1,189 research outputs found

    Polynomial Interrupt Timed Automata

    Full text link
    Interrupt Timed Automata (ITA) form a subclass of stopwatch automata where reachability and some variants of timed model checking are decidable even in presence of parameters. They are well suited to model and analyze real-time operating systems. Here we extend ITA with polynomial guards and updates, leading to the class of polynomial ITA (PolITA). We prove the decidability of the reachability and model checking of a timed version of CTL by an adaptation of the cylindrical decomposition method for the first-order theory of reals. Compared to previous approaches, our procedure handles parameters and clocks in a unified way. Moreover, we show that PolITA are incomparable with stopwatch automata. Finally additional features are introduced while preserving decidability

    Revisiting Synthesis for One-Counter Automata

    Full text link
    We study the (parameter) synthesis problem for one-counter automata with parameters. One-counter automata are obtained by extending classical finite-state automata with a counter whose value can range over non-negative integers and be tested for zero. The updates and tests applicable to the counter can further be made parametric by introducing a set of integer-valued variables called parameters. The synthesis problem for such automata asks whether there exists a valuation of the parameters such that all infinite runs of the automaton satisfy some omega-regular property. Lechner showed that (the complement of) the problem can be encoded in a restricted one-alternation fragment of Presburger arithmetic with divisibility. In this work (i) we argue that said fragment, called AERPADPLUS, is unfortunately undecidable. Nevertheless, by a careful re-encoding of the problem into a decidable restriction of AERPADPLUS, (ii) we prove that the synthesis problem is decidable in general and in N2EXP for several fixed omega-regular properties. Finally, (iii) we give a polynomial-space algorithm for the special case of the problem where parameters can only be used in tests, and not updates, of the counter

    The Complexity of Flat Freeze LTL

    Get PDF
    We consider the model-checking problem for freeze LTL on one-counter automata (OCAs). Freeze LTL extends LTL with the freeze quantifier, which allows one to store different counter values of a run in registers so that they can be compared with one another. As the model-checking problem is undecidable in general, we focus on the flat fragment of freeze LTL, in which the usage of the freeze quantifier is restricted. Recently, Lechner et al. showed that model checking for flat freeze LTL on OCAs with binary encoding of counter updates is decidable and in 2NEXPTIME. In this paper, we prove that the problem is, in fact, NEXPTIME-complete no matter whether counter updates are encoded in unary or binary. Like Lechner et al., we rely on a reduction to the reachability problem in OCAs with parameterized tests (OCAPs). The new aspect is that we simulate OCAPs by alternating two-way automata over words. This implies an exponential upper bound on the parameter values that we exploit towards an NP algorithm for reachability in OCAPs with unary updates. We obtain our main result as a corollary

    Towards Reliable Benchmarks of Timed Automata

    Get PDF
    The verification of the time-dependent behavior of safety-critical systems is important, as design problems often arise from complex timing conditions. One of the most common formalisms for modeling timed systems is the timed automaton, which introduces clock variables to represent the elapse of time. Various tools and algorithms have been developed for the verification of timed automata. However, it is hard to decide which one to use for a given problem as no exhaustive benchmark of their effectiveness and efficiency can be found in the literature. Moreover, there does not exist a public set of models that can be used as an appropriate benchmark suite. In our work we have collected publicly available timed automaton models and industrial case studies and we used them to compare the efficiency of the algorithms implemented in the Theta model checker. In this paper, we present our preliminary benchmark suite, and demonstrate the results of the performed measurements

    The Complexity of Flat Freeze LTL

    Get PDF
    We consider the model-checking problem for freeze LTL on one-counter automata (OCAs). Freeze LTL extends LTL with the freeze quantifier, which allows one to store different counter values of a run in registers so that they can be compared with one another. As the model-checking problem is undecidable in general, we focus on the flat fragment of freeze LTL, in which the usage of the freeze quantifier is restricted. Recently, Lechner et al. showed that model checking for flat freeze LTL on OCAs with binary encoding of counter updates is decidable and in 2NEXPTIME. In this paper, we prove that the problem is, in fact, NEXPTIME-complete no matter whether counter updates are encoded in unary or binary. Like Lechner et al., we rely on a reduction to the reachability problem in OCAs with parameterized tests (OCAPs). The new aspect is that we simulate OCAPs by alternating two-way automata over words. This implies an exponential upper bound on the parameter values that we exploit towards an NP algorithm for reachability in OCAPs with unary updates. We obtain our main result as a corollary
    • …
    corecore