110 research outputs found

    Time-varying signal analysis to detect high-altitude periodic breathing in climbers ascending to extreme altitude

    Get PDF
    This work investigates the performance of cardiorespiratory analysis detecting periodic breathing (PB) in chest wall recordings in mountaineers climbing to extreme altitude. The breathing patterns of 34 mountaineers were monitored unobtrusively by inductance plethysmography, ECG and pulse oximetry using a portable recorder during climbs at altitudes between 4497 and 7546 m on Mt. Muztagh Ata. The minute ventilation (VE) and heart rate (HR) signals were studied, to identify visually scored PB, applying time-varying spectral, coherence and entropy analysis. In 411 climbing periods, 30–120 min in duration, high values of mean power (MPVE) and slope (MSlopeVE) of the modulation frequency band of VE, accurately identified PB, with an area under the ROC curve of 88 and 89 %, respectively. Prolonged stay at altitude was associated with an increase in PB. During PB episodes, higher peak power of ventilatory (MPVE) and cardiac (MPLF HR) oscillations and cardiorespiratory coherence (MPLFCoher), but reduced ventilation entropy (SampEnVE), was observed. Therefore, the characterization of cardiorespiratory dynamics by the analysis of VE and HR signals accurately identifies PB and effects of altitude acclimatization, providing promising tools for investigating physiologic effects of environmental exposures and diseases.Peer ReviewedPostprint (author’s final draft

    Sleep and Breathing at High Altitude

    Get PDF
    This thesis describes the work carried out during four treks, each over 10-11 days, from 1400m to 5000m in the Nepal Himalaya and further work performed during several two-night sojourns at the Barcroft Laboratory at 3800m on White Mountain in California, USA. Nineteen volunteers were studied during the treks in Nepal and seven volunteers were studied at White Mountain. All subjects were normal, healthy individuals who had not travelled to altitudes higher than 1000m in the previous twelve months. The aims of this research were to examine the effects on sleep, and the ventilatory patterns during sleep, of incremental increases in altitude by employing portable polysomnography to measure and record physiological signals. A further aim of this research was to examine the relationship between the ventilatory responses to hypoxia and hypercapnia, measured at sea level, and the development of periodic breathing during sleep at high altitude. In the final part of this thesis the possibility of preventing and treating Acute Mountain Sickness with non-invasive positive pressure ventilation while sleeping at high altitude was tested. Chapter 1 describes the background information on sleep, and breathing during sleep, at high altitudes. Most of these studies were performed in hypobaric chambers to simulate various high altitudes. One study measured sleep at high altitude after trekking, but there are no studies which systematically measure sleep and breathing throughout the whole trek. Breathing during sleep at high altitude and the physiological elements of the control of breathing (under normal/sea level conditions and under the hypobaric, hypoxic conditions present at high altitude) are described in this Chapter. The occurrence of Acute Mountain Sickness (AMS) in subjects who travel form near sea level to altitudes above 3000m is common but its pathophysiology not well understood. The background research into AMS and its treatment and prevention are also covered in Chapter 1. Chapter 2 describes the equipment and methods used in this research, including the polysomnographic equipment used to record sleep and breathing at sea level and the high altitude locations, the portable blood gas analyser used in Nepal and the equipment and methodology used to measure each individual’s ventilatory response to hypoxia and hypercapnia at sea level before ascent to the high altitude locations. Chapter 3 reports the findings on the changes to sleep at high altitude, with particular focus on changes in the amounts of total sleep, the duration of each sleep stage and its percentage of total sleep, and the number and causes of arousals from sleep that occurred during sleep at increasing altitudes. The lightest stage of sleep, Stage 1 non-rapid eye movement (NREM) sleep, was increased, as expected with increases in altitude, while the deeper stages of sleep (Stages 3 and 4 NREM sleep, also called slow wave sleep), were decreased. The increase in Stage 1 NREM in this research is in agreement with all previous findings. However, slow wave sleep, although decreased, was present in most of our subjects at all altitudes in Nepal; this finding is in contrast to most previous work, which has found a very marked reduction, even absence, of slow wave sleep at high altitude. Surprisingly, unlike experimental animal studies of chronic hypoxia, REM sleep was well maintained at all altitudes. Stage 2 NREM and REM sleep, total sleep time, sleep efficiency and spontaneous arousals were maintained at near sea level values. The total arousal index was increased with increasing altitude and this was due to the increasing severity of periodic breathing as altitude increased. An interesting finding of this research was that fewer than half the periodic breathing apneas and hypopneas resulted in arousal from sleep. There was a minor degree of upper airway obstruction in some subjects at sea level but this was almost resolved by 3500m. Chapter 4 reports the findings on the effects on breathing during sleep of the progressive increase of altitude, in particular the occurrence of periodic breathing. This Chapter also reports the results of changes to arterial blood gases as subjects ascended to higher altitudes. As expected, arterial blood gases were markedly altered at even the lowest altitude in Nepal (1400m) and this change became more pronounced at each new, higher altitude. Most subjects developed periodic breathing at high altitude but there was a wide variability between subjects as well as variability in the degree of periodic breathing that individual subjects developed at different altitudes. Some subjects developed periodic breathing at even the lowest altitude and this increased with increasing altitude; other subjects developed periodic breathing at one or two altitudes, while four subjects did not develop periodic breathing at any altitude. Ventilatory responses to hypoxia and hypercapnia, measured at sea level before departure to high altitude, was not significantly related to the development of periodic breathing when the group was analysed as a whole. However, when the subjects were grouped according to the steepness of their ventilatory response slopes, there was a pattern of higher amounts of periodic breathing in subjects with steeper ventilatory responses. Chapter 5 reports the findings of an experimental study carried out in the University of California, San Diego, Barcroft Laboratory on White Mountain in California. Seven subjects drove from sea level to 3800m in one day and stayed at this altitude for two nights. On one of the nights the subjects slept using a non-invasive positive pressure device via a face mask and this was found to significantly improve the sleeping oxyhemoglobin saturation. The use of the device was also found to eliminate the symptoms of Acute Mountain Sickness, as measured by the Lake Louise scoring system. This finding appears to confirm the hypothesis that lower oxygen saturation, particularly during sleep, is strongly correlated to the development of Acute Mountain Sickness and may represent a new treatment and prevention strategy for this very common high altitude disorder

    Respiratory Rate Derived from Pulse Photoplethysmographic Signal by Pulse Decomposition Analysis

    Get PDF
    A novel technique to derive respiratory rate from pulse photoplethysmographic (PPG) signals is presented. It exploits some morphological features of the PPG pulse that are known to be modulated by respiration: amplitude, slope transit time, and width of the main wave, and time to the first reflected wave. A pulse decomposition analysis technique is proposed to measure these features. This technique allows to decompose the PPG pulse into its main wave and its subsequent reflected waves, improving the robustness against noise and morphological changes that usually occur in long-term recordings. Proposed methods were evaluated with a data base containing PPG and plethysmography-based respiratory signals simultaneously recorded during a paced-breathing experiment. Results suggest that normal ranges of spontaneous respiratory rate (0.1-0.5 Hz) can be accurately estimated (median and interquartile range of relative error less than 5%) from PPG signals by using the studied features

    The Brain at Altitude: The Cerebral Vasculature, Hypoxia and Headache

    Get PDF
    This thesis studies the effect of hypoxia (at rest and during exercise) on the arterial and venous cerebral circulation, investigating the venous system role in high altitude headache. Methods: 1) Hypobaric hypoxic studies investigated 198 trekkers and 24 Investigators to 5300m, 14 to 6400m and 8 to 8848m. 2) Normobaric hypoxic studies used Magnetic Resonance Imaging (MRI)) at sea-level. Four domains were addressed: i. Arterial: Hypobaric hypoxia: (n=24) Transcranial Doppler (TCD) measured middle cerebral artery diameter (MCAD) and blood velocity (MCAv). Sea-Level normobaric hypoxia: (n=7) A hypoxicator (FiO2 = 11%) for 3 hours with a 3Tesla MRI scan measured MCAD and MCAv. ii. Brain Oxygenation: Near Infrared Spectroscopy (NIRS) monitored Regional Brain Oxygenation (rSO2). iii. Venous: Retinal imaging at altitude and MRI at sea-level assessed the venous system. iv. Headache: A daily diary recorded headache burden. Results: Arterial: Hypobaric and normobaric hypoxia induced MCA dilatation. Mean (±(SEM)) MCAD increased in hypoxia (from 5.23(±0.23)mm (at 5300m) to 9.34(±0.88)mm (at 7950m)(p<0.001) (TCD). At sea-level, (after 3 hours FiO2 = 11%) MCAD increased from 3.04(±0.13)mm to 3.27(±0.13)mm (MRI). Brain Oxygenation: rSO2 decreased more than peripheral arterial saturation (SaO2), especially during exercise. The relative percentage reduction in resting SaO2 and rSO2 from 75m to 5300m was -22.23 ±0.56% and -30.61 ±1.28% (p<0.001) respectively. Venous: Hypoxia induced retinal and cerebral venous distension. Twenty-three of 24 subjects exhibited retinal venous distension (range 5 to 44%). Degree of distension correlated with headache (r = 0.553, p=0.005). Possession of a narrow transverse sinus strongly related to retinal and cerebral venous distension and headache. Headache: Headache Severity Index (HSI) (headache score x duration) correlated inversely to both lateral and third ventricular volumes summed (r = -0.5, p = 0.005) and pericerebellar CSF volume (r = -0.56, p = 0.03). Conclusions: Large cerebral arteries dilate and veins distend with hypoxia. This suggests an important influence of cerebral venous anatomy and physiology on headache, with implications for pathophysiological states and their management

    Selected topics on the neuroscience of altered perceptions and illusory beliefs

    Full text link
    Six neuropsychological topics illustrating altered perceptions and illusory beliefs are explored with particular emphasis on the neurobiological underpinnings of such phenomena. The first five topics are phantom limb, out-of-body experiences including depersonalization and near-death experiences, delusions with an emphasis on the effects of psychedelic drugs, autonomic reflex actions including respiration and heartbeat, and virtual reality. The last topic focuses on three disorders impairing perception and cognition, namely, Anton-Babinski, Charles Bonnet, and Diogenes Syndromes. Many of the related neurobiological mechanisms reflect disturbances of both lower-level and multisensory processing along with specific cortical impairments such as at the temporoparietal junction. The latter has been linked, for example, to out-of-body experiences. Similarly, aberrant neural learning and signaling such as that based on synaptic receptor disturbances show how the interplay between lower-level brain activity and that in the prefrontal cortex contributes to delusions. Specific hypotheses set forth to explain these alterations in perception and cognition are reviewed, such as a remapping theory which depicts cortical reorganization in response to synaptic changes mediated by receptors. The effects of these perceptual/cognitive distortions on experiential pleasure/pain and on adaptability are also explored

    Aerospace medicine and biology. A continuing bibliography with indexes, supplement 240, January 1983

    Get PDF
    Reports, articles and other documents, numbering 357, introduced into the NASA scientific and technical information system in December 1982 are given

    Does acute hypoxia and high altitude exposure adversely affect cardiovascular performance?

    Get PDF
    Introduction: The cardiovascular adaptations to high altitude (HA) exposure and its relationship to acute mountain sickness (AMS) are incompletely understood. Aims: This thesis addresses four main hypotheses 1. HA adversely affects biventricular cardiac function leading to an increase in estimated filling pressures which is influenced by the mode of hypoxia. 2. HA exposure leads to myocardial injury that is linked to the development of AMS. 3. HA exposure is associated with a reduction in arterial compliance and an increase in central blood pressure (BP). 4. HA exposure reduces heart rate (HR) variability (HRV) that is linked to AMS an increased risk of cardiac arrhythmias. Methods: This consisted of eight independent studies conducted at terrestrial and ‘simulated’ HA (hypobaric hypoxia [HH] and normobaric hypoxia [NH] Cardiac function and arterial compliance were examined using portable transthoracic echocardiography and pulse contour analysis respectively. Myocardial injury was measured in venous blood by cardiac troponin T (cTnT) quantification. Cardiac inter-beat interval data for HRV analysis was acquired using single lead ECGs and novel finger and patch sensor technologies. Cardiac rhythm was investigated using a novel implantable cardiac monitor. Results: HA exposure was associated with a non-pathological increase in cTnT, and mild diastolic changes without adversely affecting systolic function or ventricular filling pressures. Resting cardiovascular responses were similar with HH, NH and HA, though notable differences emerged with exercise. Resting central BP, HR and BP-augmentation increased at terrestrial HA. HRV fell (eg reduced time-domain measures, increased LF/HF ratios and less chaos) at HA and was consistently different between men and women. Significant HA (>3500m) was associated with the development of tachyarrhythmia (atrial fibrillation and supraventricular tachycardia) and asymptomatic nocturnal bradycardias and pauses (>3.0 seconds). There were no independent predictors of AMS and its severity. Conclusion: HA-related hypoxia induces early sympathetic activation leading to an increase in resting HR and central BP and may be proarrhythmic. Parasympathetic activation with acclimatisation can trigger nocturnal pauses at higher altitudes. HA exposure does not adversely affect cardiac function

    Aerospace Medicine and Biology: a Continuing Bibliography with Indexes (supplement 330)

    Get PDF
    This bibliography lists 156 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System during November 1989. Subject coverage includes: aerospace medicine and psychology, life support system and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 292)

    Get PDF
    This bibliography lists 192 reports, articles and other documents introduced into the NASA scientific and technical information system in December, 1986

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 312)

    Get PDF
    This bibliography lists 300 reports, articles, and other documents introduced into the NASA scientific and technical information system in June, 1988
    • …
    corecore