as we have pointed out. However, we have not
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investigated this alternative any further, and have used the un-informed depth-
first search with off-line changes in the orderings when required instead, but in
principle, it could be implemented to make the planning more automatic. Now,

we give a brief description of the extensions to methods and tactics.

6.1.1 Methods and tactics

There are two new methods and tactics: term_cancel and bool_cases, which
play an important role in planning hardware verification conjectures but they are

not specific for the hardware domain and can be applied to other domains as well.

Term cancellation

This sub-method was added to strengthen Clam’s arithmetic reasoning capabilities
[Boyer & Moore 81]. It reads an input sequent H F G, the preconditions of the
method check that (G is an equation of the form

termq +termo 4+ ...+ term,, = term'l -+ term'2 + ...+ term;n

and the method repeatedly cancels out equal pairs on both sides of the equation.
The output is the equation that results after cancelling out equal terms. The

method is displayed in figure 6-2.

The output of the method is a simplified expression which is given as input
to the tactic with the same name. This tactic was a bit difficult to implement
because reasoning about the associativity and commutativity of addition yields
permutations of an expression which evaluate to the same value and the inference
rules that justify the simplification steps should consider all of these permutations,
which yield a large number of cases to consider. We want a tactic that keeps the
system fully expansive, in the sense that all the proof steps are justified at the
inference rule level. In a tactic-based fully expansive system, the execution of

a tactic results in the execution of the inference rules that support that tactic

[Boulton 94].
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submethod(term_cancel (NG),

H==>G,

[matrix(V,LS= RSin pnat,G),
\+ (LS=0v RS=0),
only_sum(LS,LstPlusL),
only_sum(RS,LstPlusR),
cancel_eq(LstPlusL,LstPiusR,OtherL,OtherR),
length(L stPlusL,X),
length(OtherL,Y),
X>Y],

[put_plus(OtherL L eft),
putPlus(OtherR,Right),
matrix(V,Left=Right in pnat,NG)],

[H==>NG],

term_cancel(NG)).

Figure 6-2: Method for term cancellation

The tactic is implemented by defining a type for multi-set of natural numbers
(also called a bag), defining the addition operation on bags, and relating type the-
ory arithmetic terms to appropriate multi-sets. We relate type theory arithmetic
terms and multi-sets by defining another tactic that maps addition of natural
numbers into addition of members of a bag. Given an arithmetic expression we
build a bag such that the sum of its elements equals the value of the arithmetic
expression. To do this, we define the union operation on bags and prove the bag
lemma:

Va,y,z: bag, bag_sum(x) = bag_sum(y) —
bag_sum(bag_union(x,z)) = bag_sum(bag_union(x,z))

We then define one more tactic that applies the bag lemma to the sequent whose
hypothesis is the final expression after cancellation and whose goal is the expression

before cancellation.

Boolean case analysis

This sub-method reads as input a sequent H F (G, and its preconditions check for

a Boolean variable or a term of type Boolean on either H or (. If there is one, the
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method outputs two subgoals, replacing the Boolean variable or term by the values
true and false respectively. One of the clauses of this sub-method is displayed in

figure 6-3. The tactic was implemented as a special case of the case_split tactic.

submethod(bool _cases(Term),

H==>G,

[matrix(Vars,Matrix,G),
exp_at(Matrix,Pos, Term),
append(Vars,H,NewH),
find_type(NewH,Term,{ bool})],

[replace_all(Term,{false} ,Matrix, MG1),
replace_all(Term{true} , Matrix,MG2),
matrix(Vars MG1,G1),
matrix(VarsMG2,G2),
hfree([Id],H)],

[Id:Term={false} in{bool} |H]==>G1,
Id: Term={true} in {bool} |H]==>G2],

bool_cases(Term)).

Figure 6-3: Method for Boolean case analysis

Modifications

The following methods and tactics were extended as follows:

sym_eval: this method (and sub-method) was modified to admit two new sub-
methods: term_cancel and bool_cases. It was also extended to handle

branching outputs, as generated by the bool_cases method.

equal: this sub-method was extended to apply equations from the hypotheses

list of the form terml = term?2. Before, term1 had to be just a variable.

eval def: this sub-method was extended with a memoisation algorithm to com-
pute values of recursive functions. This sub-method was very useful in the
verification of the Gordon computer for the calculation of values for the re-
cursive functions of the memory, the program counter, the accumulator, the
memory address register, the buffer, and the microcode program counter,
during the execution of a computer instruction. Memoisation save a lot of

computer time. Figure 6—4 shows this method.
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submethod(eval_def(Pos,[Rule,Dir]),
H==>G,

[matrix(Vars,Matrix,G),,
wave_fronts(_,[],Matrix),
new_exp_at(Matrix,Pos,Exp),
not metavar(Exp),

%expression is memoisable

((Exp=mpc(s(X1),_,_, ) v
Exp=memory(s(X2),_,_, ) v
Exp=pc(s(X3).__ ) v
Exp(acc(s(X4),_,_, ) v
Exp(buffer(s(X5),_,_, ) v
Exp(mar(s(X6),_,_, ) v
Exp(arg(s(X7)._,_.J) v
Exp(ir(s(X8),_,_. ),

% value of function has been calculated already

((member(A:Exp=NewExp in word(5),H),

NewH=H) v

% value hasn't been calculated, do it and add it to hypothesis list
func_defeqn(Exp,Dir,Rule:C=>Exp:=>NewEXxp2),
matrix(Vars,NewExp2,Goa memo),

applicable_submethod(H==>Goalmemo,sym_eva (), _,[Hmemo==>NewEXxp]),!,

hfree([HVar],Hmemo),
NewH=[HVar:Exp=NewExp in word(5)|Hmemo])),

func_defegn(Exp,Dir,Rule:C=>Exp:=>NewExp2),
polarity_compatible(Matrix,Pos,Dir),
elementary(NewH==>C, )],
[replace(Pos,NewExp,Matrix,NewMatrix),
matrix(Vars,;NewMatrix,NewG)],
[NewH==>NewG],

eval_def(Pos,[Rule,Dir]))

Figure 6-4: Method for memoisation

generalise: this method (sub-method) was extended to accept variables and

terms of type Boolean. A precondition was added to recognise terms of type

Boolean on a formula and apply the generalisation criteria to them.

normalise: this method (sub-method) was extended to normalise terms of type

product into its individual components. It was used in the verification of

the Gordon computer to split the components of the specification and im-

plementation states which are represented by a product type.

weak fertilise: this method was extended with a clause to handle wave-fronts

that contain several sinks, each of which stores an inwards wave-front. This

situation had not appeared previously in inductive theorem proving, but it

has been found in most of the hardware verification proofs.
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6.1.2 Induction Schemes

Clam provides a data base of induction schemes for inductive theorem proving.

Some of them were used or adapted to meet the requirements in verifying hardware.

induction on natural numbers: the 1-step induction on natural numbers was
used in the verification of various circuits in which the representation is done
by using an explicit parameter of the length of a word as well as in circuits
in circuits with a time parameter. In the first case we have circuits like the
adder, the ALU, and the shifter. In the second case we have circuits like the
counter and the Gordon computer. We did not modify this scheme, we just
used it.

#(0), Ya : natural ¢(x) — ¢(s(x))

Vo : natural — u(2) ( Yy : natural 45(9)

)

induction on word: the l-step induction on words was adapted as a special case
of 1-step induction on lists with elements of type Boolean. This induction
scheme was used in the verification of the incrementer, the multiplier, and
in other combinational circuits.

d(nil), Ya : bool Va : word ¢(x) — ¢(a :: x)

Vo word — u(2) ( Yy : word ¢(y)

)

induction on word increment: this is a 1-step induction on words where the
induction constructor is the inerement operation on words. It was used in
the verification of arithmetic operations on words.

é(nil), Y : word ¢(x) — ¢(inc(x))
Yy : word ¢(y)

V¢ : word — u(2) ( )

induction on two words: thisis a specialised induction scheme on two words
that have the same length. It was used in the verification of the big and
little endian versions of the adder and the ALU.

V¢ : word — word — u(2)

é(nil, nal),
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Ya : bool Vb : bool Vx : word Yy : word

length(x) = length(y) — ¢(x,y) — ¢(a :: 2,b:: y)
Yu : word Yv : word length(u) = length(v) — é(u,v)

Each of these schemes is justified by an Oyster theorem.

6.1.3 Equations

Clam derives rewrite rules from equations, including wave-rules. These equations
must be justified as theorems in Oyster from the object-level definitions. For

instance, the inductive definition of word2nat is:
word2nat(x) = listand(x,0, [k, t,r, plus(bitval(h), temes(s(s(0)),r))])

where [i1st 2nd is the inductive term constructor, = is the induction variable, A
represents the head of the list, ¢ represents the tail of the list, r is the recursive
value, and the last argument is a formula that calculates next recursive term. From
here we obtain the recursive function 4.2 which consists of a base and a recursive

equation. These are given as the following conjectures:
F word2nat(nil) = 0 in pnat
F Va : bool, x : word,
word2nat(a :: x) = plus(times(s(s(0)), word2nat(x)), bitval(a)) in pnat

Each of these conjectures are proved by simple Oyster tactics. Other equations are
justified in a similar way. Proving this sort of conjectures can be easily automated

by writing a generic tactic that would prove them.

6.2 Systems level

Extensions at this level include the writing of new predicates for the method

language, debugging, and the addition of new functionality to the Clam system.
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6.2.1 Predicates

The meta-logic was extended with a few predicates for the new methods. Among

these are the following:

find type which determines the type of terms like natural numbers, integers,
and Booleans and exp_at which finds a sub-expression within an expression in
a more efficient way, specially when searching the arguments of a conditional
expression such as if a=b then x then vy, since it is more appropriate to first evaluate
the arguments a and b, and depending on whether the condition is true of false,
evaluate = or y, rather than evaluate y, x, b and a. This is important when x
and y contain other nested ¢f expressions, which happens frequently when the
data-path components of a microprocessor are formalised by recursive functions.

The term cancellation method uses other auxiliary predicates.

6.2.2 Debugging and versions of Clam

As a research vehicle, Clam is constantly evolving, to reflect new developments
and debugging of the code, for which the M RG research and technical staff are
responsible. We started our experiments using version 1.5, and in the following
four years new versions were released, to reach the current version 2.5. We re-
ported both inefficiencies in the current code and the impossibility of obtaining
certain plans. The most significant change was the replacement of the wave-rule
parser. A wave-rule parser generates automatically wave rules from recursive for-
mulae (e.g recursive equations) identifying and annotating well-annotated terms
[vanHarmelen & group 96]. The parser was changed from a static style, in which
all the rewrite rules are generated when a theorem is loaded, to a dynamic style, as
described in [Basin & Walsh 96a], in which rewrite rules are created dynamically,
when needed. With this new parser, in was possible to do verifications that could
not be obtained with the static one, such as the shifter and the Gordon computer
proofs as explained in section 7.1, besides making execution faster. Other improve-

ments that were helpful were the method for handling case splits and the updating
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of the preconditions of the sub-methods: step case, ripple, and induction. In

a production version of Clam this sort of developments would rarely be needed.

6.3 Summary

We have presented extensions to proof planning for hardware verification. We
described proof and systems level extensions. The required extensions were fairly
minor and worked in verifying a variety of circuits. We expect proof level exten-
sions to be done un-frequently, and systems level extensions to be done rarely. The
experience with proof and systems tasks provides evidence to our belief that proof
planning can be used for hardware verification in such a way that most of the time
will be spent by the users of the planner formalising particular conjectures and
using the automation facilities of the planner and the prover to obtain proofs of

the conjectures.



Chapter 7

Results

The verification methodology described in chapter 5 was applied to verify other
circuits, which allowed us to obtain timing statistics like: planning time, execution
time, user tasks time, proof tasks time, systems tasks time, and number of lemmas.
In this chapter we present a recapitulation of all the experiments done in this
research: section 7.1 summarises the experiments and statistics of the experiments,
which show evidence that a proof planning based methodology can be of use in
verifying hardware; section 7.2 analyses the statistics of the experiments; and

section 7.3 summarises the chapter.

7.1 Experiments

An experiment consists of: taking a circuit design, applying the proot planning
methodology to verify it, and obtaining the statistics. Table 7-1 summarises the
experiments and displays the numbers. Some circuits are from the IFIP WG10.2
Hardware Verification Benchmark Clircuit Set (n-bit adder, parallel multiplier,
Gordon computer), some are from other sources [Mano 79]. The first column
lists the circuits, which can be either combinational or sequential. Combinational
circuits can be non-recursive or recursive. “Explicit parameter” means that the
circuit is parameterised and the parameter is made explicit rather than being

calculated (e.g. the length of a word). “increment” means that an induction
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Chapter 7. Results
computer time human time lemmas
Circuit planning  proof | user proof systems
(min:sec) (hours)

COMBINATIONAL

non-recursive

half adder 0:02 0:51 1 0 0 1
full adder 0:04 1:45 2 16 0 1
1-bit ALU 0:18 10:13 4 0 0 1
4-1 multiplexer 0:10 4:23 3 0 0 1
n-bit incrementer

big endian 0:09 0:41 2 0 0 2
n-bit adder

explicit parameter 0:53 3:31 8 88 20 2
big endian 0:47 1:41 4 16 0 2
adder (increment) 0:02 0:05 4 8 0 3
subtracter (increment) 0:07 0:06 2 0 0 3
n-bit ALU

explicit parameter 4:01 234:19 | 32 0 48 2
big endian 11:04 274:00 | 8 0 0 2
n-bit shifter

big endian :h4 8:57 24 0 16 2
n-bit processing unit

big endian 0:001 0:01 2 0 2 2
parallel array

nm-bit multiplier 0:36 2:12 12 36 0 6
multiplier (increment) 0:04 0:08 4 0 0 3
exponentiator (increment) 0:10 0:27 4 0 0 3
factorial (increment) 0:13 0:26 4 4 0 3
divider-quotient (plus) 0:03 0:18 4 12 0 5
divider-remainder (plus) 0:04 0:16 4 0 0 5
SEQUENTIAL

counter 0:05 0:17 4 4 0 3
Gordon computer 27:50 274:15 | 120 160 280 4
modified Gordon computer 23:35 232:26 1 0 0 4

Table 7—1

: Circuits verified using proof planning
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scheme with constructor increment on words was used in the proof. Similarly,
“plus” means that an induction scheme with constructor addition on words was

used in the proof.

We distinguish two kinds of timings: computer and human. Computer timings
refer to the time necessary to obtain a proof plan and the time required to execute
the plan in the computer. Human timings include times at three levels: user, proof
and systems tasks. The second column lists computer timings, broken down two
ways: proof planning time which is the time Clam takes to find a plan, and proof
time, which is the time Oyster takes to execute a proof plan'. The third column

lists human timings at three levels:

o first, the user tasks timing, which is the time spent understanding the prob-
lem, finding the right representation for the specification and the imple-
mentation, writing the conjecture, and debugging them, until a proot was
obtained, assuming that the required proot and systems level extensions were

in place;

e second, the proof tasks timing, which is the time spent tuning methods and

tactics, and finding missing lemmas;

e and third, systems tasks timing, which is the time spent in tuning Clam:
debugging and improving the planner, debugging and extending the method
language, debugging and improving the wave-rule parser, extending the lib-

rary mechanism, developing an interface to a theorem prover, and the like.

Finally, the last column indicates the number of lemmas used in the proof beyond

the definitional equations.

!Experiments were done in a SUN Ultra 1 with a 167 Mhz UltraSPARC CPU and
128Mb of RAM running Solaris 5.5.1
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7.2 Analysis

In this section we present an analysis of the statistics: the human timings, the

computer timings, and the number of lemmas used by the proofs.

7.2.1 Analysis of human timings

To calculate the human timings we recorded the starting and ending dates for each
circuit verification, obtained the number of weeks, and multiplied the number of

weeks times 40, assuming 40 hours per week.

Some of the user, proof and systems level times may appear excessive, and
one may ask how often do extensions of this kind have to be made. To give
an accurate picture, we are accounting for everything, including many one-time
costs. The time to obtain a proof tended to be high for the first circuit of a
certain kind, but dramatically decreased for subsequent circuits. For instance, the
n-bit adder which was the first circuit that we verified, took about 116 man-hours,
of which 8 hours correspond to user tasks, 88 hours correspond to proof level
tasks and 20 correspond to systems level tasks. However, the rest of the circuits
in the table utilised these extensions and their proofs were obtained in shorter
times because these extensions were already there. For example, the big-endian
version of the adder, which took just 4 hours, used all of the previous extensions.
The 16 hours reported under proof level tasks were spent defining a new induction
scheme which was also used by other big endian proofs. When we tried the explicit
parameter version of the n-bit ALU, it turned out that no proof level extensions
were required because all of them were already there. The 32 hours reported
under user tasks were mainly spent debugging the specification and the 48 hours
reported under systems level tasks were spent debugging the Clam code. The big
endian version of the ALU took advantage of these system level extensions, thus,
the user level tasks took just 8 hours and no proof nor system level extensions

were necessary. The shifter required 24 hours of user tasks which were spent
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mainly in debugging the specification. No proof level extensions were required,
but the proof planning of this circuit revealed the need for the new wave-rule
parser which had already been designed but not implemented. Thus, we solicited
the implementation of the parser which was done by the Clam development team
in about 160 hours. The verification of the processing unit required 2 hours of user
tasks to formalise the problem. No proof level tasks were needed, and one system
level task which took 2 hours was necessary: a modification of the reduction rules
code in order to apply the ALU and shifter verification theorems as lemmas. The
multiplier did not require any extensions; most of the time was spent in finding
the lemmas required by the proof. For the remaining arithmetic circuits, the
extensions required included deriving new induction schemes such as induction
with increment of a word and addition of two words, which made the proofs very

easy to find.

The Gordon computer required a larger effort to scale up proof planning capab-
ilities at both proof and systems level. The very scale of the specification required
that we make a number of extensions such as memoisation (proof level), so that
the system would more gracefully handle large terms, and the definition of new
predicates to handle terms efficiently (systems level). Also significant is that the
theorem involves two different time-scales with automatic calculation of the num-
ber of cycles for each instruction. Again, all these extensions will be used in the
verification of similar circuits, so the 440 hours of proof and systems level time
(11 man-weeks) is a one-time effort and the verification effort should significantly
decrease for new circuits of the same kind. We conjecture that the 120 hours of
formalisation time (3 man-weeks) may also be reduced in verifying other micro-

processors of the same kind (e.g. the FM8501 microprocessor).

7.2.2 Analysis of experiments

We now present a brief description of the experiments and a more detailed analysis

of the computer and human timing statistics.
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Non-recursive circuits

The non-recursive circuits are basic hardware elements to build replicated hard-
ware devices like adders, ALUs and shifters. The half adder is used by the incre-
menter and is the simplest of all the circuits. The verification of the full adder
was explained in chapter 4. This was the very first circuit verified. The computer
timings are as follows: the planning time is 4 seconds and the plan execution time
is 1:45 minutes. The human timings are 2, 16 and 0 hours for the user, proof level
and systems level tasks respectively. Proof level tasks involved the development

of two clauses of the method for Boolean case analysis.

The verification of the 1-bit ALU was done by case analysis on six Boolean
variables: three are selection variables, and the other three are input variables.
The 4-1 multiplexer receives four input lines and selects one of them as output,
depending on the values of two Boolean selection variables. The verification is
done by Boolean case analysis on the 6 variables. No additional proof/system

level tasks were required.

Incrementer

Clam plans the n-bit incrementer conjecture in 9 seconds using the depth-first
planner and Oyster executes the plan in 41 seconds. The formalisation time was
2 hours and no additional proof/systems level tasks were required because all the
required extensions were already there. This circuit was verified after the n-bit
adder and was the simplest of the circuits which are built by replicating a basic

component.

Adder

The n-bit adder was verified in five different versions. The very first inductive
verification that we attempted was the explicit parameter version of the adder.
Clam plans this version in 53 seconds using the depth-first planner and Oyster

executes the plan in about 3:31 minutes. Its formalisation time was about 8 hours.
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The time for the proof level task was about 88 hours split as follows: adding a
clause for the bool_cases method (16 hours), writing the term_cancel method for
doing arithmetic reasoning (40 hours), adding a new clause for the weak fertilize
method (20 hours); modifying the generalise method to handle boolean terms
(4 hours); and experimenting with method orderings (8 hours). The time for
the systems level tasks was 20 hours split as follows: writing a new predicate for
finding terms of type Boolean (12 hours), correcting small bugs in the code, and
avoiding inefficiencies (e.g. the predicate for well-annotated terms) (8 hours). The

version described in chapter 5 used a big endian notation.

The other four versions of the adder used the proof and system extensions done
for the first version and the statistics are displayed in the table. The big endian
version needed an induction scheme for doing induction on two words of the same
length. The 16 hours reported under proof level tasks correspond to the formalisa-
tion of the induction rule and the corresponding tactic. The increment induction
scheme versions of the adder and the subtracter use an induction scheme where the
induction term is the increment operation on words. The 8 hours reported under
proof level tasks correspond to the formalisation of increment induction scheme
and the tactic. We noticed that there is a direct correspondence between arith-
metic operations on the natural numbers and their counterparts on the type word.
The equivalent term to the constructor s(...) in the natural numbersis ¢(. . .) which

is defined on words by i(x) = ine(x, true). Then we obtain the equivalence:
word2nat(i(x)) = s(word2nat(x))

which is used as a lemma in establishing the correspondence between arithmetic
operations on words (circuits implementations) and the equivalent operation on the
natural numbers (circuit specifications) such as addition and subtraction (and also
multiplication, division, factorial and exponentiation). The increment induction
scheme used by the adder circuit was also used in the verification of the subtracter,
multiplication, exponentiation and factorial circuits. For instance, the conjecture

for the adder is:

word2nat(plus_word(x,y)) = word2nat(x) + word2nat(y) (7.1)
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where plus_word is defined by:

plus_word(nil,y) = y

plus_word(i(x),y) = (plus_word(x,y))

ALU

The n-bit ALU was verified in two different versions. After verifying the adder,
we attempted the explicit parameter version of the ALU. Clam plans the proof
in 4:01 minutes using the depth-first planner and Oyster executes the plan in
234:19 minutes. The user tasks time was about 32 hours split as follows: the
implementation was straight forward, it has the same form as the incrementer and
the adder (4 hours); the specification gave more trouble and most of the time was
spent debugging each of its 12 components (28 hours). There were no proof level
extensions; the ones made for the adder worked for the ALU. The systems level
time was spent in debugging the code and finding a way around the inefficiencies
of Clam in parsing large terms. The time for this activity was about 48 hours.
The proof planning time of the big-endian representation was 11:04 minutes and
the proof time time was 274:00 minutes. This version used all of the extensions
made for the explicit parameter version of the ALU as well as the extensions made
for the big endian version of the n-bit adder, such as the induction scheme and

the induction tactic.

Shifter

The next verification attempted after the ALU was the n-bit shifter unit. The
basic shifter unit performs four operations: no-shift, shift-right with serial input
i1, shift-left with serial input ¢/, and output zeroes. The operation is determined
by two selection variables hy and hy. Clam plans the proof in 54 seconds using
the depth-first planner and Oyster executes the plan in 8:57 minutes. The time
of the user tasks was about 24 hours split as follows: the implementation was
straightforward as it has the same form as the incrementer, the adder and the

ALU (4 hours); the specification was more problematic and most of the time
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was also spent debugging each of its four components (20 hours). There were
no proof level extensions; the ones made for the ALU worked for the shifter. The
systems level time was significant as it involved developing a new wave-rule parser.
The old parser could not deal with a situation in which a variable argument of
a recursive function changed to a term not containing that variable in the same
argument position in the recursive call. The new wave-rule parser can deal with
these cases. This situation was a general requirement that had been anticipated
by Alan Bundy but was not implemented when we started this proof. The new
parser was developed by the Clam development team and we had to wait about
three months until it became implemented. The estimated development time for

the new parser is about 16 hours.

Processing unit

A processing unit is obtained by composing an ALU and a shifter. The shifter
operates on the output of the ALU and the two combined implement 16 operation.
The proof planning and execution of this circuit was done very easily by providing
the ALU and shifter verification theorems as lemmas. Clam plans the proof in 0.1
seconds using the depth-first planner and Oyster executes the plan in 1 second.
The formalisation was straightforward and took about 2 hours. There were no
proof level tasks for this proof. Regarding systems level tasks, there was a slight
modification of the reduction rules code to apply lemmas which correspond to

theorems given by non-wave equations (2 hours).

Multiplier

The next circuit was the nm-bit parallel array multiplier. This verification was
suggested by Toby Walsh? who was using this description of a multiplier imple-

mentation to encode a factorisation algorithm into SAT. The verification of the

2Personal communication
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multiplier was explained in chapter 5. Clam plans the proof in 36 seconds using
the depth-first planner and Oyster executes the plan in 2:12 minutes. The formal-
isation was straightforward and took about 12 hours. The proof level extensions
mainly consisted of looking for the required lemmas and took about 36 hours.

There were no systems level tasks for this proof.
The conjecture for the increment induction scheme version of the multiplier is:
word2nat(times_word(x,y)) = word2nat(x) * word2nat(y)

where times_word defines multiplication of words in terms of plus_word. Clam
plans the proof in 4 seconds using the depth-first planner and Oyster executes the

plan in 5 seconds. There were no proof level nor systems level tasks for this proof.

Exponentiation

Having verified the multiplier we used it in the verification of more complex circuits
like the exponentiation and factorial circuits. The verification conjecture for the

exponentiation circuit is given by:
word2nat(exp_word(x)) = exp(word2nat(x))

where exp_word is defined in terms of times_ word. Clam plans the proof in 10
seconds using the depth-first planner and Oyster executes the plan in 22 seconds.
The formalisation was straightforward and took about 4 hours. There were no

proof level nor systems level tasks for this proof.

Factorial

The verification conjecture for the factorial circuit is given by:
word2nat( fact_word(x)) = fact(word2nat(x))

where fact_word is defined in terms of temes_word. Clam plans the proof in 13
seconds using the depth-first planner and Oyster executes the plan in 21 seconds.
The formalisation was straightforward and took about 4 hours. The proof level
tasks took about 4 hours and consisted mainly of giving the required lemmas.

There were no systems level tasks for this proof.
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Divider
The conjectures for the division operation are these:
word2nat(div_word(x,y)) = word2nat(x) /word2nat(y)
word2nat(rem_word(x,y)) = word2nat(x) rem word2nat(y)

where div_word and rem_word are defined using the constructor plus_word. Clam
plans the proofs in 3 and 4 seconds using the depth-first planner and Owyster
executes the plan in 15 and 17 seconds respectively. The formalisations were
straightforward and took about 4 hours. The proof level tasks took about 12 hours
and consisted mainly of giving the required lemmas and finding a new induction
scheme where the inductive term is plus_word and writing the tactic. There were

no systems level tasks for this proof.

Binary counter

The first sequential circuit verification attempted was a binary counter [Gordon 86].
We translated the representation from a relational to a functional representation.
We used second order functions to represent the specification and the implement-
ation at the object level and did the proof planning using first-order rewrites.
The proof planning time for the counter is 0:05 seconds. The proof time is 0:13

seconds. Signals were defined function types from the natural numbers to words.

The Gordon computer

The next circuit we attempted was the classical Gordon computer microprocessor
system. As we have already pointed out, translating from a relational into a func-
tional representation was time consuming and it would have been easier to derive
the functional representation from scratch. We also had to refresh our computer
architecture concepts from undergraduate days and understand the internal work-
ings of the Gordon computer. After 14 weeks of calendar time (around 560 hours)

Clam was able to produce a proot plan which was then executed by Oyster. The
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planning takes 35:38 minutes using the depth-first planner and Oyster executes the
plan in 274:15 minutes. The formalisation time was about 120 hours and involved
tasks like: re-learning computer architecture and understanding the Gordon com-
puter (40 hrs), translating from the relational specification given in [Joyce et al 86]
into a functional representation (20 hrs), experimenting with various representa-
tions (e.g. time abstraction, state-transition graphs, conditional rewrites, vectors
vs matrices, stability of signals, etc.) (20 hrs), finding an effective way of repres-
enting and traversing the microcode table (20 hrs), and debugging the definitions
(20 hrs). The proof level extensions took around 160 hours and consisted of: writ-
ing a new sub-method for implementing a memoisation algorithm for computing
recursive functions (50 hrs), writing a new method for experimenting with differ-
ence matching (40 hrs), experimenting with method orderings (10), and writing
the required lemmas and tactics (60). The systems level extensions took around
280 hours. Most of this time was spent in debugging tasks, and consisted of: find-
ing an effective way to parse conditional terms (80 hrs), finding a way around the

inefficiencies of Clam in parsing large terms (120 hrs), and testing changes to the

code (80 hrs).

Modified Gordon computer

The extendability test of the Gordon computer which consisted of replacing the
add programming instruction with a no-operation instruction was straightforward
and took one hour to figure out and perform. The computer timings are slightly
lower than the timings for the Gordon computer as the no-operation instruction

represents less work than the add instruction.

7.2.3 Analysis of object-level times

In general, proof timings tend to be higher that proof planning timings. This
has to do with the use of type theory specification language at the object level
(i.e. Ogyster level) with time consuming well-formedness goals. Table 7-2 shows

a comparison of proof timing where the type checking procedure has been set on
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and off. On average, about 70 % of the time is spent in solving type checking

subgoals.

7.2.4 Analysis of hierarchical proofs

Proof planning is able to deal with hierarchical verification. For instance, the
verification theorems for the full adder (fa_sum_ver and fa_carry_ver) were used
as lemmas in a verification experiment of the n-bit adder. The verification of the
full adder presented in appendix B cannot be used in the verification of the n-bit
adder because the sum and the carry are appended together in a list and are not
available separately as needed by the adder proof. Despite this, proot planning
finds its way without the full adder lemmas by expanding the definitions of the

sum and the carry when needed, to prove the n-bit adder conjecture.

Another example of hierarchical verification using proof planning is the se-
quence of proofs that involve the incrementer, the adder, the multiplier, and the
exponentiator and factorial. The adder proof uses the incrementer theorem as a
lemma, the multiplier proof uses the adder theorem as a lemma, and the exponen-
tiator and the factorial proofs use the multiplier theorem as a lemma. As another
experiment, for the exponentiator and factorial proofs we deleted the multiplier
and adder lemmas, and proof planning was still able to find verification proofs for

the exponentiator and factorial circuits without those lemmas.

The Gordon computer proof used uninterpreted definitions of the ALU, the
adder, the subtracter, and other operations (memory fetch and store), which means
that proof planning is also able to deal with generic specifications as described by

Joyce [Joyce 90].

7.2.5 Analysis of lemmas

In this section we do an analysis of the automation features of proof planning and

of the lemmas used by the verification proofs.
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Circuit type checking on | type checking off | % type checking
(min:sec) (min:sec)

COMBINATIONAL

non-recursive

half adder 0:51 0:12 76

full adder 1:45 0:23 78

1-bit ALU 10:13 2:10 79

4-1 multiplexer 4:23 1:18 70

n-bit incrementer

big endian 0:41 0:12 71

n-bit adder

explicit parameter 3:31 0:40 81

big endian 1:41 0:21 79

adder (increment) 0:05 0:02 60

subtracter (increment) 0:06 0:02 67

n-bit alu

explicit parameter 234:19 7:04 97

big endian 274:00 4:59 98

n-bit shifter

big endian 8:57 1:40 81

n-bit processing unit

big endian 0:01 0:004 60

parallel array

nm-bit multiplier 2:12 0:23 83

multiplier (increment) 0:08 0:02 75

exponentiator (increment) 0:27 0:08 70

factorial (increment) 0:26 0:07 73

divider-quotient (plus) 0:18 0:04 77

divider-remainder (plus) 0:16 0:03 81

SEQUENTIAL

counter 0:17 0:04 76

Gordon computer 274:15 42:38 84

modified Gordon computer 232:26 35:52 85

Table 7—2: Percentage of time spent in type checking
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Proof automation

The Clam-Oyster system does not give fully automatic proofs in all the cases.
We have seen that for some circuits user intervention is required to supply, say,
missing lemmas, as is indicated in the last column of the table. However, we have
found that the number of lemmas utilised is lower compared to other systems and
the type of lemmas are not specialised ones, but rather, general purpose lemmas
shared by other proofs, like associativity, commutativity, distributivity, stability
of signals, induction schemes, and non-definitional equations of recursive functions
(e.g addition by recursion on the second argument). Reasons why Clam can find

proofs in many cases without supplying extra lemmas include:

o the possibility of establishing new proof strategies by defining general-purpose

(or domain-specific) methods and tactics which integrate heuristics;

o the flexibility in the application of the heuristics embedded in the meth-
ods by keeping an explicit proof tree of the conjecture and using Prolog’s
backtracking mechanism, which allows Clam to look for alternative method
applications when a method fails. This feature makes method ordering un-
necessary when using depth-first search, provided the search does not follow

a infinite path.

e a look ahead algorithm implemented in rippling analysis which permits the
application of predefined induction schemes which do not have to be derivable

directly from the recursion functions present in the conjecture.

These features provide a higher degree of automation, although in some cases, as

in the case of the multiplier, user intervention will be necessary.

Lemmas

The hardware verification proofs require the definitional equations of the imple-
mentation, the specification, the definitions of their components, and a few lemmas

of various classes. We distinguish five classes of lemmas that we have used in the
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verification proofs reported in this thesis. The first three classes refer to the gener-
ality of the lemmas: how general or how specific the lemmas are; the fourth class
is about lemmas for induction rules, and the fifth class is about lemmas used in

hierarchical verification:

general lemmas: these correspond to properties of theories which appear across
application domains. For instance, the property of distributivity of multiplic-
ation over addition on the natural numbers, and the property of associativity

of append over lists, belong to this class.

domain lemmas: these correspond to properties in a given application domain.

For instance, the stability of signals in the domain of time-sequential circuits.

problem type lemmas: these are properties specific to a problem or type of
problems within a given domain. For instance, converting 13-bit words stored

by a program counter to 16-bit words broadcast by a bus, and vice-versa.

induction lemmas: these correspond to the justification of induction rules of
inference, and are found across the three classes of lemmas described above.
Thus, general, domain and problem lemmas about induction are categorised
as induction lemmas and we can find: (1) general induction lemmas in theor-
ies, like Peano induction on the natural numbers and structural induction on
lists, (2) domain induction lemmas like induction on computer words (lists
of booleans), and (3) problem induction lemmas like induction on two words

of the same length which model devices such as adders and ALUs.

hierarchical lemmas: these correspond to the verification of systems which are
used in building more complex systems. For instance, the verification the-
orem of a hardware device (i.e. an adder) can be used as a lemma in the

verification of a compound device (i.e. a multiplier).
We now describe the lemmas we used to verify hardware:

o general lemmas: the non-recursive circuits of table 7—1 are verified by Boolean

case analysis. However, the Boolean case analysis tactic, needs a general
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lemma which asserts that any Boolean variable is either true or false, and
nothing else, so that the values of a Boolean variable form a partition. Thus,

proofs by Boolean case analysis require this lemma.

The multiplier required general lemmas which correspond to distributivity
of times over plus, a commuted version of distributivity of times over plus,

associativity of times, and reduction rules like © + 0 =z, 2 * 0 = 0.

o domain lemmas: the Gordon computer used a lemma about stability of sig-
nals: the switches to enter data into the computer and the knob to select

the operation when the computer is idling,

o problem type lemmas: the Gordon computer used a lemma for doing a case
split from the conditions of the specification which are determined by the
variables idle, knob, and opcode; and a lemma to ignore three leading zeroes

in a 16 bits word to convert it to a 13-bit word.

o induction lemmas: The explicit parameter versions of the n-bit adder and the
ALU are done by induction on the natural numbers, so we report a induction
lemma (general) for these proofs. However, the lemma that justifies this
induction scheme is built-into Oyster, so the user does not provide it. The
n-bit incrementer, the shifter, and the multiplier proofs are done by induction
on words, Also, the lemma that justifies this induction scheme is built-into
Oyster too, so the user does not provide it. The increment versions of the
adder, the subtracter the multiplier, the exponentiator, and the factorial
circuit are done by induction on words with constructor word increment.
Similarly the divider (quotient and remainer) proofs are done by induction
on words with constructor word addition, so we report an induction lemma
(domain) for all these proofs. The big endian versions of the adder and
the ALU as well as the look-ahead carry version of the adder are done by
induction on two words of the same length, so we report an induction lemma

(problem) for these proofs.
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Circuit Lemmas Total
general domain problem induction hierarchical
half adder 1 0 0 0 0 1
full adder 1 0 0 0 0 1
1-bit ALU 1 0 0 0 0 1
4-1 multiplexer 1 0 0 0 0 1
incrementer 1 0 0 1 0 2
adder (explicit parameter) 1 0 0 1 0 2
adder (big endian) 1 0 0 1 0 2
adder (look-ahead carry) 1 0 0 1 0 2
adder (increment) 1 0 0 1 1 3
subtracter (increment) 0 0 0 1 2 3
alu (explicit parameter) 1 0 0 1 0 2
alu (big endian) 1 0 0 1 0 2
shifter (big endian) 1 0 0 1 0 2
processing unit (big endian) 0 0 0 0 2 2
multiplier (little endian) 4 0 0 1 1 6
multiplier (increment) 0 0 0 1 2 3
exponentiator (increment) 0 0 0 1 2 3
factorial (increment) 1 0 0 1 1 3
divider-quotient (plus) 3 0 0 1 1 5
divider-remainder (plus) 3 0 0 1 1 5
Gordon computer 0 1 2 1 0 4

Table 7-3: Types of lemmas used in hardware verification

o hierarchical lemmas: The multiplier used the verification theorem of the
n-bit adder as a lemma. The increment versions of the adder, subtracter,
multiplier, exponentiator, factorial and divider circuits used the verification
theorem of the increment operation on words given by equation 7.1, as a
lemma. Also, the factorial and exponentiation circuits used the verification
theorem of the multiplier as a lemma. Similarly, the processing unit used

the shifter and ALU verification theorems as lemmas.

The last column of table 7-1 summarises the number of lemmas needed by
each circuit. Table 7-3 summarises the type of lemmas for each of these circuits.

The appendices show all of the definitions and lemmas used by the various proofs.
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7.3 Summary

We have presented a summary of the experiments done using a proof planning
based methodology. We have given statistics that show that, proof planning scales
up well and that the initial proof and systems level extensions required by the first
circuit of a certain kind served to prove more complex circuits of the same kind.
Discounting various one-time development efforts, proof planning may allow users
to formalise circuit verification in times which are lower than what they may appear
at first sight and provide a methodological way of investigating proofs that fail.
User interaction is limited, although in some circumstances human (e.g. the user,
proof engineer, or system designer) intervention may be called for in supplying
extra lemmas or particular heuristics. The examples show the scalability feature
of proof planning, and the test on the modified version of the Gordon computer,
illustrate the extendability claim. Also, the full adder - adder - multiplier proofs
as well as the the adder - multiplier - exponentiation/factorial proofs illustrate
the hierarchical verification capability of proof planning. We conjecture that the
approach presented can be scaled up once more, to verify more complex circuits

of practical interest.



Chapter 8

Related and future work

In this chapter we describe related work on theorem proving for hardware verific-
ation and outline future directions of research. In chapter 2 we surveyed various
verification environments based on theorem proving. Now, section 8.1 describes
experiments similar to the ones we have presented in chapter 7 using some of these
well known theorem provers; section 8.2 explores ways in which proof planning can
be extended both, to increase its functionality and to verify more complex circuits;

and section 8.3 summarises the chapter.

8.1 Related work

The application of automated deduction to hardware verification has been and
continues to be an active area of research. Many efforts have been made and
currently are going on to apply formal methods to verify all sorts of hardware
systems. In this section we examine some of the systems that have been used in
verifying circuits similar to the ones we have presented. The theorem provers we
examine are NQTHM, HOL, PVS, and VERIFY, as well as the MONA decision
procedure. As we have pointed out, Clam/Qyster is a fully-expansive system,
and so are theorem provers like HOL and NUPRL. This feature provides the user
with the security characteristic of these sort of systems, as opposed to provers like

NQTHM and PVS which don’t incorporate this feature [Boulton 94].

142
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8.1.1 NQTHM

Most of the circuits in the table (and many others) have been verified elsewhere us-
ing NQTHM [CLINC 96]. As an experiment, some of the circuits we have reported
were re-implemented in NQTHM by a newcomer to formal verification [Rangel 96].
Most of the proof-development time was spent determining the lemmas required
by the proof. For instance the proof of the n-bit adder uses the following lemmas:
commutativity of plus, commutativity of times, and addition, and multiplication
by recursion on the second argument. Clam required none of these lemmas for
the same proof. We have explained in section 7.2 reasons for which Clam uses
fewer lemmas compared to systems like NQTHM, in which, proof techniques are
pre-established and the application ordering of these techniques is fixed with no
backtracking. The induction schemes in NQTHM are derived automatically from
the recursive functions present in the conjectures but is not able to derive schemes
which are not directly related to these recursive functions. Whereas in systems
like Clam, although the induction schemes are not yet generated automatically®,
because of rippling analysis, it can apply induction schemes suggested by the re-
cursive functions present in the conjecture, as well as other type of induction
schemes whose derivation is not direct [Kraan et al 96]. In general, Clam required
fewer lemmas than NQTHM to verify these circuits. On the other hand, NQTHM
provided a very stable implementation, and was much easier to learn, since the

Clam system, being an evolving research tool, is not properly engineered yet.

In other efforts using NQTHM, the n-bit adder was verified (big-endian) in half
a man-day, where the discovery of the required lemmas was the most difficult part
[Stavridou et al 88]. A combinational processing unit (ALU and shifter) was veri-
fied by Warren Hunt as part of the verification of the FM8501 microprocessor. This
processing unit is verified in three theorems corresponding to the word, natural

number, and two’s complement interpretations. It took about two months effort,

lalthough in principle they can. Currently, the available induction schemes are stored

in a data base



Chapter 8. Related and future work 144

runs in a few seconds?, and used 53 lemmas [Hunt 86]. Although the processor
unit reported here is less complicated than FM8501’s because we do not include
the two’s complement interpretation, we use just 2 lemmas in its proof planning.
A parallel array multiplier was verified in NQTHM by L. Pierre. The proof used
five lemmas and took 99.2 seconds in a SUN Sparc2 machine [Pierre 94].

8.1.2 HOL

One of the earliest examples using HOL was the verification of the Gordon com-
puter by Mike Gordon and his group [Joyce et al 86]. This design was later
implemented and verified as the Tamarack-3 ® microprocessor by Jeffrey Joyce
[Joyce 90]. The verification took about 5 weeks of proof-development effort and
required the derivation of at least 200 lemmas including general lemmas for arith-
metic reasoning and temporal logic operators which are now built into HOL. It
did not require to tune HOL and runs in about 30 minutes in a modern machine *.
Although we assume a synchronous communication with memory whereas Joyce
uses an asynchronous handshaking protocol as well as interrupts, we use almost
no lemmas in its proof planning (e.g. stability of signals, convert from 16 to 13
bit words, change of mpe initial value). Viper’s ALU was verified by Wong using
HOL. The ALU implements a look-ahead carry facility. The proof took one year,
involved 488,760 inference steps, and took 53:52 minutes to execute [Wong 93].

Clam could enhance the functionality of HOL by automating: (1) the deriv-

ation of customised tactics to prove particular conjectures; (2) the selection of

2Personal communication

3A refined implementation of the Gordon computer. Its verification in HOL and PVS
is also more abstract, as tri-state values and gates to access the bus, and the input of
manual information through the switches and the knob, are not considered. However,

Tamarack-3 includes an option for asynchronous communication with memory.

4Personal communication
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induction parameters (scheme and variables), case splits, and generalisations; (3)

the speculation of missing lemmas.

8.1.3 PVS

After we had verified the AL U, Shankar took the specification and the implement-
ation we used to reproduce a verification of the same ALU in PVS ® [PVS 96].
The ALU as well as the n-bit adder, and the Tamarack-3 microprocessor have
been verified in PVS [Cyrluk et al 94,0wre et al 94]. The run time for verifying
each of these circuits was 2:07, 1:27 and 9:05 minutes respectively in a Sun Sparc-
Station 10. These low run-times are explained by the built-in decision procedures
available to PVS. In these experiments, the user must provide the induction para-
meters and use a predefined proof strategy. A proof strategy is packaged as a set
of PVS commands for certain kind of circuits. The adder and the ALU use the
same proof strategy, the Tamarack and the pipelined Saxe microprocessor share
another proof strategy. Clam could also enhance the automation facilities of PVS

in a similar way as in the HOL case.

8.1.4 VERIFY

The Gordon computer was verified by Harry Barrow using the VERIF'Y system.
The verification is split into two parts e.g. the microinstruction level and the in-
struction level and does not use induction, rather, it uses enumeration techniques
and symbolic evaluation. At the microinstruction level the proof uses enumeration
techniques and requires user interaction to assist the proof when state equations
which describe a finite-state machine representation of this level are encountered.
At the instruction level the proof is done by symbolic simulation of the micro-

code and by proving the equivalence between sequences of microinstructions and

5Personal communication
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behavioural descriptions of each programming instruction. The second part is

completed in just 6 minutes of execution time [Barrow 84b].

8.1.5 MONA

The n-bit adder, the n-bit ALU, a commercial implementation of the binary
counter and other parameterised circuits which show regularities in their struc-
tures have been verified using the MONA decision procedure system [MONA 96].
It a circuit which exhibits regularity in its structure can be encoded in the Mon-
adic second-order logic, then MONA gets verifications in times which are orders
of magnitude faster that the times taken by theorem proving based tools. If
a circuit design is faulty, MONA finds a counter-example. However, many cir-
cuits of interest like multipliers and other devices, cannot be encoded in the

logic, thus the applicability of the approach for practical use remains limited

[Basin & Klarlund 95].

8.1.6 VOSS

The AMD2901 4-bit ALU from Advanced Micro Devices Inc, is a high-speed cas-
cadable microprocessor slice for use in CPUs, peripheral controllers and program-
mable microprocessors. This circuit was verified using the VOSS system [Seger 93].
The VOSS system does formal verification using symbolic simulation and symbolic
trajectory evaluation. The meta-language FL, is a general functional language in
which Ordered Binary Decision Diagrams (OBDDs) are built-in so that Boolean
functions can be represented, manipulated and compared very efficiently. User
interaction is required to create the FSM model which is used in the symbolic tra-
jectory evaluation, and for structuring the specification-verification file including

variable ordering.
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System Circuits

adder ALU multiplier microprocessor
NQTHM 0.1 10 2 12
HOL 4 52 * 8
VOSS - 0.2 - -
REVE 3 - * *
CLAM-OYSTER | 0.1 2.4 1 12

Table 8-1: Human timings in number of weeks for circuit verification using

various tools

8.1.7 Comparison

Table 81 displays the human timings for the verification of four standard cir-
cuits using the tools described in the previous subsections. We believe that hu-
man timings are highly important and more relevant that their computer timings
counterparts. The reason for this is that, in general, more that 90% of the total
timings (computer and human) are spent on the human side, and any method-
ology or automated technique that reduces human timings has a high impact in
the total development effort. Another reason for the importance of displaying hu-
man timings is the fact that often, a great deal of effort is invested in developing
efficient programs to verify a given circuit, attaining very low computer timings,
without mentioning the amount of labour spent in making the proof look ‘auto-
matic’. However, it is not easy to find these timings in the literature nor by asking
the developers, because these are not always reported, or the developers did not

record them and have forgotten how much time was spent.

The time unit in table 8-1 is number of weeks. The Clam-Oyster times were
converted to weeks assuming 8 hours per day and 5 days a week. The symbol -’
means that the circuit was verified using that tool but the timing was not reported
or was not known by the developers; The symbol ‘“*” means that we did not find
in the literature any reports on the use of the system to verify the circuit. The

circuits verified using each of these tools are not exactly the same, but have many

similarities. For instance, the VIPERS’s ALU verified using HOL has a look-
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ahead carry feature, thus, this circuits is more complex than the other ALUs in
the table. Also, the developers do not have the same background and experience, so
the actual numbers may be difficult to compare on a one-to-one basis, however, we
think that they give an idea of the importance of human timings in the verification

effort.

The timings for verifying the adder using NQTHM, HOL and REVE were
reported in [Stavridou et al 88]; the timings for verifying the ALU in HOL were
obtained from [Wong 93], and by personal communication with the developers (W.
Hunt and C. Seger) for NQTHM and VOSS. The verification of the multiplier using
NQTHM is reported in [Pierre 94] and the timing was obtained from Laurence
Pierre by personal communication. The verification of the FM8501 using NQTHM
was obtained by personal communication from Warren Hunt, and the timing for
the verification of the Gordon computer using HOL is reported in [Joyce et al 86).
The verification of the adder, the ALU, and the SAXE microprocessor is reported

in [Cyrluk et al 94], but the human timings are not listed.

8.2 Future Work

There are several directions for future work. These include the following:
o interface of Clam with other tactic-based provers;
e temporal logic reasoning;
e informed search procedures;
o interface of Clam with hardware description languages;
e propositional reasoning;
e automatic generation of induction schemes;

e higher-order rippling;
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e relational verification; and
e verification of other microprocessor systems.

In the following subsections we describe each of these directions.

8.2.1 Interface with other provers

As noted, much of our time was spent entering and debugging specifications. Part
of this is due to our use of a somewhat complicated type-theory as a specification
language at the object level. However, our planning approach should work with
any tactic based theorem prover; one need only port the tactics associated with the
current methods from one system to another so that they produce the same effects.
Interfacing Clam with a prover like HOL, LAMBDA or PVS could significantly
reduce the verification times. It would also provide immediate access to the large

collection of tactics and theorems already available for these systems.

LAMBDA

Mike Fourman used the LAMBDA system to prove several inductive theorems from
the NQTHM corpus that had been proved in Clam [Cantu 93]. We studied these
examples to outline an interface between Clam and LAMBDA and use LAMBDA
as our object level system, but we decided to use the existing Clam- Oyster intertace
instead. However, Clam proof plans can be translated into LAMBDA’s tactics.
As a simple example, consider the transcript generated by LAMBDA to prove the
associativity of addition displayed in figure 8.2.1.  This transcript was produced
by a tactic written by Mike Fourman to prove a set of theorems by induction from
the NQTHM corpus [Cantu 93]. Lines 1-4 display the goal. Then an inference
rule for induction on the natural numbers is applied. Lines 6-16 discharge the
base case. Lines 18-20 apply rewriting on the left-hand side using the recursive
equation of addition. Lines 22-24 apply weak fertilisation on the left-hand side.
Lines 26-32 apply rewriting twice on the right-hand side using the same equation.

The proof is completed by applying the equation for the cancellation of successor
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1 skkkkkk  LEVEL 1 *okokok ok ok ok

21: G // H |- plus (x,plus (y,z)) == plus (plus (x,y),z)
S
4 G // H |- plus (x,plus (y,z)) == plus (plus (x,y),z)
5

6 plus (0,plus (y,z))

7 ==>> plus (y,z)

8 wusing G // H |- plus (0,y) ==y

9

10 plus (0,y)

11 ==>>y

12 using G // H |- plus (0,y) ==y

13

14 plus (y,z) == plus (y,=z)

15 ==>> TRUE

16 wusing G // H |- x == x == TRUE

17

18 plus (1’x’,plus (y,z))

19 ==>> 1’(plus (x’,plus (y,z)))

20 using G // H |- plus (1’x,y) == 1’(plus (x,y))

21

22 plus (x’,plus (y,z))

23 ==>> plus (plus (x’,y),z)

24 using G // x ==y $H [-x ==y

25

26 plus (1°x7,y)

27 ==>> 1’ (plus (x’,y))

28 using G // H |- plus (1’x,y) == 1’(plus (x,y))

29

30 plus (1’(plus (x’,y)),z)

31 ==>> 1’(plus (plus (x’,y),z))

32 using G // H |- plus (1’x,y) == 1’(plus (x,y))

33

34 1’(plus (plus (x’,y),z)) == 1’(plus (plus (x’,y),z))
35 ==>> plus (plus (x’,y),z) == plus (plus (x’,y),z)
36 using built-in conversion: {n}’x == {n}’y --> x ==y
37

38 plus (plus (x’,y),z) == plus (plus (x’,y),z)

39 ==>> TRUE

40 using G // H |- x == x == TRUE

41

42 s*kxkxk*k LEVEL 2  skxkkxsk

43 mmm e

44 G // H |- plus (x,plus (y,z)) == plus (plus (x,y),z)

Figure 8-1: LAMBDA proof for the associativity of addition
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induction([(x:pnat)-s(v0)]) then
[base_case(
[sym_eval(
[normalize_term(
[reduction([1,1], [plusl,equ(left)]),
reduction([1,2,1], [plusl,equ(left)]1)]1)]),
elementary(intro(new[y]) then
[intro(new[z]) then
[identity,wfftacs],wfftacs])]),
step_case(
ripple(
wave(direction_out,[1,1],[plus2,equ(left)],[]) then
[wave(direction_out,[1,2,1], [plus2,equ(left)],[]) then
[wave(direction_out,[2,1], [plus2,equ(left)],[]) then
[wave(direction_out, [], [cnc_s,imp(right)],[1)]1]] then

[fertilize(strong,v1)])]

Figure 8—2: Proof plan for the associativity of addition

in lines 34-36 and the identity rule in lines 38-40. The goal with the hypotheses

discharged is shown in lines 42-44.

We notice two facts: the selection of the induction scheme and the induction
variable are determined by the user, and the generation of the proof is obtained
by the exhaustive application of rewriting. By using Clam to guide LAMBDA,
a customised tactic could be automatically generated to prove a conjecture, the
selection of the induction parameters can be automated, and the application of
rewriting can be selective rather than exhaustive, thus reducing the search, which
can be big if there is a large numbers of inference rules in the data base of rules,
which is typically the case in real applications. The proof plan generated by Clam
to prove this conjecture is displayed in figure 8.2.1 which shows many similarities
with the LAMBDA proof. It is possible to map this proof plan into a sequence
of LAMBDA commands that prove the theorem, automating the selection of the
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induction parameters and applying just the rewriting steps indicated in the proof
plan. For instance, the wave method determines the position of the wave-front to
be rippled-out, (e.g. [1,1], [1,2,1] and [2,1]) which can be done with LAMBDA’s
guide commands which locate sub-expressions within a expression, and then apply

rewriting at the indicated positions [Francis et al 92].

HOL

Clam could also be interfaced to the HOL system. In fact, a 3-year project
between Edinburgh and Cambridge has already started to build this interface
[Bundy & Gordon 95] which will make it possible to provide the automation fa-
cilities described in section 8.1.2. We have joined this project to develop a 3-way
effort between Edinburgh, Cambridge and Monterrey to design hardware verifica-
tion cases and develop proof engineering activities to test and tune the interface

[Cantu 96].

8.2.2 Temporal logic

Clam reasoning capabilities could be strengthened by defining a kind of object-
level temporal logic, e.g. linear time propositional logic and then proving rewrite
equations and implications from which wave-rules can be derived to prove proper-
ties of sequential circuits like flip-flops and controllers, as well as verify micropro-
cessor systems with asynchronous communication to external devices. We need to
define the modal operators henceforth, eventually, next, and (weak) until as follows

[Joyce 90]:

OP = M.Vn P(t+n)

OP = A.3n P(t+n)

OP = M. P(t+1)
PUQ = M.Vn(VYm, m<n——(Q(t+m)))— P(t+n)
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and the following temporal propositional operators:

~P = M.-P
PAGQ = M. P(H)A
PViQ = M. P()V
P—:Q = M. P{t)— Q)

We can then define the following temporal propositional logic (LTTL):

1. every atomic formula in higher-order logic is a formula in LTTL

2. if Pis a formula in LTTL, then so are =, P, OP, OP, and ()P

3. if P and @) are formulae in higher-order logic, then so are P Ay ), P V; @,
P —¢ Q, P U Q

A formula in LTTL is valid if and only if it is true at all times:
Valid P = Vt. P(t)
We could then prove equations like:
O(P —,Q)=0P —,0Q
Valid((P A (—:Q)) —¢ (OP)) — Valid(P —, (P UQ))

from which wave rules like the following can be derived:

P—HQT)j 0P —, 0¢

ull !

Valid(P —, (PUQ|)) = Valid((P A (=Q)) — (OP)])

and used to prove conjectures in the logic. For instance, we may have the following
handshaking protocol: “A data request at time ¢; by a sender is acknowledged at
time ¢35 by a receiver and a request to end the interaction is signalled by the sender

at time t3 and eventually acknowledged by the receiver at time ¢,”. The behaviour
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of the sender and the receiver can be formalised in the temporal logic, and used
to prove conjectures that show that the constraints imposed by the protocol are
observed. The logic can also be used to specity memory and interfacing memory
with a processor in an asynchronous communication mode [Joyce 90]. Other form-
alisations can be derived to reason about stability and correctness properties of
devices like flip-flops and controllers [Basin & Klarlund 95]. Currently, we do not
foresee extensions to methods or tactics to prove theorems in this type of logic.
Formalising the logic at the object level as well as the conjectures, and using
the proof planning facilities to plan the conjectures seem to be the type of tasks

required.

8.2.3 Heuristic search

A more informed search procedure that uses heuristic information and analyses
the structure of the current goal to determine dynamically in which order to apply
methods would make proof planning more automatic and less user/proof engineer
dependent. This heuristic knowledge could be encoded in a search procedure like
best-first search [Manning et al 93] which has been implemented but is not part of

the standard version of Clam.

8.2.4 Interface to a HDL

An interface to a standard hardware description language would also ease specific-
ation and make it possible to integrate proof planning better into the hardware
design cycle. Many efforts have been made to provide interfaces between hardware
description languages used by design engineers (e.g. IEEE’s VHDL) and formal
methods tools [Delgado & Breuer 95]. However, the semantics of HDLs is often
not well defined and the interface is not easy to develop. HDLs that meet the
required properties are then developed, but these lack the required generality, or
alternatively, subsets of standard HDLs are defined and interfaced with provers
[Hunt & Brock 92]. We think that the latter approach could be explored in the
Clam context [Gordon 95].
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8.2.5 Propositional reasoning

Another area for further work concerns improving the power or efficiency of some
of our methods. For example, reasoning about boolean circuits by case evaluation,
which has exponential growth, could be replaced by a more efficient routine based

on BDDs and be implemented as a sub-method of the method sym_eval.

8.2.6 Lemma speculation

Although sometimes Clam is able to get a proof through without a missing lemma,
in other cases the user has to supply lemmas that cannot be guessed by Clam.
However, proof planning provides additional features that permit the speculation
of lemmas before appealing to the user. The Critics mechanism is such a feature for
finding missing lemmas, induction schemes, and generalisations during the rippling
process and is described in [Ireland & Bundy 96]. We have done a preliminary
investigation to speculate lemmas for some of the circuits verified using a prototype
version of Clam which implements critics. For instance, if we delete the sub-
method term_cancel in the experiment about the incrementer, the planning fails
because it requires the wave rule U + s(V) = s(U + V) which is missing. With
this lemma the planning succeeds. This lemma can be speculated easily by the
current critics in Clam which are available only in an experimental version of
Clam which we did not used. Similarly, the lemmas that we have supplied for the
multiplier proof (e.g. associativity, commutativity, and distributivity of addition
and multiplication), can be speculated by similar critics. The work needed consists
of translating methods and sub-methods from the syntax of the official version of

Clam to the one used by the critics prototype, and try the experiments.

8.2.7 Automatic generation of induction schemes

Clam keeps a data base of predefined induction schemes. Clam searches this data
base to select a scheme for proof by induction. This provides flexibility in use of

induction schemes. In systems like NQTHM although the type of schemes used



Chapter 8. Related and future work 156

are those derivable from the recursive functions in the conjecture, the generation
of such schemes is automatic. The generation of the type of induction schemes
used by Clam for a particular conjecture can be automated and avoid keeping an
explicit data base of induction schemes. This extension of Clam applies to proof
by induction in general, and is not exclusive of hardware verification. This has

been a research goal of the MRG but has not been implemented.

8.2.8 Higher-order rippling

The kind of rippling we have described and used to verify circuits applies to first-
order logic. Rippling in higher-logic requires higher-order wave annotations. An-
other version of Clam implemented in Lambda-Prolog has been developed by the
MRG staff to address this kind of problems [Smaill & Green 96]. Reasoning about
circuits with higher-order functions like signals is commonplace in sequential cir-
cuits, thus, the Lambda-Prolog version of Clam could be used to prove properties

of this kind of circuits.

8.2.9 Relational verification

The style of meta-level inference implemented in Clam is very effective for reason-
ing about functional representations, but cannot deal with their relational coun-
terparts. We did the verification of the full adder in a relational style, and have
outlined the correctness of the n-bit adder, but extending it to circuits with rep-
licated structures and feedback loops such as the ones we have presented requires
adaptation of most of the proof planning techniques (e.g. rippling, fertilisation,

rippling analysis, etc). Efforts have been done by various researchers to address

these issues [Bundy & Lombart 95,Lombart & Deville 94,Ahs & Wiggins 94].

8.2.10 Microprocessor verification

With some of these improvements (e.g. temporal reasoning), Clam could be used

to verify other microprocessor systems with extended functionality. For instance,
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the verification of Tamarack-3 which includes interrupts and a handshaking asyn-
chronous communication protocol with memory would be a natural extension to
the Gordon computer. Another 16-bit microprocessor that provides asynchronous
communication with memory and that can be verified in Clam is the FM8501. At
the 32-bit level, the FM9001 could be attempted next as well as microprocessors
with pipe-line architectures verified in HOL [Windley & Coe 94].

8.3 Summary

We have presented a summary of work in hardware verification using theorem
provers which have verified circuits similar to the ones we have reported. Human
and computer timings in many cases are comparable, but Clam provides more
automation facilities, reflected in the automatic generation of customised tactics,
the automation of induction decisions, the reduced number of lemmas utilised in
the proofs, and the the selective application of rewriting. We also have described
future work that would enhance Clam capabilities for hardware verification and
with appropriate integration would allow us to attempt the verification of more
complex circuits of the type typically found in commercial and safety-critical ap-

plications.
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Conclusions

We have investigated the application of proof planning for automating hardware
verification tasks. Our starting point was the current implementation of proof
planning in the Clam system in October 1992 and its application in domains
like inductive theorem proving. During the following four years we conducted a
series of experiments and drew lessons which can be summarised in the following

contributions:

e show by experimentation the applicability, scalability and extendability of

proof planning for automating hardware verification tasks;
e a methodology for hardware verification;
e profiling of the Clam system.

First, our working hypothesis was that proof planning could be used to verify
hardware. Experiments show that the Clam system and the proof planning idea
carry over well to automate proofs in this new domain, although a number of
extensions in the details (as opposed to the spirit) of Clam and the development of
new general tactics and methods were required. The kind of automation provided

by proof planning comprises:

e the automatic generation of a customised tactic, given a conjecture, from a

set of general-purpose methods and tactics, and a search strategy;

158
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e the automatic selection of induction schemes and variables from a predefined

set of induction schemes;

o the automatic generation of case splits and generalisations in the inductive

step;

e and the use of fewer lemmas compared to other provers.

One may ask how important these features are. Critics of interactive theorem
proving have claimed that full proof automation is required in order to have formal
methods used by industry in a regular basis [Saiedian 96]. We think that the type

of automation provided by proof planning is a step in this direction.

Most importantly, we have seen the robustness of proof planning and the fea-
tures of extendability and scalability of proof planning. Robustness means that
proof planning adapts to modifications on the implementation and the specification
of a circuit and finds a tactic automatically without user intervention. Extend-
ability and scalability means that similar circuits of a certain class or variants
of a particular circuit can be verified using the same methods and planner (ex-
tendability), and that circuits of higher complexity can also be verified using the
same methods and planner (scalability). This is interesting, because allows us to
conjecture that the proof planning technique can be applied to industrial-strength
circuits, which are of higher complexity, and are found in the upper region of figure
9—1. The verification of this sort of systems will be further facilitated by integrat-
ing Clam with tactic-based hardware verification oriented theorem provers such
as HOL and LAMBDA. Clam will enhance the automating capabilities of these
provers as well as providing them with the extendability and scalability features
of proof planning, and will benefit from all of the tactics that have been developed

for these provers in verifying real-world hardware systems.

Second, we have presented a verification methodology that decomposes formal
proof into three conceptually different kind of tasks: user, proof, and systems
tasks. In this investigation these activities were performed by one and the same

person, but if we think about an organisational context, this distinction can facil-
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hardware-software stacks
asynchronous circuits (upper region)
pipe-line microprocessors
scalability |~ oo
FM8501
Tamarak (middle-upper region)
Gordon computer  modified Gordon comp.
divider (middle-lower region)
multiplier
au .
adder (lower region)
incrementer
extendability

Figure 9-1: Extendability and scalability of proof planning

itate the adoption of formal methods in a firm and provide a smoother transition
towards its use. Typically, the formalisation task will be done by a hardware
design engineer with a background in digital logic, who will write the specifica-
tion, the implementation and a verification conjecture of a hardware design in a
logic formalism, and will run Clam and a prover to get a composite tactic specific
for that conjecture. There may be many users like this within the organisation.
Then the proof engineer who will belong to a formal methods department /unit
within the same organisation, will provide assistance to all of the users in the
company if something goes wrong with some proof. And finally, a systems engin-
eer, who will provide support to the verification environment and will work for a
consulting company outside the organisation. It may be the case that the proof
engineering activities would be offered by an outside consulting company as well,
but the important point is making the conceptual distinction among the three

types of activities.

Proof planning mechanisms apply both to combinational and sequential hard-

ware, the difference being the handling of time. We investigated several kinds of
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parameterised circuits and were able to develop methods which captured heuristics
suitable for reasoning about families of such designs. We reported on our timings
for formalising particular circuits and doing proof/systems engineering activities
to tune the methods and to tune Clam. Although the times are sometimes high
for initially verifying new kinds of circuits, subsequent verifications times were re-
spectable and would gracefully decrease once we discount one-time activities, with
the majority of time being spent on simply entering and debugging the formalisa-
tion. This provided support for our belief that a system like Clam might be usable
by hardware engineers, provided that there is a type of proof engineering support
in the background to tune the proof techniques (e.g. methods, tactics, lemmas,

induction schemes, etc.) when required.

Third, we contributed to the profiling of the Clam system. We obtained the
largest proofs that had been done in Clam-QOyster so far. The experiments forced
situations that had not arisen in previous proofs, which leaded to improvements in
the code, and suggested extensions that were implemented either by us, or by the

MRG staff, improving in this way the functionality and the robustness of Clam.

And finally, we think that the research reported in this thesis contributes to
our knowledge about the use of meta-level reasoning based on proof planning
to verify hardware in tactic-based settings. With additional enhancements and
integration with other proving systems, our approach could become a viable way

of automating industrial-strength verification tasks in the hardware domain.
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Appendix A

Object level definitions

This appendix describes basic definitions on types, as well as rewrite equations
for operations and conversion functions on types. An Oyster definition has the
form: termi<==>term2. A rewrite equaﬁon,ﬁasthe form of an Oyster theorem:
[hypl,...,hypnl==>formula in Type.

A.1 Types

{bool}<==>unary\unary

{true}<==>inl(unit)

{false}<==>inr(unit)

{word}<==>{bool} list

wordn(n)<==>{w:{word}\length(w)=n in pnat}

memn (n)<==>wordn(n) list

signal<==>(pnat=>{word})

signaln(n)<==>(pnat=>wordn(n))

state<==>(memn (16)#wordn(13)#wordn(16)#{bool})

imp_state<==>(memn(16)#wordn(13)#wordn(16)#{booll}#
wordn (16) #wordn(13)#wordn(16)#
wordn (16) #wordn(5) #{bool})

A.2 Operations on types

A.2.1 Booleans

NOT
[1==>(not{false})={truetin{bool}
[1==>(not{true})={falsetin{bool}

AND

[1==>y:{bool}=>(y and{false})={false}in{bool}
[1==>y:{bool}=>({false}and y)={false}in{bool}
[1==>({true}and{true})={true}

179
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OR

[1==>y:{bool}=>(y or{true})={truetin{bool}
[1==>y:{bool}=>({truetor y)={truetin{bool}
[]==>({false}or{false})={false}in{bool}

X0OR

[1==>y:{bool}=>xor(y,y)={false}in{bool}
[1==>xor({true},{false})={truetin{bool}
[1==>xor({false},{true})={truetin{bool}

A.2.2 Natural numbers

PLUS
[]==>y:pnat=>plus(0,y)=y in pnat
[1==>x:pnat=>y:pnat=>plus(s(x),y)=s(plus(x,y))in pnat

TIMES
[]==>y:pnat=>times(0,y)=0 in pnat
[1==>x:pnat=>y:pnat=>times(s(x),y)=plus(times(x,y),y)in pnat

EXPONENTIATION
[]==>n:pnat=>exp(n,0)=s(0)in pnat
[]==>n:pnat=>i:pnat=>exp(n,s(i))=times(n,exp(n,1i))in pnat

FACTORIAL
[1==>fac(0)=s(0)in pnat
[]==>n:pnat=>fac(s(n))=times(s(n),fac(n))in pnat

PREDECESSOR
[1==>pred(0)=0 in pnat
[1==>x:pnat=>pred(s(x))=x in pnat

MINUS

[]==>x:pnat=>minus(x,0)=x in pnat
[]==>y:pnat=>minus(0,y)=0 in pnat
[]==>x:pnat=>y:pnat=>minus(s(x),s(y))=minus(x,y) in pnat

LESS

[]==>x:pnat=>less(x,0)=void in u(1)
[]==>x:pnat=>less(0,x)= (x=0 in pnat=>void)in u(1)
[]==>x:pnat=>y:pnat=>less(s(x),s(y))=less(x,y)in u(l)

QUOTIENT

[]==>x:pnat=>quot(x,0)=0 in pnat
[1==>x:pnat=>y:pnat=>less(x,y)=>quot(x,y)=0 in pnat
[]==>x:pnat=>y:pnat=>quot (plus(x,y),y)=s(quot(x,y)) in pnat

REMAINER

[]==>x:pnat=>rem(x,0)=0 in pnat
[1==>x:pnat=>y:pnat=>less(x,y)=>rem(x,y)=x in pnat
[]==>x:pnat=>y:pnat=>rem(plus(x,y),y)=rem(x,y) in pnat

HALF

[]==>half(0)=0 in pnat

[]==>half(s(0))=0 in pnat
[]==>n:pnat=>half(s(s(n)))=s(half(n))in pnat
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A.2.3 Lists

APPEND

[1==>1:{word}=>app(nil,1)=1 in{word}
[1==>h:{bool}=>11:{word}=>12:{word}=>
app(h::11,12)=h::app(11,12)in{word}

LENGTH
[1==>length(nil)=0 in pnat
[1==>h:{bool}=>1:{word}=>length(h::1)=s(length(1l))in pnat

REVERSE
[1==>rev(nil)=nil in {word}
[1==>h:{bool}=>1:{word}=>rev(h::1)=app(rev(l),h::nil)in {word}

A.2.4 Words

NOT

[1==>not_word(nil)=nil in {word}
[1==>a:{bool}=>x:{word}=>

not_word(a::x)= (not a)::not_word(x) in {word}

AND

[]==>and_word(nil,nil)=nil in {word}
[1==>a:{bool}=>b:{bool}=>x:{word}=>y:{word}=>
and_word(a::x,b::y)= and(a,b)::and_word(x,y) in {word}

OR

[]==>or_word(nil,nil)=nil in {word}
[1==>a:{bool}=>b:{bool}=>x:{word}=>y:{word}=>
or_word(a::x,b::y)= or(a,b)::or_word(x,y) in {word}

X0OR

[l==>xor_word(nil,nil)=nil in {word}
[1==>a:{bool}=>b:{bool}=>x:{word}=>y:{word}=>
xor_word(a: :x,b::y)=xor(a,b)::xor_word(x,y) in {word}

A.3 Conversion functions

BOOL TO NAT
[]==>bool2nat({false})=0 in pnat
[]==>bool2nat({true})=s(0)in pnat

NAT TO BOOL
[1==>nat2bool(0)={false}in{bool}
[]==>n:pnat=>nat2bool(s(n))= not(nat2bool(n)) in {bool}

WORD TO NAT

[]==>word2nat(nil)=0 in pnat
[1==>a:{bool}=>x:{word}=>

word2nat(a::x)=

plus(bool2nat(a),times(s(s(0)) ,word2nat(x)))in pnat

WORD TO NAT (LITTLE ENDIAN)
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[]==>word2nat_le(nil)=0 in pnat

[1==>h:{bool}=>t:{word}=> word2nat_le(h::t)=

plus(times(bool2nat (h),exp(s(s(0)),length(t))),
word2nat_le(t))in pnat

WORD TO NAT (EXPLICIT PARAMETER)
[1==>w:{word}=>word2nat_ep(0,w)=0 in pnat
[1==>n:pnat=>w:{word}=> word2nat_ep(s(n),w)=
plus(bool2nat (hd(w)),times(s(s(0)),
word2nat_ep(n,tl(w)))) in pnat

NAT TO WORD

[]==>n:pnat=>nat2word(0,n)=nil in{word}
[]==>n:pnat=>m:pnat=>nat2word(s(n) ,m)=
nat2bool(m) : :nat2word(n,half(m)) in {word}

A.4 Conditional functions

IF (BOOL-WORD)

[1==>a:{word}=>b:{word}=>if ({false},{falsel},a,b)=a in{word}
[1==>a:{word}=>b:{word}=>if ({false},{true},a,b)=b in{word}
[1==>a:{word}=>b:{word}=>if ({true},{false},a,b)=b in{word}
[1==>a:{word}=>b:{word}=>if ({true},{true},a,b)=a in{word}

IF (BOOL-NAT)
[]==>a:pnat=>b:pnat=>ifbn({false},{false},a,b)=a in pnat
[]==>a:pnat=>b:pnat=>ifbn({false},{true},a,b)=b in pnat
[]==>a:pnat=>b:pnat=>ifbn({true},{false},a,b)=b in pnat
[]==>a:pnat=>b:pnat=>ifbn({truel},{true},a,b)=a in pnat

IF (NAT-BOOL)

[]==>x:pnat=>y:pnat=>a:{bool}=>b:{bool}=>x=y in pnat=>
if_nb(x,y,a,b)=a in{bool}
[]==>x:pnat=>y:pnat=>a:{bool}=>b:{bool}=> (x=y in pnat=>void)=>
if_nb(x,y,a,b)=b in{bool}

IF (NAT-WORD)
[1==>x:pnat=>y:pnat=>a:{word}=>b:{word}=>

x=y in pnat=>if_nw(x,y,a,b)=a in {word}
[1==>x:pnat=>y:pnat=>a:{word}=>b:{word}=>

(x=y in pnat=>void)=>if_nw(x,y,a,b)=b in {word}
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Non recursive circuits

This appendix describes the implementation, the specification and the conjecture
of non-recursive circuits: half adder, full adder, 1-bit ALU and multiplexer.

B.1 Half adder

IMPLEMENTATION

[1==>x:{bool}=>ci:{bool}=>ha_sum(x,ci)=xor(x,ci)in{bool}
[1==>x:{bool}=>ci:{bool}=>ha_carry(x,ci)= (x and ci)in{bool}

CONJECTURE:

[I==>a:{bool}=>b:{bool}=>

word2nat (ha_sum(a,b)::ha_carry(a,b)::nil)=
plus(bool2nat(a) ,bool2nat(b))in pnat

B.2 Full adder

IMPLEMENTATION

[1==>a:{bool}=>b:{bool}=>ci:{bool}=>
fa_sum(a,b,ci)=xor(xor(a,b),ci) in {bool}
[1==>a:{bool}=>b:{bool}=>ci:{bool}=>

fa_carry(a,b,ci)= (xor(a,b)and ci or a and b) in {bool}

CONJECTURE:

[1==>a:{bool}=>b:{bool}=>ci:{bool}=>

word2nat (fa_sum(a,b,ci)::fa_carry(a,b,ci)::nil)=
plus(bool2nat(a),plus(bool2nat(b),bool2nat(ci)))in pnat
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B.3 1-bit ALU

IMPLEMENTATION

[1==>s0:{bool}=>s1:{bool}=>s2:{bool}=>
a:{bool}=>b:{bool}r=>ci:{bool}=>
alu_sum(s0,s1,s2,a,b,ci)=
fa_sum(or(and(and(s2,and(not(s1),
not(s0))),
b),
or(and(and(s2,
and(s1,
not(s0))),
not (b)),
a)),
or(and(b,s0),
and(not(b),s1)),
and(ci,not(s2))) in bool}

[1==>s0:{bool}=>s1:{bool}=>s2:{bool}=>
a:{bool}=>b:{bool}r=>ci:{bool}=>
alu_carry(s0,s1,s2,a,b,ci)=
and(not(s2),
fa_carry(or(and(and(s2,and(not(sl),
not(s0))),
b),
or(and(and(s2,
and(s1,
not(s0))),
not (b)),

or(and%b,éO),
and(not(b),s1)),
and(ci,not(s2)))) in {bool}

CONJECTURE:
[1==>s0:{bool}=>s1:{bool}=>s2:{bool}=>
a:{bool}=>b:{bool}=>ci:{booll}=>
word2nat (alu_sum(s0,s1,s2,a,b,ci)::
alu_carry(s0,s1,s2,a,b,ci)::nil)=
alu_spec(s0,s1,s2,a::nil,b::nil,ci)in pnat

B.4 4-1 Multiplexer

IMPLEMENTATION

[] ==
ho:{bool}=>h1:{bool}=>x0:{bool}=>
x1:{bool}=>x2:{bool}=>x3:{bool}=>
mux(h0,h1,x0,x1,x2,x3)=
or(and (x0,
and(not(hl),
not(h0))),
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or(and(x1,
and (not(hl),
h0)),
or(and(and (x2,
and(hi,
not (h0))),
and(x3,and(h1,h0))

)
)
) ) in {bool}
SPECIFICATION:

[1==>x:{word}=>muxSpec(0) of x=hd(x) in{bool}
[]==>n:pnat=>x:{word}=>
mux_spec(s(n) ,x)=mux_spec(n,tl(x))in{bool}

CONJECTURE

[1==>h0:{bool}=>h1:{bool}=>
x0:{bool}=>x1:{bool}=>x2:{bool}=>x3:{bool}=>

mux_spec(word2nat (hO::hl::nil) ,x0::x1::x2::x3::nil)=

mux (h0,h1,x0,x1,x2,x3)in{bool}
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Incrementer

This appendix describes the implementation, the specification, the conjecture, the
proof planning script, the proot script, and lists the methods used.

C.1 Formalisation

IMPLEMENTATION

[1==>ci:{bool}=>inc(nil,ci)=ci::nil in{word}
[1==>ci:{bool}=>a:{bool}=>x:{word}=>
inc(a::x,ci)=ha_sum(a,ci)::inc(x,ha_carry(a,ci))in{word}

CONJECTURE
[1==>x:{word}=>ci:{booll}=>
word2nat (inc(x,ci))=plus(word2nat (x) ,bool2nat(ci))in pnat

C.2 Proof plan

Script of the proof planning generated by Clam using the depth-first planner:

runtime(dplan,T) .

induction([v0::v1], [x:{word}])then

[sym_eval(

eval_def([1,2,1], [word2natl,equ(left)])then
[eval_def([2,1], [plusl,equ(left)])then
[eval_def([1,1,1],[incl,equ(left)])then
[eval_def([1,1], [word2nat2,equ(left)])then
[eval_def([2,1,1], [times2,equ(left)])then
[eval_def([2,2,1,1], [word2natl,equ(left)])then
[eval_def([1,2,1,1],[times2,equ(left)])then
[eval_def([2,1,2,1,1], [word2natl,equ(left)])then
leval_def([1,1,2,1,1], [timesl,equ(left)])then
[eval_def([1,2,1,1], [plusl,equ(left)])then
[eval_def([2,1,1], [plusl,equ(left)])then
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[term_cancel(ci:{bool}=>0=0 in pnat)then
[elementary(intro(new[ci])then
[identity,wfftacs])111111111111),
step_case(ripple(wave([1,2,1], [word2nat2,equ(left)], [])then
[wave([1,1,1],[inc2,equ(left)], []1)then

[wave([1,1], [word2nat2,equ(left)], [])then
[unblock(eval_def,[2,1,1], [times2,equ(left)])then
[unblock(eval_def,[1,2,1,1], [times2,equ(left)])then
[unblock(eval_def,[1,1,2,1,1],[timesl,equ(left)])then
[unblock(eval_def,[1,2,1,1], [plusl,equ(left)])then
[unblock(eval_def,[1,1,1,1], [ha_suml,equ(left)])then
[unblock(eval_def,[2,1,1,2,1,1], [ha_carryl,equ(left)])then
[unblock(eval_def,[2,1,2,2,1,1], [ha_carryl,equ(left)])then
[unblock(eval_def,[2,1,2,1], [times2,equ(left)])then
[unblock(eval_def,[1,2,1,2,1],[times2,equ(left)])then
[unblock(eval_def,[1,1,2,1,2,1],[timesl,equ(left)])then
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[unblock(eval_def,[1,2,1,2,1], [plusl,equ(left)])]111111111111])then

[fertilize(weak,fertilize([weak_fertilize(left,in,[1,2],v2),
weak_fertilize(left,in,[2,2],v2)]1))]1)] then
sym_eval(
term_cancel (ci:{bool}=>
plus(bool2nat(xor(v0,ci)),

plus(bool2nat(v0 and ci),bool2nat(v0 and ci)))=
plus(bool2nat(v0) ,bool2nat(ci))in pnat)then
[bool_cases(v0)then
[eval_def([1,2,1], [bool2natl,equ(left)])then
[eval_def([2,1], [plusl,equ(left)])then
[eval_def([1,2,2,1,1], [and2,equ(left)])then
[eval_def([2,2,1,1], [bool2natl,equ(left)])then
[eval_def([1,1,2,1,1], [and2,equ(left)])then
[eval_def([1,2,1,1],[bool2natl,equ(left)])then
[eval_def([2,1,1], [plusl,equ(left)])then
[bool_cases(ci)then[eval_def([2,1], [bool2natl,equ(left)])then
[eval_def([1,1,1,1], [xorl,equ(left)])then
[eval_def([1,1,1], [bool2natl,equ(left)])then
[eval_def([1,1], [plusl,equ(left)])then
[elementary(identity)]]]],
eval_def([2,1],[bool2nat2,equ(left)])then
[eval_def([1,1,1,1], [xor3,equ(left)])then
[eval_def([1,1,1], [bool2nat2,equ(left)])then
[eval_def([1,1], [plus2,equ(left)])then
[reduction([],cnc_s)then
[eval_def([1,1], [plusl,equ(left)])then
[elementary(identity)]11111111111111,
eval_def([1,2,1], [bool2nat2,equ(left)])then
[eval_def([2,1], [plus2,equ(left)])then
[eval_def([1,2,1], [plusl,equ(left)])then
[bool_cases(ci)then
[eval_def([1,2,1], [bool2natl,equ(left)])then
[eval_def([1,2,2,1,1], [andl,equ(left)])then
[eval_def([2,2,1,1], [bool2natl,equ(left)])then
[eval_def([1,1,2,1,1], [andl,equ(left)])then
[eval_def([1,2,1,1],[bool2natl,equ(left)])then
[eval_def([2,1,1], [plusl,equ(left)])then
[eval_def([1,1,1,1], [xor2,equ(left)])then
[eval_def([1,1,1], [bool2nat2,equ(left)])then
[eval_def([1,1], [plus2,equ(left)])then
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[reduction([],cnc_s)then

[eval_def([1,1], [plusl,equ(left)])then
[elementary(identity)]11111111111,
eval_def([1,2,1], [bool2nat2,equ(left)])then
[eval_def([1,2,2,1,1], [and3,equ(left)])then
[eval_def([2,2,1,1], [bool2nat2,equ(left)])then
[eval_def([1,1,2,1,1], [and3,equ(left)])then
[eval_def([1,2,1,1],[bool2nat2,equ(left)])then
[eval_def([2,1,1], [plus2,equ(left)])then
[eval_def([1,2,1,1], [plusl,equ(left)])then
[eval_def([1,1,1,1], [xorl,equ(left)])then
[eval_def([1,1,1], [bool2natl,equ(left)])then
[eval_def([1,1], [plusl,equ(left)])then
[elementary(identity)]1111111111111111)

T = 21316 (milliseconds)

C.3 Proof

Script of the proof generated by Oyster

runtime(apply_plan,T).

applying tactic at depth 0: ind_strat([v0::v1], [x:{word}])

applying tactic at depth 1: sym_evalC(...)

T = 105750 (milliseconds)

C.4 Methods

Methods used in the proof planning

list_methods.
sym_eval/1
generalise/2
normalize/1
ind_strat/1
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Multiplier

This appendix describes the verification of thfzrnldtzPher: implementation, spe-
cification, conjecture, lemmas, proof plan script, proof script, and methods.

D.1 Formalisation

IMPLEMENTATION

[1==>x:{word}=>mult (x,nil)=zeroes(length(x))in{word}
[1==>h:{bool}=>x:{word}=>y:{word}=>

mult(x,h::y)=

adder_le(appnd(mult_one(x,h) ,zeroes(length(y))) ,mult(x,y),{falsel})
in{word}

CONJECTURE

[1==>x:{word}=>y:{word}=>
word2nat_le(mult(x,y))=times(word2nat_le(x),word2nat_le(y))
in pnat

D.2 Lemmas

VERIFICATION OF N-BIT ADDER
[1==>ci:{bool}=>x:{word}=>y:{word}=>
word2nat_le(adder_le(x,y,ci))=
plus(word2nat_le(x),plus(word2nat_le(y),bool2nat(ci)))in pnat

DISTRIBUTIVITY OF MULTIPLICATION OVER ADDITION
[]==>a:pnat=>b:pnat=>c:pnat=>
times(a,plus(b,c))=plus(times(a,b),times(a,c))in pnat

a:pnat=>b:pnat=>c:pnat=>
times(plus(b,c),a)=plus(times(b,a),times(c,a))in pnat

ASSOCIATIVITY OF MULTIPLICATION
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[]==>a:pnat=>b:pnat=>c:pnat=>
times(a,times(b,c))=times(times(a,b),c)in pnat

PLUS ZERO
[]==>x:pnat=>plus(x,0)=x in pnat

TIMES ZERO
[]==>x:pnat=>times(x,0)=0 in pnat

\section{Proof plan}
\begin{verbatim}
(only methods are displayed):

ind_strat([v0::v1], [y:{word}]) then
[ind_strat([v0::v1], [x:{word}]),
sym_eval(...) then
[ind_strat([v4::v5], [x:{word}]) then
ind_strat([v4::v5], [vl:{word}]),
ind_strat([v4::v5], [x:{word}]) then
[ind_strat([v4::v5], [vl:{word}]),
sym_eval(...) then
ind_strat([v8::v9], [vE:{word}]) then
ind_strat([v8::v9], [vl:{word}])

D.3 Proof

runtime(apply_plan,T).

applying tactic at depth 0: ind_strat([v0::v1], [y:{word}])
applying tactic at depth 1: ind_strat([v0::v1], [x:{word}])
applying tactic at depth 1: sym_evalC(...)

applying tactic at depth 2: ind_strat([v4::v5], [x:{word}])
applying tactic at depth 3: ind_strat([v4::v5], [vl:{word}])
applying tactic at depth 2: ind_strat([v4::v5], [x:{word}])
applying tactic at depth 3: ind_strat([v4::v5], [vl:{word}])
applying tactic at depth 3: sym_evalC(...)

applying tactic at depth 4: ind_strat([v8::v9], [v5:{word}])
applying tactic at depth 5: ind_strat([v8::v9], [vl:{word}])
T = 334617 (milliseconds)

D.4 Methods

list_methods.

sym_eval/1
normalize/1
ind_strat/1
generalise/2
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Gordon computer

This appendix describes the verification of the Gordon computer: implementation,
specification, conjecture, lemmas, script of proof planning, script of proof, and
methods used.

E.1 Formalisation

t:pnat=>
swt:signaln(16)=>
knob:signaln(2)=>
button:flag=>
computerImp(t,swt,knob,button)

(memory (t,swt,knob,button)&
pc(t,swt,knob,button)&
acc(t,swt,knob,button)&
idle(t,swt,knob,button)&
buffer(t,swt,knob,button)&
mar (t,swt,knob,button)&
ir(t,swt,knob,button)&
arg(t,swt,knob,button)&
mpc (t,swt,knob,button)&
ready(t,swt,knob,button))
in imp_state

MEMORY
[]::
t:pnat=>
swt:signaln(16)=>
knob:signaln(2)=>
button:flag=>
memory (s(t),swt,knob,button)

if (memctlB(t,swt,knob,button) ,{true},
store(mar(t,swt,knob,button),
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bus (t,swt,knob,button),
memory (t,swt,knob,button)),
memory (t,swt,knob,button))
in memn(16)

??OGRAM COUNTER
t:pnat=>
swt:signaln(16)=>
knob:signaln(2)=>
button:flag=>
pc(s(t),swt,knob,button)=
if (wpc(t,swt,knob,button) ,{false},
pc(t,swt,knob,button),
cut (bus(t,swt,knob,button)))
in wordn(13)

ACCUMULATOR
[]::
t:pnat=>
swt:signaln(16)=>
knob:signaln(2)=>
button:flag=>
acc(s(t),swt,knob,button)

if (wacc(t,swt,knob,button) ,{false},
acc(t,swt,knob,button),
bus (t,swt,knob,button))

in wordn(16)

IDLE FLAG
[]::
t:pnat=>
swt:signaln(16)=>
knob:signaln(2)=>
button:flag=>
idle(t,swt,knob,button)=mc_idle(mpc(t,swt,knob,button)) in {bool}

MICROCODE (IDLE)

mc_idle({false}::{false}::{false}: :{false}::{false}::nil)={true}
in {bool}

[]::
mc_idle({true}: :{true}: :{truel}: :{true}: :{true}::nil)={false}
in {bool}

%gFFER REGISTER
t:pnat=>
swt:signaln(16)=>
knob:signaln(2)=>
button:flag=>
buffer(s(t),swt,knob,button)=
if (aluctlB(t,microcode(mpc(p,swt,knob,button))) ,{false},
if (aluctlA(t,microcode(mpc(p,swt,knob,button))),{false},
bus (t,swt,knob,button),
inc_g(bus(t,swt,knob,button))),
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if (aluctlA(p,microcode(mpc(p,swt,knob,button))),{false},
add_g(arg(t,swt,knob,button),
bus(t,swt,knob,button),{falsel}),
subt_g(arg(t,swt,knob,button),
bus (t,swt,knob,button),{false})))
in wordn(16)

%%MORY ADDRESS REGISTER
t:pnat=>
swt:signaln(16)=>
knob:signaln(2)=>
button:flag=>
mar(s(t),swt,knob,button)

if (wmar(t,swt,knob,button) ,{false},
mar(t,swt,knob,button),
cut (bus(t,swt,knob,button))

in wordn(13)
INSTRUCTION REGISTER

t:pnat=>
swt:signaln(16)=>
knob:signaln(2)=>
button:flag=>
ir(s(t),swt,knob,button)=
if (wir(t,swt,knob,button),{false},
ir(t,swt,knob,button),
bus (t,swt,knob,button))
in wordn(16)

%?GUMENT REGISTER
t:pnat=>
swt:signaln(16)=>
knob:signaln(2)=>
button:flag=>
arg(s(t),swt,knob,button)

if (warg(t,swt,knob,button),{false},
arg(t,swt,knob,button),
bus (t,swt,knob,button))

in wordn(16)

%%CROCODE PROGRAM COUNTER
t:pnat=>
swt:signaln(16)=>
knob:signaln(2)=>
button:flag=>
mpc(s(t),swt,knob,button)=
if (testC(t,swt,knob,button) ,{false},
if (testB(t,swt,knob,button) ,{false},
if(testA(t,swt,knob,button),{false},
address_a(t,swt,knob,button),
if(button of t,{false},
address_a(t,swt,knob,button),
address_b(t,swt,knob,button))),
if(testA(t,swt,knob,button),{false},
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pnatEq(word2nat_le(acc(t,swt,knob,button)),0,
address_b(t,swt,knob,button),
address_a(t,swt,knob,button)),
tl(adder_le({false}::{false}::{false}::knob of t,
address_a(t,swt,knob,button),
)§false}))
if (testB(t,swt,knob,button) ,{false},
if(testA(t,swt,knob,button),{false},
tl(adder_le({false}::{false}: :opcode,
address_a(t,swt,knob,button),
{false})),
address_a(t,swt,knob,button)),
address_a(t,swt,knob,button)))
in wordn(5)

READY FLAG
[]::
t:pnat=>

swt:signaln(16)=>

knob:signaln(2)=>

button:flag=>

ready (t,swt,knob,button)=mc_ready(mpc(t,swt,knob,button))
in {bool}

SPECIFICATION OF THE GORDON COMPUTER

SEMANTICS OF INSTRUCTIONS
% HALT idle=false,button=false,knob=X,opc=000
[]::
u:pnat=>
swt:signaln(16)=>
knob:signaln(2)=>
button:flag=>
(idle(microtime(u, swt,knob,button) ,swt,knob,button)={false}
in {booll}#
button of microtime(u,swt,knob,button)={false} in {booll}#
opcode=({false}::{false}::{false}::nil)
in wordn(3))=>
computer (s(u),swt,knob,button) =
execute_halt(computer(u,swt,knob,button))
in state

% JUMP id=false,button=false,knob=X,opc=001,ac=X
[]::
u:pnat=>
swt:signaln(16)=>
knob:signaln(2)=>
button:flag=>
(idle(microtime(u, swt,knob,button) ,swt,knob,button)={false}
in {booll}#
button of microtime(u,swt,knob,button)={false} in {booll}#
opcode=({false}::{false}: :{true}::nil)
in wordn(3))=>
computer (s(u),swt,knob,button) =
execute_jump(computer (u,swt,knob,button))
in state

% JZR jump if zero
% id=false,button=false,knob=X,opc=010,ac=zeroes
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[]::
u:pnat=>
swt:signaln(16)=>
knob:signaln(2)=>
button:flag=>
(idle(microtime(u, swt,knob,button) ,swt,knob,button)={false}
in {booll}#
button of microtime(u,swt,knob,button)={false} in {booll}#
opcode=({false}: :{true}::{false}::nil)
in wordn(3)#
word2nat_le(
acc(microtime(u,swt,knob,button),swt,knob,button))=0
in pnat)=>
computer (s(u),swt,knob,button) =
execute_jzr(computer(u,swt,knob,button))
in state

% JZR jump if non-zero
% id=false,button=false,knob=X,opc=010,ac=no zeroes
[]::
u:pnat=>
swt:signaln(16)=>
knob:signaln(2)=>
button:flag=>
(idle(microtime(u, swt,knob,button) ,swt,knob,button)={false}
in {booll}#
button of microtime(u,swt,knob,button)={false} in {booll}#
opcode=({false}: :{true}::{false}::nil)
in wordn(3)#
word2nat (
acc(microtime(u,swt,knob,button),swt,knob,button))=0
in pnat=>void)=>
computer (s(u),swt,knob,button) =
execute_jnozr(computer (u,swt,knob,button))
in state

% ADD id=false,button=false,knob=X,opc=011,ac=X
[]::
u:pnat=>
swt:signaln(16)=>
knob:signaln(2)=>
button:flag=>
(idle(microtime(u, swt,knob,button) ,swt,knob,button)={false}
in {booll}#
button of microtime(u,swt,knob,button)={false} in {booll}#
opcode=({false}: :{true}::{true}::nil)
in wordn(3))=>
computer (s(u),swt,knob,button) =
execute_add(computer(u,swt,knob,button))
in state

% SUBTRACT id=false,button=false,knob=X,opc=100,ac=X
[1==
u:pnat=>
swt:signaln(16)=>
knob:signaln(2)=>
button:flag=>
(idle(microtime(u, swt,knob,button) ,swt,knob,button)={false}
in {booll}#
button of microtime(u,swt,knob,button)={false} in {booll}#
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opcode=({true}::{false}::{false}::nil)
in wordn(3))=>
computer (s(u),swt,knob,button) =
execute_sub(computer(u,swt,knob,button))
in state

% LOAD id=false,button=false,knob=X,opc=101,ac=X
[]::
u:pnat=>
swt:signaln(16)=>
knob:signaln(2)=>
button:flag=>
(idle(microtime(u, swt,knob,button) ,swt,knob,button)={false}
in {booll}#
button of microtime(u,swt,knob,button)={false} in {booll}#
opcode=({true}::{false}::{true}::nil)
in wordn(3))=>
computer (s(u),swt,knob,button) =
execute_load(computer(u,swt,knob,button))
in state

% STORE id=false,button=false,knob=X,opc=110,ac=X
[]::
u:pnat=>
swt:signaln(16)=>
knob:signaln(2)=>
button:flag=>
(idle(microtime(u, swt,knob,button) ,swt,knob,button)={false}
in {booll}#
button of microtime(u,swt,knob,button)={false} in {booll}#
opcode=({true}: :{true}::{false}::nil)
in wordn(3))=>
computer (s(u),swt,knob,button) =
execute_store(computer (u,swt,knob,button))
in state

% SKIP id=false,button=false,knob=X,opc=111,ac=X
[]::
u:pnat=>
swt:signaln(16)=>
knob:signaln(2)=>
button:flag=>
(idle(microtime(u, swt,knob,button) ,swt,knob,button)={false}
in {booll}#
button of microtime(u,swt,knob,button)={false} in {booll}#
opcode=({true}: :{true}::{true}::nil)
in wordn(3))=>
computer (s(u),swt,knob,button) =
execute_skip(computer (u,swt,knob,button))
in state

% STOP EXECUTE-1 WHEN IS RUNNING
% id=false,button=true,knob=X,opc=X,ac=X
[1==
u:pnat=>
swt:signaln(16)=>
knob:signaln(2)=>
button:flag=>
(idle(microtime(u, swt,knob,button) ,swt,knob,button)={false}
in {booll}#
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button of microtime(u,swt,knob,button)={true} in {bool})=>
computer (s(u),swt,knob,button) =
stop_execute(computer (u, swt,knob,button))
in state

% STOP EXECUTE-2 WHEN IT’S IDLEING
% id=true,button=false,knob=X,opc=X,ac=X
[]::
u:pnat=>
swt:signaln(16)=>
knob:signaln(2)=>
button:flag=>
(idle(microtime(u, swt,knob,button) ,swt,knob,button)={true}
in {booll}#
button of microtime(u,swt,knob,button)={false} in {bool})=>
computer (s(u),swt,knob,button) =
stop_operation(computer (u,swt,knob,button))
in state

% LOAD PC id=true,button=true,knob=00,o0pc=X,ac=X
[1==
u:pnat=>
swt:signaln(16)=>
knob:signaln(2)=>
button:flag=>
(idle(microtime(u, swt,knob,button) ,swt,knob,button)={true}
in {booll}#
button of microtime(u,swt,knob,button)={true} in {booll}#
knob of microtime(u,swt,knob,button)={false}::{false}::nil
in wordn(2))=>
computer (s(u),swt,knob,button) =
load_pc(
computer (u,swt,knob,button),swt of microtime(u,swt,knob,button))
in state

% LOAD ACC id=true,button=true,knob=01,opc=X,ac=X
[1==
u:pnat=>
swt:signaln(16)=>
knob:signaln(2)=>
button:flag=>
(idle(microtime(u, swt,knob,button) ,swt,knob,button)={true}
in {booll}#
button of microtime(u,swt,knob,button)={true} in {booll}#
knob of microtime(u,swt,knob,button)={false}::{true}::nil
in wordn(2))=>
computer (s(u),swt,knob,button) =
load_acc(
computer (u,swt,knob,button),swt of microtime(u,swt,knob,button))
in state

% LOAD MEM id=true,button=true,knob=10,opc=X,ac=X
[1==
u:pnat=>
swt:signaln(16)=>
knob:signaln(2)=>
button:flag=>
(idle(microtime(u,swt,knob,button) ,swt,knob,button)={true}
in {booll}#
button of microtime(u,swt,knob,button)={true} in {booll}#
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knob of microtime(u,swt,knob,button)={true}::{false}::nil
in wordn(2))=>
computer (s(u),swt,knob,button) =
load_mem(computer(u,swt,knob,button))
in state

% START EXECUTE id=true,button=true,knob=11,o0pc=X,ac=X
[1==
u:pnat=>
swt:signaln(16)=>
knob:signaln(2)=>
button:flag=>
(idle(microtime(u, swt,knob,button) ,swt,knob,button)={true}
in {booll}#
button of microtime(u,swt,knob,button)={true} in {booll}#
knob of microtime(u,swt,knob,button)={true}::{true}::nil
in wordn(2))=>
computer (s(u),swt,knob,button) =
start_execute(computer (u,swt,knob,button))
in state

AUXILIARY FUNCTIONS (definition and rewrite equation):

EXECUTE HALT

[]::

X:state=>
execute_halt(x)=fst(x)&snd(x)&trd (x)&{true}
in state

EXECUTE JUMP

[]::

X:state=>

execute_jump(x)=

fst(x)&cut (fetch(snd(x) ,fst(x)))&trd(x)&{false}
in state

EXECUTE JUMP ON ZERO
[]::
X:state=>
execute_jzr(x)=
(fst(x)&cut (fetch(snd(x),fst(x)))&trd(x)&{falsel})
in state

EXECUTE JUMP IF NO ZERO
[]::
X:state=>
execute_jnozr(x)=
(fst(x)&inc_g(snd(x))&trd(x)&{false})
in state

EXECUTE ADD

[]::

X:state=>
execute_add(x)=(fst(x)&inc_g(snd(x))&

198

add_g(trd(x),fetch(cut(fetch(snd(x) ,fst(x))) ,fst(x)),{false})&

{false})
in state

EXECUTE SUBTRACT
[1==

X:state=>
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execute_sub(x)=(fst(x)&inc_g(snd(x))&
subt_g(trd(x),fetch(cut(fetch(snd(x),fst(x))),fst(x)),{false})&
{false})
in state

EXECUTE LOAD
[]::
X:state=>
execute_load(x)=(fst(x)&inc_g(snd(x))&
fetch(cut (fetch(snd(x) ,fst(x))) ,fst(x))&{false})
in state

%%ECUTE STORE
X:state=>
execute_store(x)=
(store(cut(fetch(snd(x),fst(x))),trd(x) ,fst(x))&
inc_g(snd(x))&trd(x)&{false})
in state

EXECUTE SKIP

[]::

X:state=>
execute_skip(x)=(fst(x)&inc_g(snd(x))&trd(x)&{falsel})

in state

STOP EXECUTION
[]::
X:state=>
stop_execute(x)=(fst (x)&snd (x)&trd(x)&{true})
in state

STOP OPERATION
[]::
X:state=>
stop_operation(x)=(fst(x)&snd(x)&trd(x)&{truel})
in state

LOAD PROGRAM COUNTER
[]::
X:state=>
swt:wordn(16)=>
load_pc(x,swt)=(fst(x)&cut (swt)&trd(x)&{true}) in state

LOAD ACCUMULATOR
[]::
X:state=>
swt:wordn(16)=>
load_acc(x,swt)=(fst(x)&snd(x)&swt&{true}) in state

LOAD MEMORY
[]::
X:state=>
load_mem(x)=
(store(snd(x),trd(x) ,fst(x))& snd(x)& trd(x)& {true})in state

START EXECUTE
[]::
X:state=>
start_execute(x)=(fst (x)&snd (x)&trd (x)&{false})
in state
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{%ME ABSTRACTION
u:pnat=>
swt:signaln(16)=>
knob:signaln(2)=>
button:flag=>
microtime(s(u),swt,knob,button)=iterate_time(u,swt,knob,button)
in pnat

iterate_time(u,swt,knob,button)<==
term_of (iterate_time)of u of swt of
knob of button.

[1==
u:pnat=>

swt:signaln(16)=>

knob:signaln(2)=>

button:flag=>

iterate_time(u,swt,knob,button)=
next_time(microtime(u,swt,knob,button),swt,knob,button)
in pnat

next_time(t,swt,knob,button)<==
term_of (next_time)of t of swt of knob of button.

[]::
t:pnat=>
swt:signaln(16)=>
knob:signaln(2)=>
button:flag=>
next_time(t,swt,knob,button)=
if (ready(s(t),swt,knob,button),{false},
n?xg_time(s(t),swt,knob,button),
s(t

LEMMAS

STABILITY:
stable(signal,tl,t2)<==
p:pnat=>
(less(ti,p)#
less(p,t2))=>
signal of p=signal of t1 in {word}.

[]::
n:pnat=>tl:pnat=>t2:pnat=>
sig:signaln(n)=>
stable(sig,t1,t2)=>
t:pnat=>
(less(t1,t)#less(t,t2))=>
sig of s(t)=sig of t in{word}

13-16 BITS
[1==>t:pnat=>swt:signaln(16)=>knob:signaln(2)=>button:flag=>
t1(t1(t1(

inc_g({false}::{false}: :{false}::pc(t,swt,knob,button)))))=
inc_g(pc(t,swt,knob,button))in wordn(13)
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CONJECTURE (difference match version)

u:pnat=>
swt:signaln(16)=>
knob:signaln(2)=>
button:flag=>
stable(swt,microtime(u, swt,knob,button),
microtime(s(u),swt,knob,button))=>
stable(knob,microtime(u, swt,knob,button),
microtime(s(u),swt,knob,button))=>
mpc(microtime(u,swt,knob,button) ,swt,knob,button)=
{false}::{false}: :{false}::{false}::{false}::nil
in wordn(5)=>

abs_imp(
computerImp(microtime(u,swt,knob,button),swt,knob,button))=
computer (u,swt,knob,button) in state

=>

abs_imp(
computerImp(microtime(s(u),swt,knob,button),swt,knob,button))=
computer(s(u),swt,knob,button) in state

E.2 Proof plan

This is the proof plan for the difference match version of the conjecture. The
structure of the methods applied is displayed. The method sym_eval and the sub-
method eval def produce a large number of rewrite steps, thus they are shown

unfolded.

diff_match(

abs_imp(

computerImp(

microtime(f ‘s({u})’’<out>,swt,knob,button),swt,knob,button))=

computer (¢ ‘s({u})’’<out>,swt,knob,button))then

[step_case(

ripple(direction_out,strong,

casesplit(

[idle(microtime(u,swt,knob,button),swt,knob,button)={true}
in{booll}#
button of microtime(u,swt,knob,button)={true}
in{booll}#
knob of microtime(u,swt,knob,button)={true}::{true}::nil
in wordn(2),
idle(microtime(u,swt,knob,button),swt,knob,button)={true}
in{booll}#
button of microtime(u,swt,knob,button)={truetin{bool}#
knob of microtime(u,swt,knob,button)={true}::{false}::nil
in wordn(2),
idle(microtime(u,swt,knob,button),swt,knob,button)={true}
in{booll}#
button of microtime(u,swt,knob,button)={truetin{bool}#
knob of microtime(u,swt,knob,button)={false}::{true}::nil
in wordn(2),
idle(microtime(u,swt,knob,button),swt,knob,button)={true}
in{booll}#



Appendix E. Gordon computer 202

button of microtime(u,swt,knob,button)={true}in{bool}#
knob of microtime(u,swt,knob,button)={false}::{false}::nil
in wordn(2),
idle(microtime(u,swt,knob,button),swt,knob,button)={true}
in{booll}#
button of microtime(u,swt,knob,button)={false}in{bool},
idle(microtime(u,swt,knob,button) ,swt,knob,button)={false}
in{booll}#
button of microtime(u,swt,knob,button)={truetin{bool},
idle(microtime(u,swt,knob,button) ,swt,knob,button)={false}
in{booll}#
button of microtime(u,swt,knob,button)={false}in{bool
ttopcode={true}: :{true}::{true}::nil in wordn(3),
idle(microtime(u,swt,knob,button) ,swt,knob,button)={false}
in{booll}#
button of microtime(u,swt,knob,button)={false}in{booll}#
opcode={true}::{true}::{false}::nil in wordn(3),
idle(microtime(u,swt,knob,button) ,swt,knob,button)={false}
in{booll}#
button of microtime(u,swt,knob,button)={false}in{booll}#
opcode={true}::{false}: :{true}::nil in wordn(3),
idle(microtime(u,swt,knob,button) ,swt,knob,button)={false}
in{booll}#
button of microtime(u,swt,knob,button)={false}in{booll}#
opcode={true}::{false}::{false}::nil in wordn(3),
idle(microtime(u,swt,knob,button) ,swt,knob,button)={false}
in{booll}#
button of microtime(u,swt,knob,button)={false}in{booll}#
opcode={false}::{true}::{true}::nil in wordn(3),
idle(microtime(u,swt,knob,button) ,swt,knob,button)={false}
in{booll}#
button of microtime(u,swt,knob,button)={false}in{booll}#
opcode={false}::{true}::{false}::nil in wordn(3)#
word2nat_le(
acc(microtime(u,swt,knob,button),swt,knob,button))=0
in pnat=>void,
idle(microtime(u,swt,knob,button) ,swt,knob,button)={false}
in{booll}#
button of microtime(u,swt,knob,button)={false}in{booll}#
opcode={false}::{true}::{false}::nil in wordn(3)#
word2nat_le(acc(microtime(u,swt,knob,button) ,swt,knob,button))=0
in pnat,
idle(microtime(u,swt,knob,button) ,swt,knob,button)={false}
in{booll}#
button of microtime(u,swt,knob,button)={false}in{booll}#
opcode={false}::{false}::{true}::nil in wordn(3),
idle(microtime(u,swt,knob,button) ,swt,knob,button)={false}
in{booll}#
button of microtime(u,swt,knob,button)={false}in{booll}#
opcode={false}::{false}::{false}::nil in wordn(3)])then
[wave(direction_out,[2,1], [computeri5,equ(left)],[]) then
unblock(eval_def,[2,1], [start_executel,equ(left)]),
wave(direction_out,[2,1], [computeri4,equ(left)],[]) then
unblock(eval_def,[2,1], [load_meml,equ(left)]),
wave(direction_out, [2,1], [computeri3,equ(left)],[]) then
unblock(eval_def,[2,1],[load_accl,equ(left)]),
wave(direction_out,[2,1], [computeri2,equ(left)],[]) then
unblock(eval_def,[2,1],[load_pcl,equ(left)]) then
unblock(eval_def,[1,2,2,1],[cutl,equ(left)]),
wave(direction_out,[2,1], [computeril,equ(left)],[]) then
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unblock(eval_def,[2,1], [stop_operationl,equ(left)]),
wave(direction_out,[2,1], [computeri0,equ(left)],[]) then
unblock(eval_def,[2,1], [stop_executel,equ(left)]),
wave(direction_out, [2,1], [computer9,equ(left)],[]) then
unblock(eval_def,[2,1], [execute_skipl,equ(left)]),
wave(direction_out,[2,1], [computer8,equ(left)],[]) then
unblock(eval_def,[2,1], [execute_storel,equ(left)]) then
unblock(eval_def,[1,1,2,1],[cutl,equ(left)]),
wave(direction_out, [2,1], [computer7,equ(left)],[]) then
unblock(eval_def,[2,1], [execute_loadl,equ(left)]) then
unblock(eval_def,[1,1,2,2,2,1], [cutl,equ(left)]),
wave(direction_out, [2,1], [computer6,equ(left)],[]) then
unblock(eval_def,[2,1], [execute_subl,equ(left)]) then
unblock(eval_def,[1,2,1,2,2,2,1], [cutl,equ(left)]),
wave(direction_out, [2,1], [computer5,equ(left)],[]) then
unblock(eval_def,[2,1], [execute_addl,equ(left)]) then
unblock(eval_def,[1,2,1,2,2,2,1], [cutl,equ(left)]),
wave(direction_out, [2,1], [computer4,equ(left)],[]) then
unblock(eval_def, [2,1], [execute_jnozrl,equ(left)]),
wave(direction_out, [2,1], [computer3,equ(left)],[]) then
unblock(eval_def,[2,1], [execute_jzrl,equ(left)]) then
unblock(eval_def,[1,2,2,1],[cutl,equ(left)]),
wave(direction_out, [2,1], [computer2,equ(left)],[]) then
unblock(eval_def,[2,1], [execute_jumpl,equ(left)]) then
unblock(eval_def,[1,2,2,1],[cutl,equ(left)]),
wave(direction_out, [2,1], [computerl,equ(left)],[]) then
unblock(eval_def,[2,1], [execute_haltl,equ(left)])

1) then
[fertilize(weak,[...
fertilize(weak, [
fertilize(weak, [
fertilize(weak, [
fertilize(weak, [
fertilize(weak, [
fertilize(weak, [..
fertilize(weak,[...
fertilize(weak, [
fertilize(weak, [
fertilize(weak, [
fertilize(weak, [
fertilize(weak, [
fertilize(weak, [
fertilize(weak, [

1) then
[sym_eval(...),
sym_eval(..
sym_eval(..
sym_eval(..
sym_eval(..
change_mpc(v3) then
[sym_eval(...)],
change_mpc(v3)then
[sym_eval(...)then
[normalize([])then
[sym_eval(...),
apply_lemma(inc_pc),
sym_eval(...),
sym_eval(...)]]],
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change_mpc(v3)then

[sym_eval(...)then

[generalise(

t1(t1(t1(

fetch(pc(microtime(u,swt,knob,button),swt,knob,button),
memory (microtime(u,swt,knob,button) ,swt,knob,button))))),
v43:{word})then

[normalize([])then

[sym_eval(...),

apply_lemma(inc_pc),

sym_eval(...),sym_eval(...)]]1]1],

change_mpc(v3)then

[sym_eval(...)then

[generalise(

t1(t1(t1(

fetch(pc(microtime(u,swt,knob,button),swt,knob,button),
memory (microtime(u,swt,knob,button) ,swt,knob,button))))),
v38:{word})then

[normalize([])then

[sym_eval(...),

apply_lemma(inc_pc),

sym_eval(...),

sym_eval(...)]]1]1],

change_mpc(v3)then

[sym_eval(...)then

[generalise(

t1(t1(t1(

fetch(pc(microtime(u,swt,knob,button),swt,knob,button),
memory (microtime(u,swt,knob,button),swt,knob,button))))),
v52:{word})then

[normalize([])then

[sym_eval(...),

apply_lemma(inc_pc),

sym_eval(...),

sym_eval(...)]]1]1],

change_mpc(v3)then

[sym_eval(...)then

[generalise(

t1(t1(t1(

fetch(pc(microtime(u,swt,knob,button),swt,knob,button),
memory (microtime(u,swt,knob,button) ,swt,knob,button))))),
v52:{word})then[normalize([])then

[sym_eval(...),

apply_lemma(inc_pc),

sym_eval(...),sym_eval(...)]1]1],

change_mpc(v3)then

[sym_eval(...)then

[normalize([])then

[sym_eval(...),

apply_lemma(inc_pc),

sym_eval(...),sym_eval(...)]]],

change_mpc(v3)then

[sym_eval(...)],

change_mpc(v3)then

[sym_eval(...)],

change_mpc(v3)then

[sym_eval(...)]]1]

204
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E.3 Proof

This script CorresF(nlds to the execution of the tactic defined by the proof plan.
The parameters of the tactics are not unfolded:

| ?- runtime(apply_plan,T).

applying tactic at depth 0: diff_match(...)
applying tactic at depth step_case([...])
applying tactic at depth sym_eval(...)
applying tactic at depth sym_eval(...)
applying tactic at depth sym_eval(...)
applying tactic at depth sym_eval(...)
applying tactic at depth sym_eval(...)
applying tactic at depth change_mpc(...)
applying tactic at depth sym_eval(...)
applying tactic at depth change_mpc(...)
applying tactic at depth sym_eval(...)
applying tactic at depth 4: normalize([])
applying tactic at depth elementary(identity)
applying tactic at depth 5: generalise(...)
applying tactic at depth apply_lemma(inc_pc)
applying tactic at depth elementary(identity)
applying tactic at depth elementary(identity)
applying tactic at depth change_mpc(...)
applying tactic at depth sym_eval(...)
applying tactic at depth 4: normalize([])
applying tactic at depth elementary(identity)
applying tactic at depth 5: generalise(...)
applying tactic at depth apply_lemma(inc_pc)
applying tactic at depth elementary(identity)
applying tactic at depth elementary(identity)
applying tactic at depth change_mpc(...)
applying tactic at depth sym_eval(...)
applying tactic at depth 4: normalize([])
applying tactic at depth elementary(identity)
applying tactic at depth 5: generalise(...)
applying tactic at depth apply_lemma(inc_pc)
applying tactic at depth elementary(identity)
applying tactic at depth elementary(identity)
applying tactic at depth change_mpc(...)
applying tactic at depth sym_eval(...)
applying tactic at depth 4: normalize([])
applying tactic at depth elementary(identity)
applying tactic at depth 5: generalise(...)
applying tactic at depth apply_lemma(inc_pc)
applying tactic at depth elementary(identity)
applying tactic at depth elementary(identity)
applying tactic at depth change_mpc(...)
applying tactic at depth sym_eval(...)
applying tactic at depth 4: normalize([])
applying tactic at depth elementary(identity)
applying tactic at depth 5: generalise(...)
applying tactic at depth apply_lemma(inc_pc)
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depth
depth
depth
depth
depth
depth
depth
depth
depth
depth
depth
depth
depth
depth
depth
depth
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T = 37402334

E.4 Methods

list_methods.

diff_match/1
elementary/1
step_case/1
change_mpc/2
sym_eval/1
normalize/1
generalise/2
apply_lemma/1
ind_strat/1

elementary(identity)
elementary(identity)
change_mpc(...)
sym_eval(...)

: normalize([])

elementary(identity)

: generalise(...)

apply_lemma(inc_pc)
elementary(identity)
elementary(identity)
change_mpc(...)
sym_eval(...)
change_mpc(...)
sym_eval(...)
change_mpc(...)
sym_eval(...)

(milliseconds)

206



Appendix F

Other circuits

This appendix describes the formalisation of other circuits: adder (explicit para-
meter), adder (big endian), look-ahead-carry adder, ALU (explicit parameter),
ALU (big endian), shifter, processing unit, and other arithmetic circuits.

F.1 Adder

F.1.1 Explicit parameter

IMPLEMENTATION:
[1==>x:{word}=>y:{word}=>ci:{booll}=>
adder_ep(0,x,y,ci)=ci::nil in{word}

[1==>n:pnat=>x:{word}=>y:{word}=>ci:{bool}=>
adder_ep(s(n),x,y,ci)=

fa_sum(hd(x),hd(y),ci)::
adder_ep(n,t1(x),t1l(y),fa_carry(hd(x) ,hd(y),ci))in{word}

SPECIFICATION:
[1==>n:pnat=>x:{word}=>y:{word}=>ci:{bool}=>
adder_ep_spec(n,x,y,ci)=

plus(word2nat_ep(n,x) ,plus(word2nat_ep(n,y),bool2nat(ci)))
in pnat

CONJECTURE
[]==>n:pnat=>ci:{bool}=>x:{word}=>y:{word}=>
word2nat_ep(s(n),(adder_ep(n,x,y,ci))) =
adder_ep_spec(n,x,y,ci) in pnat

F.1.2 Big endian

IMPLEMENTATION
[1==>ci:{bool}=>adder(nil,nil,ci)=ci::nil in {word}
[1==>ci:{bool}=>a:{bool}=>b:{bool}=>x:{word}=>y:{word}=>

207
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adder(a::x,b::y,ci)=
fa_sum(a,b,ci)::adder(x,y,fa_carry(a,b,ci)) in{word}

CONJECTURE

[1==>x:{word}=>y:{word}=>ci:{booll}=>

length(x)=length(y) in pnat=>
word2nat ((adder(x,y,ci)))=
plus(word2nat(x),plus(word2nat(y),bool2nat(ci))) in pnat

F.2 ALU

F.2.1 Explicit parameter

IMPLEMENTATION:

[1==>s0:{bool}=>s1:{bool}=>s2:{bool}=>
x:{word}=>y:{word}=>ci:{bool}=>
alu_ep(0,s0,s1,82,x,y,ci)= ((not s2)and ci)::nil in{word}

[1==>n:pnat=>s0:{bool}=>s1:{bool}=>s2:{bool}=>

x:{word}=>y:{word}=>ci:{booll}=>

alu_ep(s(n),s0,s1,s2,x,y,ci)=

alu_sum(s0,s1,s2,hd(x),hd(y) ,ci)::alu_ep(n,s0,s1,s2,t1(x),t1(y),
alu_carry(s0,s1,s2,hd(x) ,hd(y),ci))in{word}

SPECIFICATION:
[1==>n:pnat=>s0:{bool}=>s1:{bool}=>s2:{bool}=>
x:{word}=>y:{word}=>ci:{bool}=>
alu_ep_spec(n,s0,s1,s2,x,y,ci)=
if(s2,{falsel},
if(s1,{false},
if(s0,{false},
adder_ep(n,x,nat2word(n,0),ci),
adder_ep(n,x,y,ci)),
1f(s0,{false},
adder_ep(n,x,not_ep_word(n,y),ci),
adder_ep(n,x,not_ep_word(n,nat2word(n,0)),ci))),
if(s1,{false},
1f(s0,{false},
app(or_ep_word(n,x,y),{false}::nil),
app (xor_ep_word(n,x,y) ,{false}::nil)),
1f(s0,{false},
app(and_ep_word(n,x,y),{false}::nil),
app(not_ep_word(n,x) ,{false}::nil))))in{word}

CONJECTURE:

[]==>n:pnat=>s0:{bool}=>s1:{bool}=>s2:{bool}t=>ci:{booll}=>
x:{word}=>y:{word}=>

alu_ep_spec(n,s0,s1,s2,x,y,ci)=alu_ep(n,s0,s1,s2,x,y,ci)in{word}

F.2.2 Big endian
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IMPLEMENTATION
[1==>s0:{bool}=>s1:{bool}=>s2:{bool}=>ci:{bool}=>
alu(s0,s1,s2,nil,nil,ci)=

((not s2)and ci)::nil in{word}

[1==>s50:{bool}=>s1:{bool}=>s2:{bool}=>a:{bool}=>b:{bool}=>

x:{word}=>y:{word}=>ci:{booll}=>

alu(s0,s1,s2,a::x,b::y,ci)=

alu_sum(s0,s1,s2,a,b,ci)::
alu(s0,s1,s2,x,y,alu_carry(s0,sl,s2,a,b,ci))in{word}

SPECIFICATION
[1==>s0:{bool}=>s1:{bool}=>s2:{bool}=>
a:{word}=>b:{word}=>ci:{booll}=>
alu_spec(s0,s1,s2,a,b,ci)=
1if(s2,{false},
if(s1,{false},
1f(s0,{false},
adder (a,nat2word(length(a),0),ci),
adder(a,b,ci)),
1f(s0,{false},
adder(a,not_word(b),ci),
adder (a,not_word(nat2word(length(a),0)),ci))),
if(s1,{false},
1f(s0,{false},
app(or_word(a,b),{false}::nil),
app (xor_word(a,b) ,{false}::nil)),
1f(s0,{false},
app(and_word(a,b) ,{false}::nil),
app(not_word(a),{false}::nil))))
in {word}

CONJECTURE

[1==>a:{word}=>b:{word}=>
s2:{bool}=>s1:{bool}=>50:{bool}=>ci:{bool}=>
length(a)=length(b) in pnat=>
alu_spec(s0,s1,s2,a,b,ci)=alu(s0,s1,s2,a,b,ci) in{word}

F.3 Shifter

IMPLEMENTATION:
[1==>h0:{bool}=>h1:{bool}=>ir:{bool}=>il:{bool}=>
shifter(h0O,hl,ir,il,nil)=nil in{word}

[1==>h0:{bool}=>h1:{bool}=>
ir:{bool}=>il:{bool}=>a:{bool}=>x:{word}=>
shifter(hO,hl,ir,il,a::x)=

mux(hO,hl,a,ir ,hd_or_il(x,11),{false}): :shifter(h0,hl,a,il,x)
in{word}

SPECIFICATION:
[1==>h0:{bool}=>h1:{bool}=>ir:{bool}=>il:{bool}=>x:{word}=>
shifter_spec(hO,hl,ir,il,x)=
if(h1l,{false},

1f(h0,{false},

X,
shift_right(x,ir)),



Appendix F. Other circuits 210

if (h0,{false},
shift_left(x,il),
nat2word(length(x),0)))in{word}

shift_right(x,ir)<==>term_of (shift_right)of x of ir.
[1==>ir:{bool}=>shift_right(nil,ir)=nil in{word}
[1==>x:{word}=>a:{bool}=>ir:{bool}=>
shift_right(a::x,ir)=ir::shift_right(x,a)in{word}

shift_left(x,il)<==>term_of (shift_left)of x of 1il.
[1==>il:{bool}=>shift_left(nil,il)=nil in{word}
[1==>x:{word}=>a:{bool}=>il:{bool}=>
shift_left(a::x,il)=app(x,il::nil)in{word}

CONJECTURE:
[1==>x:{word}=>h0:{bool}=>h1:{bool}=>ir:{bool}=>il:{bool}=>
shifter_spec(hO,hl,ir,il,x)=shifter(h0,hl,ir,il,x)in{word}

F.4 Processing unit

IMPLEMENTATION :
[1==>s50:{bool}=>s1:{bool}=>s2:{bool}=>
hO:{bool}=>h1:{bool}=>ir:{bool}=>il:{booll}=>
x:{word}=>y:{word}=>ci:{booll}=>
processor(s0,s1,s2,h0,hl,ir,il,x,y,ci)=
shifter(hO,h1,ir,il,alu(s0,s1,s2,x,y,ci)) in {word}

SPECIFICATION:

[1==>s50:{bool}=>s1:{bool}=>s2:{bool}=>
hO:{bool}=>h1:{bool}=>ir:{bool}=>il:{booll}=>
x:{word}=>y:{word}=>ci:{booll}=>

processor_spec(s0,s1,s2,h0,hl,ir,il,x,y,ci)=

shifter_spec(h0,hl,ir,il,alu(s0,s1,s2,x,y,ci)) in {word}

CONJECTURE:

[1==>x:{word}=>y:{word}=>ci:{booll}=>
s0:{bool}=>s1:{bool}=>s2:{bool}=>
hO:{bool}=>h1:{bool}=>ir:{bool}=>i1:{booll}=>

shifter_spec(hO,hl,ir,il,alu_spec(s0,s1,s2,x,y,ci))=

shifter(hO,hl,ir,il,alu(s0,s1,s2,x,y,ci)) in{word

F.5 Other arithmetic operations

F.5.1 Adder

IMPLEMENTATION:
[1==>y:{word}=>plus_word(nil,y)=y in{word}
[1==>x:{word}=>y:{word}=>
plus_word(i(x),y)=1i(plus_word(x,y))in{word}

CONJECTURE:
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[1==>x:{word}=>y:{word}=>
plus(word2nat (x) ,word2nat (y))=word2nat (plus_word(x,y))
in pnat

F.5.2 Multiplier

IMPLEMENTATION:

[1==>y:{word}=>times_word(nil,y)=nil in{word}
[1==>x:{word}=>y:{word}=>
times_word(i(x),y)=plus_word(times_word(x,y),y)in{word}

CONJECTURE:

[1==>x:{word}=>y:{word}=>

times (word2nat(x) ,word2nat (y))=word2nat (times_word(x,y))
in pnat

F.5.3 Exponentiator

IMPLEMENTATION:
[1==>x:{word}=>exp_word(x,nil)={true}::nil in{word}
[1==>x:{word}=>y:{word}=>
exp_word(x,i(y))=times_word(x,exp_word(x,y))in{word}

CONJECTURE:

[1==>x:{word}=>y:{word}=>

exp(word2nat (x) ,word2nat (y))=word2nat (exp_word(x,y))
in pnat

F.5.4 Factorial

IMPLEMENTATION:

[1==>fac_word(nil)={true}::nil in{word}
[1==>x:{word}=>y:{word}=>
exp_word(x,i(y))=times_word(x,exp_word(x,y))in{word}

CONJECTURE:
[1==>x:{word}=>fac(word2nat (x))=word2nat(fac_word(x)) in pnat

F.5.5 Subtracter

IMPLEMENTATION:
[1==>x:{word}=>minus_word(x,nil)=x in{word}
[1==>y:{word}=>minus_word(nil,y)=nil in{word}
[1==>x:{word}=>y:{word}=>
minus_word(x,i(y))=dec(minus_word(x,y))in{word}

CONJECTURE:
[1==>y:{word}=>x:{word}=>
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minus (word2nat (x) ,word2nat (y))=word2nat (minus_word(x,y))
in pnat

F.5.6 Divider

IMPLEMENTATION:

QUOTIENT

[1==>x:{word}=>div_word(x,nil)=nil in{word}
[1==>x:{word}=>y:{word}=>
less(word2nat (x) ,word2nat(y))=>div_word(x,y)=nil in {word}
[1==>x:{word}=>y:{word}=>
(less(word2nat(x) ,word2nat (y))=>void)=>

div_word(plus_word(x,y),y)=1i(div_word(x,y))in{word}

REMAINER:

[1==>x:{word}=>rem_word(x,nil)=nil in{word}

[1==>x:{word}=>y:{word}=>less(word2nat (x) ,word2nat (y))=>
rem_word(x,y)=x in{word}

[]==>x:pnat=>y:pnat=>
(less(word2nat (x) ,word2nat (y))=>void)=>
rem_word(plus_word(x,y),y)=rem_word(x,y) in {word}

CONJECTURE:
[1==>x:{word}=>y:{word}=>
quot (word2nat (x) ,word2nat (y) )=word2nat (div_word(x,y))in pnat

[1==>x:{word}=>y:{word}=>
rem(word2nat (x) ,word2nat(y))=word2nat (rem_word(x,y))in pnat

F.5.7 Counter

IMPLEMENTATION:

[1==>reset:flag=>

count_imp(reset)of O=zeroes(length(nil))in{word}
[1==>t:pnat=>reset:flag=>

count_imp(reset)of s(t)=
del(restart(reset,incfun(count_imp(reset))))of s(t)in{word}

[1==>x:signal=>del(x)of 0=x of 0 in{word}
[1==>t:pnat=>x:signal=>del(x)of s(t)=x of t in{word}
[1==>t:pnat=>rs:flag=>x:signal=>

restart(rs,x)of t=if(rs of t,{true},nil,x of t)in{word}
[1==>t:pnat=>x:signal=>incfun(x)of t=i(x of t)in{word}

SPECIFICATION:

[1==>reset:flag=>count_spec(reset)of 0=0 in pnat
[1==>t:pnat=>reset:flag=>

count_spec(reset)of s(t)=

ifbn(reset of t,{true},0,s(count_spec(reset)of t))in pnat

CONJECTURE:
[1==>t:pnat=>reset:flag=>
word2nat (count_imp(reset)of t)=count_spec(reset)of t in pnat



Appendix G

Methods

In this appendix we include the main methods used in the proof planning of the
circuit verification conjectures.

G.1 Symbolic evaluation

This method applies symbolic evaluation by calling the submethods elementary,
equal, reduction, eval_def, term_cancel, and bool_cases.

method (sym_eval(SubPlan),

HG,

[repeat ([HG],

Goal :=> SubGoals,

Method,

(member (Method,

[elementary(_),

equal(_,_),
reduction(_,_),
eval_def(_,_),

term_cancel(_),

bool_cases(_)]1),
applicable_submethod(Goal,Method,_,SubGoals)),

[SubPlan],
SubGoals), !,
SubPlan \= idtac],
1,
SubGoals,
SubPlan) .

213
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G.2 Generalise

This method generalises a common term in two subexpressions.

method (generalise(Exp,Var:Type),
H_—

[matriX(Vs,Ml,G),

sinks (M, _,M1), % Strip out sinks

member (M, [(L=R in _), (L=>R),geq(L,R),leq(L,R),
greater(L,R),less(L,R),L¥R]),

exp_at(L,_,Exp),

not atomic(Exp),

not constant(Exp,_),

object_level_term(Exp),

exp_at(R,_,Exp),

find_type(H,Exp,Type),

append (Vs ,H,VsH),

hfree([Var],VsH)

[étrip_meta_annotations(G,NewGl),
replace_all(Exp,Var,NewGl, NewG)

[ﬁ==>Var:Type=>NewG],
generalise(Exp,Var:Type)
).

G.3 Normalise

This method applies normalisation operations defined in the submethod normal.

method( normalize(NormTacs),

OH==>0G,

[ \+ member( _:[ihmarker(_,_)I|_]1,0H),
exp_at( 0G, _, T=>_ ),
exp_at( T, _, _=_ in _ ),

iterate((0H==>0G) - [],
(Goal-Tacs) :=>((H==>G)-STacs),
(applicable_submethod(Goal,normal(4), _,

[(H==>G]),

STacs = [normal(A)|Tacs]

),

true,

SubGoal-RNormTacs

] RNormTacs \= [1,!,reverse(RNormTacs,NormTacs)
1,
[ SubGoal ],

normalize( NormTacs )
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G.4 Induction strategy

This method applies the induction strategy.

method(ind_strat(induction(Scheme,VarTL) then CasesTactics),
H==>G,

[applicable_submethod (H==>G,induction(Scheme,VarTL))

1,
[scheme(Scheme,VarTL,H==>G,BSeqs,SSeqs),
(map_list(BSeqs,BSeq:=>BSeql-sym_eval(Ms),
applicable_submethod (BSeq,sym_eval (Ms),_,BSeql),
BSeql1sBTs) orelse
(BSeqlsBTs = [BSeqgs-[idtac]])),
zip(BSeqlsBTs,BSeqls,BaseTacticsl),
flatten(BaseTacticsl,BaseTactics),
flatten(BSeqls,FBSeqls),
map_list(SSeqs,SSeq:=>SSeql-step_case(Ms),
applicable_submethod(SSeq,step_case(Ms),_,SSeql),
SSeqlsSTs),
zip(SSeqlsSTs,SSeqls,StepTactics),
flatten(SSeqls,FSSeqls),
append(BaseTactics, StepTactics, CasesTactics),
append (FBSeqls,FSSeqls,Al1lSeqgs)

AilSeqs,
ind_strat(induction(Scheme,VarTL) then CasesTactics)

G.5 Elementary

This method applies simple propositional reasoning.

submethod (elementary(I),
H==>G,
[not (G = (_:_#_)),
elementary(H==>G,I)],
1,
1,
elementary(I)
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G.6 Use of equation in hypothesis

This method applies an equation in the hypotheses list as a rewrite rule.

submethod (equal (HName,Dir),
H==>G,
[ ((hyp(HName:Term=Var in T,H), Dir=left)

v

(hyp (HName:Var=Term in T,H), Dir=right)
(ﬁot freevarinterm(Term,_)

orelse

(atomic(Var), not atomic(Term))

orelse

(atomic(Var), atomic(Term), Term @< Var)
ffeevarinterm(G,Var)

1,

[map_list([G],In:=>0ut,
replace_all(Var,Term,In,0Out), [GG]),

del_hyp(HName:_,H,HThin)

[HThin==>GG],

equal (HName,Dir)
).

G.7 Evaluate definition

This method does rewriting with equations that are not wave rules.

submethod(eval_def(Pos, [Rule,Dir]),

H==>G,
[matrix(Vars,Matrix,G),
wave_fronts(_, [], Matrix),

new_exp_at(Matrix,Pos,Exp),

not metavar(Exp),
func_defeqn(Exp,Dir,Rule:C=>Exp:=>NewExp),
polarity_compatible(Matrix, Pos, Dir),
elementary(H==>C,_)

[réplace(Pos,NewEXp,MatriX,NewMatriX),
matrix(Vars,NewMatrix,NewG)

[ﬁ==>NewG],
eval_def(Pos, [Rule,Dir])
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G.8 Term cancellation

This method cancels out common additive terms in both sides of an equation.

submethod (term_cancel (NG),
H==>G,
[matrix(V,LS = RS in pnat,G),
\+ (LS=0 v RS=0),
only_sum(LS,LstPlusLl),
only_sum(RS,LstPlusR),
cancel_eq(LstPlusL,LstPlusR,0therL,0therR),
length(LstPlusL,X),
length(OtherL,Y),
X > Y],
[putPlus(OtherL,Left),
putPlus(OtherR,Right),
matrix(V,Left=Right in pnat,NG)
1,
[H==>NG],
term_cancel (NG)).

G.9 Boolean case analysis

This submethod applies Boolean case analysis

submethod(bool_cases(X),
H==>G,

member (X:{bool},H),
freevarinterm(G,X)

3

[
replace_all(X,{false},G,G1),
replace_all(X,{true},G,G2),

hfree([Id],H)

[[Id:X={false} in {booll}|H]==>G1,
[Id:X={true} in {bool}|H]==>G2],
bool_cases(X)).

submethod(bool_cases(X),
H==>X:{bool}=>G,
1,

[
replace_all(X,{false},G,G1),
replace_all(X,{true},G,G2),

hfree([Id],H)

[[Id:X={false} in {booll}|H]==>G1,
[Id:X={true} in {booll}|H]==>G2],
bool_cases(X)).

submethod(bool_cases(Term),
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H==>G,

matrix(Vars,Matrix,G),
exp_at(Matrix,Pos,Term),
Term=hd(_),
append (Vars,H,NewH) ,
find_type (NewH,Term,{bool})

[
listof(V:T,P" (member(V:T,Vars),
exp_at(Term,P,V)) ,BoundVars),
subtract(Vars,BoundVars,RestVars),
append (BoundVars,H,A11H),
replace_all(Term,{false},Matrix,MG1),
replace_all(Term,{true},Matrix,MG2),
hfree([Id],Al11H),
matrix(RestVars,MG1,G1),
matrix(RestVars,MG2,G2)

1,

[[Id:Term={false} in {bool}|A11H]==>G1,
[Id:Term={true} in {booll}|Al1H]==>G2],
bool_cases(Term)) .

G.10 Memoise recursive function

This submethod applies the memoisation procedure on named recursive functions.

submethod (eval_def (Rule, [Memo,Pos,Dir,Exp,NewExp,Typel),
H==>G,
[matrix(Vars,Matrix,G),
wave_fronts(_, [], Matrix),
new_exp_at (Matrix,Pos,Exp),
not metavar(Exp),

% expression is a memo function:

(((
(Exp=mpc(s(X1),_,_,_) ,Type=wordn(5)) v
(Exp=memory(s(X3),_,_,_) ,Type=wordn(16)) v
(Exp=pc(s(X4),_,_,_) ,Type=wordn(13)) v
(Exp=acc(s(X5),_,_,_) ,Type=wordn(16)) v
(Exp=buffer(s(X6),_,_,_) ,Type=wordn(16)) v
(Exp=mar(s(X7),_,_,_) ,Type=wordn(13)) v
(Exp=arg(s(X8),_,_,_) ,Type=wordn(16)) v
(Exp=ir(s(X9),_,_,_) ,Type=wordn(16))

),

% value has been calculated already
((member (Rule:Exp=NewExp in Type,H),
NewH=H

v

% value hasn’t been calculated, do it and add it to hyp list
(func_defeqn(Exp,Dir, _:C=>Exp:=>NewExp2),
matrix(Vars,NewExp2,Goalmpc),
applicable_submethod (H==>Goalmpc,

sym_eval(_),_, [Hmemo==>NewExp]),',
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hfree([Rule] ,Hmemo),
NewH=[Rule:Exp=NewExp in Type|Hmemo]

)
),

Memo=1

v

% expression is NOT a memo function:
(func_defeqn(Exp,Dir,Rule:C=>Exp:=>NewExp),
polarity_compatible(Matrix, Pos, Dir),
elementary (H==>C,_),
NewH=H,
Memo=0,nl,write(’7. Rule = ’), write(Rule),nl

[replace(Pos,NewExp,Matrix,NewMatrix),
matrix(Vars,NewMatrix,NewG)
]

[ﬁewH==>NewG],
eval_def (Rule, [Memo,Pos,Dir,Exp,NewExp, Typel)

).

G.11 Weak fertilise

This submethod applies weak fertilisation.

submethod (weak_fertilize(Dir,Connective,Pos,Hyp),
H==>G,
[matrix(Vars,M,G),
transitive_pred( M, [LR,RL], [LRN,RLN], NewG_M ),
exp_at (M, [0] ,Connective),
((Dir=right,GL=LR,GR=RL, GLNew=LRN, GRNew
(Dir=left,GL=RL,GR=LR, GLNew=RLN, GRNew

3

(wave_fronts(GR1, [[]-PosL/[Typ,out]],GR),
select (Pos,PosL,0therPoslL),
NewWFspec = [[]-PosL/[Typ,inl]

RLN) v
LRN )

)
! (wave_fronts(GR1, [[]-PosL/[Typ,in]],GR),
PosL = [_,_|_],

select (Pos,PosL,0therPoslL),
NewWFspec = [[]-PosL/[Typ,inl]

)

v
(wave_fronts(GR1,[],GR),
wave_fronts(_,[_-_/[_,outl|_],
PosL=[],Pos=[],0therPoslL=[[]],
NewWFspec = [Pos-OtherPosL/_]

GL),

v
(wave_fronts(GR1tmp, [WFPos-[WHPos]/[Typ,_11,GR),
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sinks(GR1, [WFPos] ,GR1tmp),
sinks(GL1,_,GL),
append (WHPos,WFPos,RSinkPos),
exp_at (GR1,RSinkPos,Sink),
exp_at(GL1,LSinkPos,Sink),
NewWFspec = [LSinkPos-[WHPos]/[Typ,out]],
Pos=[]

v

(wave_fronts(GR1tmp, [[]1-PosL/[Typ,out] | SunkFronts],GR),
select (Pos,PosL,0therPosL),
NewWFspec = [[]-PosL/[Typ,1in]],
sinks(GR1,SinkPosns,GR1tmp),
(forall{PP \ SunkFronts}: (PP = FrontPos-_/[_,_],
(thereis{ SS \ SinkPosns} : append(SS,_,FrontPos))))
)

)
exp_at(GR1,Pos,GR1Sub),
% check for positive occurrence or symmetrical function symbol:
(Connective = (in) orelse polarity(_,_,GR1,Pos,+)),
( member( _:[ihmarker(notraw(_),[])|IHyps], H ),
nv_member (Hyp: IndHyp, IHyps) ;
member ( Hyp:IndHyp, H ),
IndHyp \= [_I_]

3

matrix(_,IndHyp_M,IndHyp),

exp_at (IndHyp_M, [0] ,Connective),
replace_all(GL,GRNewSub,M,GSubl),
replace_all(GR,GR1Sub,GSubl,GSub),
instantiate(IndHyp,GSub,Instan),
ground_sinks(Instan,GL,GR,GSub),
wave_fronts(GRNewSub, _,GRNewSub)

]

% postconditions
[replace(Pos,GRNewSub,GR1,GRNewl),
wave_fronts(GRNewl,NewWFspec,GRNew),
wave_fronts(GLNew,_,GL),
sinks (NNewG_M, _,NewG_M),
matrix(Vars,NNewG_M,NewG)

1,
[H==>NewG],
weak_fertilize(Dir,Connective,Pos,Hyp)

).
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